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Zusammenfassung

Die vorliegende Arbeit wurde vom Autor im Wintersemester 1976/77
an der Ruhr-Universitdat Bochum als Vorlesung iber nichtlineare Scha-

lentheorie vorgetragen.

Kapitel 1 gibt eine Einfihrung in die Grundlagen der Differential-
geometrie der Flachen und der Kurven auf Fléachen. kapitel 2 beinhal-
tet eine exakte dreidimensionale Theorie der Flachenverformung. In
Kapitel 3 wird die Verformung einer Schale unter Zugrundelegung der
Kirchhoff-Love'schen Hypothese behandelt. Es wird die Struktur ver-
schiedener Verformungstensoren analysiert und eine Theorie endlicher
Rotationen filir Schalenprobleme entwickelt. Die Anwendung dieser Theorie
auf Elemente der Randkurve erlaubt im Kapitel 4 die Formulierung

dreier verschiedener Typen von geometrischen Randbedingungen. In Kapi-
tel 5 werden auf der Grundlage des im zweidimensionalen angewandten
Prinzips der virtuellen Arbeit oder mit Hilfe direkter Integration

von Gleichungen der dreidimensionalen Kontinuumsmechanik verschiedene
Formen von Gleichgewichtsbedingungen und natilirlichen Randbedingungen
behandelt. In den beiden letzten Kapiteln werden fiir homogenes, iso-
tropes, elastisches Mateiial verschiedene vereinfachte Formen der
nichtlinearen Schalen- und Plattentheorie diskutiert. Diese Beiiehungen
werden unter der Voraussetzung kleiner Dehnungen oder mit Hilfe zu-

sdtzlicher Vereinfachungen hergeleitet.

Summarx

These are lecture notes on the non-linear shell theory delivered by the

author during AY 1976/77 at the Ruhr-Universitdt Bochum.

An elementary introduction to differential geometry of a surface and
surface curves is given in chapter 1. An exact theory of deformation

of a surface in three-dimensional Euclidean space is presented in
chapter 2. In chapter 3 the shell deformation is discussed under the
Kirchhoff-Love constraints. The structure of various strain tensors is
analyzed and the theory of finite rotations in shells is developed. The
total finite rotations of the boundary material elements described in
chapter 4 allow to construct three types of geometric boundary condi-
tions. In chapter 5 various forms of equilibrium equations and natural

boundary conditions are discussed either on the basis of a two-dimen-



II

sional virtual work principle or using direct integration of three-

dimensional equations of continuum mechanics.

Various reduced forms of the non-linear relations of shells and
plates are discusseé in the last two chapters for homogeneous
isotropic elastic material. These relations are derived either
within the small strain theory or with additionally restricted

rotations.

Streszczenie

Praca zawiera notatki wyktadow z nieliniowej teorii powlok prowadzo-

nych przez autora w RA 1976/77 w Uniwersytecie w Bochum (RFN) .

Rozdzial 1 zawiera elementarny Qstep do geometrii rozniczkowej
powierzchni oraz geometrii krzywych na powierzchni. W rozdziale 2
podano scisly teorie deformacji powierzchni w trdjwymiarowej przest-
rzeni Euklidesowej. W rozdziale 3 rozwazono deformacje powloki z
wigzami typu Kirchhofa - Love’a , przedyskutowano strukture rdznych
tensorow odksztatcenia oraz podano teorig obrotdéw skonczonych vaowlo-
ce, Calkowity obrdt skoficzony elementu materialnego brzegu powZoki
zbudowany zostal w rozdziale 4. UmoZliwid on skonstruowanie trzech
typdw geometrycznych'. warunkdw brzegowych. Rdézne postacie rdwnan
rdwnowagi i naturalnych warunkow brzegowych zostaly wyprowadzone

w rozdziale 5, zardwno przy pomocy dwuwymiarowej zasady prac wirtual-
nych jak i poprzez bezpodrednie caltkowanie rdwnah trdjwymiarowych

mechaniki osrodka cigglego.

Rdzne uproszczone postacie zalezno$ci nieliniowych dla powlok i piyt
przedyskutowano w dwdch ostatnich rozdziatach dla jednorodnego izo-
tropowego materialu sprezystego. Zaleznosci uproszczone wyprowadzono
zardwno przy zalozeniu malych odksztalcen jak i przy dodatkowym ogra-

niczeniu obrotdw_elementéw materialnych powloki.
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PREFACE

The rapid development of computer-oriented solution techniques makes
it possible to calculate complex thin-walled structures with an appropriate
accuracy. It is currently recongnized that the non-linear effects play an
important role in the rational and economic design of modern thin shell
structures and have to be taken into account. These effects may be associa-
ted with large displacements and rotations, non-linear material behaviour,
loss of stability , dependence of external forces on deformation, non-

classical boundary conditions etc.

The literature of the subject is growing rapidly, particularly in so
far as numerical solutions of various non-linear shell problems are concerned.
Development of various aspects of the non-linear theory of shells has been
presented, for example, in the works of MUSHTARI and GALIMOV [34], KOITER
[23,6], WOZNIAK [37], NAacHDI [4,5], KOITER and SIMMONDS [22], GALiMov (71,
WEMPNER [38] and the author [9,12] where additional references may be found.

Here we shall discuss the non-linear relations which govern static
problems of thin shells. It is assumed that the behaviour of a thin shell
can be described with a sufficient accuracy by the behaviour of the shell
middle surface. This is accomplished by imposing the Kirchhoff-Love

constraints on a deformation of the shell.

An exact theory of deformation of a surface in three-dimensional Euclidean
space is presented in chapter 2. In chapter 3 the shell deformation is
decomposed into a rigid-body translation, a pure stretch along principal
directions of strain followed by a rigid-body rotation of the principal
directions. The structure of various strain tensors and of the finite
rotation tensor is discussed. An equivallent description of the rotations
by means of a finite rotation vector is developed. The total finite rotations
of the boundary material elements are analysed in chapter 4. This allows us
to construct three types of geometric boundary conditions: in terms of
displacements, in terms of the total finite rotation vector and the elonga-
tion of the boundary contour as well as in terms of four combinations of
the strain measures at the boundary. In chapter 5 various forms of equili-
brium equations and natural boundary conditions are discussed. In their
derivation either the two-dimensional virtual work principle or direct

integration of three-dimensional equations of continuum mechanics over



the shell thickness are used. Kinematics of deformation and various shell

relations presented in chapters 3 to 5 are exact under K - L constraints.

Various reduced forms of the non-linear equations are discussed in the
last two chapters for homogeneous isotropic elastic shells. These relations
are derived either within the small strain theory or with additionally
restricted rotations. Under small elastic strains the change of the
shell thickness during deformation has also been taken into consideration

by the proper formulation of the constitutive equations.

A clear distinction shall be made between Lagrangean and Eulerian
descriptions. Roughly speaking, in the Lagrangean description all quanti-
ties and equations are related to the known reference (or undeformed) shell
configuration, while in the Eulerian description they are related to the
unknown deformed state. In contrast to most of general works on the non-
linear shell theory, attention is focused here primarily on the Lagrangean
shell equations developed in the author's papers [10,11,12]. In order to
stress the important differences between these two descriptions we use
absolute tensor notation in definitions of strain and stress measures

of the shell and in presentation of the various shell equations.

The importance of the finite rotations in any theory of thin bodies has
long been recognized. Unfortunately, the literature is not free from
confusion about the analytical representation of the rotations. There are
many works in which the linearized rotations or displacement gradients
are used, apparently on the intuitive grounds, td describe finite rotations
of the shell material elements also within the non-linear range of deforma-
tion. A general theory of finite rotations in shells has been developed
recently in the author's thesis [12]. This theory is exact at the shell
middle surface. Here we deve;ope independently the theory of finite
rotations in shells subject to K - L constraints, which is a particular
case of the theory giveh in [12]. The notion of a finite rotation haépens
to be extremely helpful in deriving the new variants of geometrical boundary
conditions, in obtaining various modified shell equations as well as in
providing a clear and consistent classification of various approximate

variants of geometrically non-linear theory of shells and plates.

Most of the non-linear shell relations are derived here in detail in
order to make the subject self-contained and easy to follow for a reader

with some mathematical training. For this reason we found it necessary



to provide the reader with an elementary introduction to differential
geometry of a surface and surface curves. References in the text are
primarily to those original papers which have been used in preparation
of this work or have influenced the author's research, the results of

which are presented here.

This work has been prepared as lecture notes during the Academic
Year 1976/77, when the author had been Visiting Professor at the Ruhr-
Universitdt Bochum. The lectures were delivered to a group of assistents
and research staff of the Institut fir Mechanik and the Institut fir Kon-
struktiven Ingenieurbau RUB. The author would like to take this opportuni-
ty to thank Professor H. Stumpf, Professor W. B. Krdtzig and the other
participants in the seminars for stimulating discussions, Professor
Wempner for his comments on chapter 1 to 5 of the manuscript, Dipl.-Ing.
R. Schmidt for checking most of the formulae and Frau Monikes for an

outstanding job in typewriting.

The author would welcome any critical remarks on the subject presented
here, which may be sent to the following address: Instytut Maszyn

Przeplywowych PAN, ul. Gen. J. Fiszera 14, 80-952 Gdahsk, Poland.

Bochum, April 1977 W. P.
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Chapter 1

ELEMENTS OF DIFFERENTIAL GEOMETRY OF A SURFACE

Differential geometry of a surface has been developed in detail in
many mathematical monographs. The most extensive treatise on the subject
was published by KAGAN [1]. An excellent introduction to differential
geometry of a surface, within the scope necessary in shell theory, may
be found in the books of GREEN and ZERNA [2] and CHERNYKH [3]. Some
useful relations may also be found in works of NAGHDI [4,5], KOITER
[6), caLIMOV [7] and the author [8].

Here we present an elementary introduction to differential geometry
of a surface and surface curves. We begin by introducing the surface base
vectors and components of the metric, alternation and curvature tensors.
Surface vectors and tensors are defined in absolute notation as elements
of some linear space. Then the rules of covariant differentiation at the
surface, the role of the Riemann-Christoffel tensor and the Codazzi-
Gauss equations are discussed. The notion of physical components allow
us to derive some useful geometrical relations for a surface curve,
differentiation rules along the curve and in the direction normal to the
curve, as well as to relate the results to the geometry of a curve in
space. Finally, the lines of principal curvatures at the surface and

physical components of various coordinate lines are discussed.

All geometrical relations collected here will be used in the
remaining parts of these notes. The reader already familiar with
differential geometry of a surface may aomit this chapter and use the

formulae for reference purposes only.

1.1. Geometry of a surface

A surface M in three-dimensional Euclidean point space E can be

defined by three scalar functions of two parameters

1
= gtet,e? , x2=f20'0Y , X =£0led  (.1.1)



or one vector function, Fig. 1,

3
al o2 k 1 .2 k.
I=0M=£(0,00 =" £(0,001 = x4 (1.1.2)
k=1

| x3

Fig. 1

where the s’wrmat'im convention over the repeated index k has been used.
The vector r is known as the position vector of the surface points MEM,
while x* (k= 1,2,3) and 6%(a = 1,2) are called cartesian and curvilinear

Gaussian coordinates of the surface, respectively.

Two vectors, tangent to the surface at M, and defined by
B
_ 9f(67) X

=— = =x i (1.1.3)

a
~O aea 2Q 'u~k

are called the covariant base vectors of the surface, or shortly a, -

basis.

The vector n defined by

2,%3, K

2=T2:x—2—2|— =n'£k (1.1.4)

is called the unit normal to the surface, since

a-n=1, n° =0 (1.1.5)

a
~Q



The vector product x in (1.1.4) is taken according to the right-hand

rule.

The base vectors Eh define at M € M a two-dimensional linear vector
space I/ in which we can introduce the contravariant base vectors‘ga,

dual to those of 2u' by the relations:

2 - ag=6, | (1.1.6)
where
o _ 1 if a=28
68 - { oif a # 8 . (1.1.7)

It is easy to see that the vectors 3? satisfying the equations (1.1.6)

have the form, Fig. 2,

a. xXn
1 2~ == (1.1.8)

a = . 2 "
~ (a; xa)°m (3, *3,)'n

The coefficients defined by

k 1

x 'ax ,86k1 (1.1.9)

a,=a *a, =
af ~x ~B

are known as the covariant components of the surface metric tensor. The

aB

contravariant components a = of the surface metric tensor may be

obtained from the following set of linear algebraic equations:

ofB = &%
a aBY 68 (1.1.10)

According to (1.1.10),

11 22 12 21 32 22 2
a = ——a ’ a = a = - -——a ’ a = -——a
(1.1.11)
_ _ _ 2
as= laael = a8, - (a0 .

It follows now from (1.1.6), (1.1.8) and (1.1.10) that

a
2? - aa%gﬁ = ngiik
ax (1.1.12)
aB o B _ B8
o N R VL W

These equations relate the covariant and contravariant basic vectors.



In various geometrical formulae it is convenient to make use of

surface quantities

yon . €P = @®xaf)p (1.1.13)

~ ~

eaB = (guxg

B

which are known as covariant and contravariant components of a surface

alternation tensor, respectively.

Using some algebraic transformations it is shown that

2% 3% 342
2 = —
[(a, x3)-n)" = | a8,°3 3,-3, 3-'n|=a>o0 (1.1.14)
B-8 B-3 2-&

€.,=-€,=+/a , €, ,=€_=0
122 1 22 (1.1.15)
612 = -621 =+ L ' 611 =e?? . o)
Va
or
_ o _ 1 _aB
eaB /;eas , € —/;e (1.1.16)
where
1 ifa=1,8 =2
af
eg=¢ = -1 ifa=2,8=1 . (1.1.17)
O ifa= B

with the help of EaB and €GB it is possible to derive many identities

and formulae, for example,

Aw _ A p A
eaBG = Ga GB 68 Ga
(1.1.18)
aB = &b aB -
€ eal 61 , € eaB 2
oA By _ _Au af _
€€ aaB = a . EaAEBua a)\u
(1.1.19)
ai_Bu _ A af _
a a eaB = ' aaAaBue 6}‘u




= a B _ aB
3,%3,=€pn + 3 xa =€ "n
- B a _ .aB
gx‘gﬂ—ﬁusg » nxa =€ 2p . (1.1.20)
_ 1 _aB - 1 a, B
B=3€73,%8 = 72 2

These formulae are very useful in general discussion of various geometri-

cal relations at a surface.

Differentiating the unit normal n with respect to surface coordinates,
we obtain two vectors tangent to the surface at M, n o € V. The coeffi-
14

cients defined by

Eu,B (1.1.21)

are known as the covariant components of a surface curvature tensor.

Associated with them are two invariants:

(1.1.22)

m
m
w
=
o
o2
o
o
1]
Ca

aBl

1
2
H= % a*Bp (1.1.23)

These are called the Gaussian and mean curvatures, respectively.

The metric tensor components allow us to calculate lengths, angles
and areas at the surface. The curvature tensor components allow us to
calculate curvatures and torsions of curves at the surface. The geometri-

cal meaning of aaB and buB will be discussed in more detail in § 1.4, and

§ 1.6.

1.2, Surface vectors and tensors

Any surface vector y € V may be represented by its components inkgu

or 2? -bases, respectively, according to linear relations

a
2
(1.2.1)

where v* and v, are called contragvariant and covariant components of the

surface vector v, respectively. From (1.1.12) we obtain

a _ _af _ B
v = a vB PV, = 2,8" (1.2.2)



what establishes a law for raising and lowering of indices of the vector
components. The physical meaning of these components is obvious from

Fig. 2.

Fig., 2

We shall often have to deal with physical or geometrical quantities which
at each surface point M may be represented by more than two of their
scalar components. To discuss them let us consider the tensor product ®
of two vectors u,v € V to be a linear transformation LZue®ey ,L: V-V

such that

Lw= (ue®e X)z = g(v -x) ) (1.2.3)
for any w € V.

All such linear transformations and their linear combinations form
a linear space T2 = V ® V called the surface tensor space of the second
order. Elements of the space T € T2 are called surface tensors of the
second order.

It follows from (1.2.1) and (1.2.3) that

_ .a B A _ o« B A
Lw=(ua Qv'gﬂ)ws}\—ua(vwam)
a B (1.2.4)
=uvwa
u 82a
aB a B .
and we see that .~ = u v play the role of compornents of L with respect

to tensor basis a ® a
l\n ~|

8



Expressing vectors in (1.2.3) in terms of other components and basic
vectors, different equivallent representationsof the linear transforma-
tion L may be found. In general, an arbitrary tensor T € T2 can be

represented by various linear combinations

r=1"%2 Ba =1 %0 af =
~ ~0L NB a&v ~
o 8 8 a (1.2.5)
= T.&ea L] a = T& a ® 28
o B B B .
where aa ® aB, a ® a and ac ® a, a, ® a~ are the covariant, contra-

B

variant and mixed base tensors, respectively, and F, Ta ’ T‘TB, T&B are

B
contravariant, covariant and mixed components of T with respect to the

appropriate base tensors, respectively.

Let T, S € T2. In what follows we shall use the following tensor

operations:
transposition T . 'I‘O'Ba ®a = 'I‘B(1 ® a
a
contraction trT = T-u
- _ 0B, LoB
addition T+S = (T + S ))a ®a (1.2.6)
~ -e - ~QL ~B
. . - mOA B
multiplication TS =T S}‘ a ® 3g
af
scalar product TS =T SuB
T T .
A tensor T € T2 for which T = T" or T = -T" is called symmetric or

skew—symmetric, respectively.

Any tensor T € T2 can be decomposed uniquely into its symmetric and
skew-symmetric part

= (r'®B) plo8]

T + a ® a

plofl_ 1 ®8 - 8oy

(1.2.7)

p®8) o L (0B, B

)
N

In exactly the same way tensors of higher-order may be discussed.
For example, linear transformation T® v : V » T2 such that for any
welV

(T®y) w="T( * w (1.2.8)

is an element of a surface tensor space of the third order, etc.



Within this absolute notation the metriec tensor and the curvature

tensor may be defined by

a=a aa ® aB = aaBa ® a

o 8 (1.2.9)
b=>b a ® a
~ aB~ ~

and it is evident from (1.1.9), (1.1.12) and (1.1.21) that 2 and 2 are

symmetric. Similarily, the alternation tensor have the form

€=€ a aB = €a8a ® a (1.2.10)
o ~ ~ o~

o
S g2 ® 8

and is skew-symmetric, which follows from (1.1.13).

The geometry of a surface may be developed entirely in this absolute
tensor notation, although in modern works on shell theory the component
notation is used almost exclusively. Still, all formulae are independent
of surface coordinate system 8% specified in (1.1.1). Thus if o' = (6'1,0'2)
is another system of curvilinear surface coordinates, such that transfor-

mations

B B

0% =9'%0l,0%) , 0P =0fp'!,0'9 (1.2.11)

are single-valued and reversible, then at the same point M € M we obtain,

Fig. 3, 8
at = —— yefe1 =23 _, (1.2.12)
~oget® 7 39:® ~B
..u
ae'® = 38 _ 4of (1.2.13)
208

Fig. 3



The transformation of the type of (1.2.12) is called covariant,
while of the type of (1.2.13) - contravariant. Transformations (1.2.12)
and (1.2.13) are linear ones, while that of (1.2.11) may not be linear,

in general.

In what follows, position of index (subscript or superscript) shows
us the transformation rule for the quantity under a change of the
surface coordinate system (1.2.11). For example, the transformation rule

o . .
of basic vectors a is of contravariant type

a (1.2.14)

which is verified directly from (1.1.6) and (1.2,12)

a.'u .a' = ae'a aeu aB ca =
~ ~) - B .)\ ~ ~u
90 26
a
[ ]
=8 (1.2.15)
ae.k A

The transformation rules for various components of metric and
alternation tensors a and‘g follow from the position of their indices
as well, which may be verified by similar direct transformations.

For any scalar field, o : M - R, we obtain

aM) = a(8®) =a'(8'% ' (1.2.16)

Q
i

For any vector field, v : M » V, from (1.2.1) we obtain

B
~=x(M)=vg =v' a'
g . (1.2.17)
= = LS
Vg = Vo3

and it follows from (1.2.12) and (1.2.14) that

a 20'¢ g 30

B
Vo= 5 Vv ’ v (1.2.18)
a8

g'® P

-2

For any tensor field of the second order, T: M- T2, we obtain

_ R T _ m,28_, '
I =T(M) T 3>-®au—T' a, QSB (1.2.19)
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from which it follows that

o

]

o OB _ 86; CLIRMI (1.2.20)
ae” 0¥
and in a similar way
A M . A B .
TIB = .ﬁ.a- —ae—B- TA r T.aB = 38 p 'a—ei— Tku etc. (1.2.21)
B 301 30 ¥ 20'% 36

If aquantity appears in some relations only through its components
in a specified coordinate system,the transformation rules (1.2.16),
(1.2.18), (1.2.20) and (1.2.21) may be used to verify whether these
components form a tensor of the zeroth order (scalar), of the first
order (vector) or of the second order. The same rule may be applied
to higher-order tensors as well. For example, mixed components A?BY
of a surface tensor A of the third order should transform according

to the following rule

o 30'Y 38" ae?

= A
BY 6% a0rB 0¥ WP

A (1.2.22)

1.3. Covariant differentiation

Differentiating the basic vectors 2y with the help of (1.1.3), (1.1.9)
and (1.1.20) we obtain

- - A
‘En,B £'u8 I‘Ao'a&e * bus'p’
(1.3.1)
=T a +b.n
af~ af~
where
B 1 k
TyoaB = 2 "84,8 = * 2%, ek :
1 o (1.3.2)
= E'(aka,B + aAB,a-- aaB,k)
Mo A u, =-a" .
raB' a r)‘.asns Sa,s 'e,c.- 2 ; (1'3':,”
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are called the surface Christoffel symbols of the first and second kind,
respectively. In general, these symbols are not components of a surface
tensor. It follows, for example,from (1.3.3), (1.3.2), (1.1.9) and

(1.1.12) that transformation rule for Pz is

B
P LT 20'30'P 36'" 9P T
- 2005 207 20 o, _0%F (1.3.4)
- }) WA P aB WA W0 T
ae%  a8'" a0 20'"36 )

what differs from transformation rule (1.2.16) of a third-order tensor.

Let us differentiate a surface vector field v = x(M) ' Vv € V, along

coordinate lines

] a a o a
T c— = + +
'Y‘.B aeB (va) (v B FAB‘))E«: bqu n
a a (1.3.5)
= |B'g“+ byg? & = Valp 2 + bov B
where the operation defined by
a _ o a A _ _pA
v IB =v.g* PABV ’ VGIB = Vo8 I‘vaA (1.3.6)

is called the covariant derivative of the surface vector components.

Similarly, differentiating a surface tensor field T=TM), TE€ T2,

along coordinate lines we obtain

z A = —a-A_ (TaBa ® SB) =
’ ae
af aB aB
=T |la 8a8+b)‘T 2938+bBXT a2, en (1.3.7)
- B, @ B, B, .
TGBIXa ®a + bATaBrn ® a + bATa&g ®n

where covariant derivatives of tensor components are defined by

T“B|A = 7B , * I‘:ATKB + PSATaK
! (1.3.8)

= _ K _ K
TaB{A TaB,A raATucB PBATouc
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In exactly the same way we can derive covariant derivatives

of various components of higher-order tensor fields, for example

a o o K K 0 K _a
A = A + A - A - I,A 1.3.9
“Bu|a *Bu,A KA " +Bu BA" .ku Ui -Bx ¢ )
While partial derivatives Vo B’ TaB A etc. are not, in general,
[4 [ 4

the components of a surface tensor, the covariant derivatives are. For

example, using (1.3.6), (1.3.4) and (1.2.18) we obtain

o A 2%
v!' = —-2-( 28 v)-1% 22——-v = ——2-2————-v +
Tule T ggp gt @ P Jo0K A e e
20®  20f _26% 20 2 22¢*

r

—— - —— Y] =

a

20 0P

v

(1.3.10)°

The covariant derivative of a sum or product of tensor components

follow the usual rules of ordinary differentiation, for example

Tag * Sap? |2 = Tag|r * Sag|a

a K a K a K (1.3.11)
(T-KA’M\)) lX = T’KIAA'LI\) + T-KA‘IJ\)|A , etc.
In particular, it is possible to prove that
= QB = = QB = :
38 = 2 Ix easlx € IA 0 (1.3.12)

what means that the metric and alternation tensor components may be

treated as constants under covariant differentiation.

In future applications we shall have to deal with spatial vectors
w €EW= V X N, where N is a one-dimensional vector space; orthogonal
to U, having the unit normal n as its basis, and X is the Cartesian

product operation. !

The spatial vector W is expressible in terms of its comppnehts in

. a
the spatial basis 3,y o0ra,n according to
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(11 a
z—w'gc+z£—wag +wn (1.3.13)

and using (1.3.6) we obtain

- a W8 V] -

3'8 = (w IB bwagu + (w'B + ban')g'
a a (1.3.14)

= (walB - banxg + (wa + bBwh)g

The subsequent partial differentiation of a surface tensor field
is always interchangable. The subsequent covariant differentiation of

the tensor field components may not be interchangable, in general.

Let us apply twice the covariant differentiation to covariant

cdmponents of a surface vector field. Using (1.3.6) and (1.3.8) we obtain

= -K _K 'D _K _
vBllu VB, Au PBA,uvK FBAvx.u rﬁu(vp.k rvak)
P K
- -T
rlu(vs.o prk)
(1.3.15)
= - %y -1 -1 -
Velux T VB, A BA,u Bu K/A Bl(vp.u I‘pu"x)
-rP -r¥
ruk(vB.p Fprx)
Hence
v -y = Rlc v (1.3.16)
Blam " TBlua T TeBAM e

where mixed components of the surface Riemann—-Christoffel tensor are
defined by '

K K K [0} K [o] K
R = - + - eJe
+BAu rBu.A rsk.n I'Bnrpk rBArpu (1.3.17)

According to (1.3.2)

Pa.er = 3g,n ™ Tguan : (1.3.18)

and using this relation we obtain covariant components of the Riemann-

Christoffel tensor after following transformations:
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= K - K o] _p -
RaBlu auKrBu.A aaKFBA.u * I‘Buroz-pk FBAra.pu

- - - K K

- ra,Bu.A ra-BA.u aan.krBu * aax.urBA *

+T° (a -T ) -1 -T )=

Bu Tap,A p.al BA " “ap ,u p.au

_ _ K _K =

- ra.Bu.X ra-Bk,u * ruurK-BA raer.Bu

= 1-(a + a - a - a ) +

2 “Tau,BA TBA,ap ad,Bu Bu ,aA
+ T K )  (1.3.19)

op k.BA ralrx.Bu
It follows from (1.3.19) that the tensor has the following symmetry
conditions

= - = - = (1.3.20)
RuBAu RBaku RaBuA RAuaB

and hence, has in fact only one independent component.R1212.

Applying twice the covariant differentiation to components of a

surface tensor field we obtain similar relations, for example

K K
- = T +
TaB]Au TﬁBluk R-aAu kB R'BAuTaK . (1.3.21)
From (1.3.1), (1.1.20) and (1.3.6) we find that
K
Zg|r =Pl ¢ B, T E,= B (1.3.22)

Applying (1.3.16) to 2g and using (1.3.22)we obtain one vector

relation

a - a =R'c a
Sg[an T ~glur T Tegapx

(1.3.23)
K K
= - + -
Oga|u ™ Pau[a)2 * PgyPy = BB g
or three scalar relations

b =b 1.3.24
Bhlu ~ “BulA (1.3.24)
(1.3.25)

bckbeu- baubBA = RaBAu
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The relations (1,3.,24) and (1.3.25) are known as Codazsi equations
and Gauss equation of the surface,respectively. As the surface has
been defined in (1.1.1) by three scalar components of the position:
vector r, the equations (1.3.24) and (1.3.25) express just three
conditions, which six caomponents of aaB and baB must satisfy. And
conversely, an arbitrarily chosen set of six functions aaB and baB-
of surface coordinates 8% describes a surface in the three-dimensional

Euclidean space if and only if the functions satisfy the Codazzi-
Gauss equations.

Using (1.1.21) and (1.3.25) we find as well

1 _aB Ay -
2€ € Ry =

(1.3.26)
RaBAu - Ecﬁeku K

These relations together with (1.3.16) and (1.3.21) show us that the
subsequent covariant differentiations ona surface are interchangable if
and only if the Gaussian curvature K of the surface becomes equal to zero.
If K = O the surface becomes a two~dimensional Euclidean space. With
K # O the surface constitutes a two-dimensional Riemanian space.

In (1.1.22) we have defined the Gaussian curvature K in terms of
components of a and b. The relation (1.3.26), together with (1.3.19), shows
that the Gaussian curvature may be calculated entirely from the metric

tensor components.

Various alternative forms of the Codazzi-Gauss equations may also be
derived. For example, if we contract skew-symmetric indices in (1.3.24),

(1.3.25) and (1.3.19) by using the alternation tensor, then

e“Be*"bsxl =0 | :
H (1.3.27)

aB Au K =

€€ (FG.BMJ + FGNPK-BA + baubB}\) (o]
This form of the Codazzi-Gauss equations will be particularily suitable

in deriving compatibility conditions in shell theory.



- 16 -

1.4. Physical components

When using tensor notation it is necessary at the end of transforma-
tions to introduce such components of vectors and tensors which have
definite physical meaning. For this reason let us introduce the untt
base vectors g, and e,, tangent to the surface coordinate lines 91 and

62, Fig. 4, defined by

(1.4.1)

Fig. 4

and the angle between them let us denote by x(el,ez). The length scale

parameters
A =gl . A, =g (1.4.2)
2

are known as the Lame parameters of the coordinate system 61,6 . In

terms of these parameters the metric tensor components have the form

2 2
a;, = (Al) r @y, = A1A2 COS X 1 @y, = (Az)
a= (181)2(1\2)2 sin2 X
(1.4.3)
a11 _ 1 al? cos x
= Tar2einZ v ! == ; '
(Al) sin“ yx A1A251n X
22 1

= 2 2ainl v
(A? sin¢ y -

Using (1.4.1) in (1.3.2) and (1.3.3) it is possible to caléulate all
Christoffel symbols entirely in terms of Al' Az and x, for example
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r1 ) A2A1’1 + A1A1,2 cos X - COSs X (AIAZ cosx)’1
1 A1A2 sinzx
(1.4.4)
1 A1,2 - c:osxA‘,z'1 2 A2,l - c':osxAl'2 _
T2 = 2 v Tp = 2 » etc.
Al sin ¥ A2 sin y

By the physical components of a vector or a tensor we mean its
components with respect to the unit base vectors & and £ (not

projections upon them!)

For any vector v € V we obtain

= ¢ = a =
y=ya, v a VeanS (1.4.5)
from which
_ a _ aB i
vq"> = Aav = Aaa vB R a (1.4.6)

_ maB = a B _
IT=r 2‘0 ® 25 Ta&g ®a = T<aB>E'u ® sB (1.4.7)
from which
- aB _ al Bu
Teaps = BoPaT = ARgd @ T, ,an.B (1.4.8)

In particular, it follows fram (1.4.3) and (1.1.16) that -

e 1 _ _ cos
11> T 322" SinZy 12> T Ei'n’lxx_'
. (1.4.9)
€12> =~ €op> = siny ' €11> = €p2> = ©

and using these relations together with (1.4.4) we obtain the expressions
for physical components of covariant derivatives of vector and tensor

conponents. For example
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} - 22, 1 1y
Vei|2> T BBpa (Vv TV =

22, V<1> 1 Vers 1 Veos

= AA —-—
1Ba L , )yt T A, )+ T, 5, )] (1.4.10)

T<11>

L2, 2 B
T = )2 a?M{ Sy ol st A
<11]2> 1’ B ®pZ 7, n@ap?z * PmAlAz (Teyas + Tepyn)e

It is important to note that, in general non-orthogonal coordinate
system, it is also possible to use dual unit vectors‘ga = 4§§— as bases
for definition of physical components of vectors and tensors.

However, £?<¢ Ea in general, and such physical components defined with
respect to 2? would differ from those defined with respect to Lo" In
these lectures we will use the definition of physical components with

respect to e basis.
~o,

In orthogonal coordinate system &, = S?' cos ¥ = 0, sinx= 1. In

this case all fomulae become much simpler:

311 = (Al) . a22 = (Az) ’ 312 = =0
(1.4.11)
22 1 2
311 = 1 3 ! a = 7 ! a = (Al)z(Az)
(Al) (Az)
1 _ 1 1 _ 1 1
rll A1 Al,l ’ r12 A1 A1'2 ' r12 Az A2,1 , etc. (1.4.12)
o 1
v =AV =—7—YV
<o * A“ * (1.4.13)
aB 1 AG a,B
T =AAT ==——T = —T ,
<af> o a AcAB af AB -8
a = a = 1 a =0
<22 ! 2>
<i1> 22> <1 (1.4.14)
€a2> " €o1> =1 v €yys T €50 0
v = JL'V - -—L—-A v
<1]|2> " A, "<1>,2 " AA, T2,17<2> '
2 12
(1.4.15)
1 1
T<11[2> = A, T<11>'2 A A, A2,1(T<12> + T<21>) , etc.

Because of this relative simplicity of all geometrical relations, orthogonal

coordinates are frequently used in the literature.
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1.5. Geometry of a surface curve

Let 6% = 6%(s) be the equations of an arbitrary curve C on the

surface M, Fig. 5, where s is length along the curve.

Fig. 5

At each point on the curve let us define the triad of orthonormal
vectors ¥, t, n, Fig. 5: t is the unit tangent toCand v is the outward
unit normal lying in a plane tangent to M at M. Then the following

relations hold:

v=vau=v8a=txn=esata
a 8 : B (1.5.1)
t=ta =ta,=nXxv==E€ va ‘

If by s, Wwe denote the length along a curve Cv orthogonal toCat M,
defined by the equations 0f = Os(sv),thén

dr a
30
dr’ a 9s
R o Do P 1Y .52
v v a0 :
gu = vax + tms

Using these formulae it is easy to find the relations between the vector
and tensor components with respect to base vectors ;3“ or 3“ and those

with respect to y and t.

Let physical components of v € V and r € 72 with respect to orthonormal
basis v, t be denoted by '



o B
V =SV « V=V YV =V .V
v ~ ~ a B
a 8 (1.5.3)
vt—x-£=vta=v8t
T =voerv=vr® =% 8o,
AAY) ~ A a B aB
_ . _ af N Y _
Tvt-—x ES“VqT tB vTa tB (1.5.4)
_ _ a,_  _ a B _
Ttt“:'- gg-taT tB_taT'Bt

Using (1.5.3), (1.5.4) and (1.5.1) for vector and tensor components

o :
with respect to base vectors Su or a” we obtain

a [+ o
t,V \)V\’+tvt,

fl

Ve = vavv + tav
(1.5.5)
- + LI I
aB a B VY a8 vt * Ta¥8 Tty * tatp e !
Let us derive expressions for the derivatives of the triad v, t, n

along the curve C. Differentiating with respect to s the identities

Noy=t-t=mp-g-
Xrk=t"83=8°3=0 -5
we obtain

dy

e ‘us -T,n

dt

:—::' - (1 57)

ds = 68 T Fl e

dn

ds - Ted T %t

where it follows from (1.5.1) and (1.1.21) that
at dn o B

%eTREGET R T T MRS T

(1.5.8)
a B
=ttt baB btt
dn dv

T :=\)0..:=—n.—::= \,aa n tB::;

t ~ ads ~ ds ~a ~,B :
(1.5.9)

=*tfp = b



- 21 -

~ o a A B
e T ETE T TN E T NR O gy e pne -
(1.5.10)
- o B _ _ a; B
=tV |Bt vt [Bt .

The quantity o, is known as the normal curvature, t_ as the geodesic torsion

t

and K, as the geodesic curvature of the surface curve C, respectively.

Defining the vector

(1.5.11)

dv dt dn
T TR TR T TAA (1.5.12)

The vector Q't is the rate of rotation of the triad (x, L 2) as it

advances along the curve C.

In exactly the same way we may obtain differentiation rules of

Nt n in direction of the outward unit normal Jto be

~

dy dt a8 '
T8, XN G To8 Xt s T oe, xR (1.5.13)
v v v
where
2”=1v+ct+xvg (1.5.14)
g = vava = b ‘
v aB Vv
r =-t%By =-p =1 (1.5.15)
v aB tv t h
_ a B - _ a B

Kv = \)at IB\’ ta" IB"

The minus sign in (1.5.13) results because the orthonormal triad
'5, N n and triad N i D have opposite orientations with respect to Cv

and with respect to C, respectively.

In order to explain the geometrical meaning of the quantities just
introduced for the surface curve C, let us remaind here some relations

valid for the same curve C in three-dimensional Euclidean space.
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Fig. 6

At any point M of the curve C, described by a vector function xr = r(s), Fig. 6,
we can associate the unit tangent vector t = g the principal unit
t . . )
normal m = Tlg—r»and the unit binormal vector d = t X m. Differentiating
~ :S”s ~ ~ ~ ]

these unit vectors we obtain the Fremet equations of the curve

at am a
£=02 ' 3= ='rg-o£ : 'a;=-'r£ (1.5.16)
where
at a
O 2 Meoem— = = t o=
~ ds ~ ds
qE qg (1.5.17)
Tt R

The scalars ¢ and T are known as the prineipal curvature and principal
torgiton of the curve C, respectively. Note that ¢ = O, as the principal
unit normal m always is directed inward, toward the concave side of the
curve C. The points of C at which ¢ = O are called straightening points
and at them direction of m is not unique.

It follows from (1.5.7) and (1.5.16) that

o = 0.8 = KN (1.5{.18).
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This gives a geometrical meaning to o, and -K't; they are components

t
of the principal curvature vector om of the curve C with respect to n
and v, respectively. If ¢ is the angle between n and m, Fig. 6, then

from (1.5.18) we obtain

g, =gcos¢y , K, = -0sin@

t
(1.5.19)
o= Yo2 +x2

Keeping in mind that

e
]

n cos @ +3sin 0]
(1.5.20)
4

-BSln(D'szOS(D

let us differentiate g and make use of (1.5.7) and (1.5.19) to obtain

dd
il (rtg - otg)sin P + (v'cbs - 'rtg)cosq) -
do _
- (2coscp+’gsinkp) at -
- - de
=- (1. +xm (1.5.21)

When this relation is compared with (1.5.16) we obtain

ay

+ —
dt

T = (1.5.22)

Te
This gives further geometrical meaning to t_ as well.

t

1.6. Curvatures of coordinate lines

The values of O and Ke at each point M € M depend, according to (1.5.8)

and (1.5.9), on the direction t of the surface curve C. Let us find the

prineipal directions for which the normal curvature o, assumes an extremal

t
value. Using the method of Langrangean multipliers,the problem of finding
the extremal values of b“BtatB, under the condition aastat:B = 1, leads to

the problem of finding the extremal values of the function of two parameters

oy a B _ a B _
F(t") baBt t ot(ant t 1) (1.6.1)
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from which we obtain the following set of homogeneous equations

1 9F B _
5 a8 ~ Tt2qp’t = O (1.6.2)

which have a nontrivial solution if

det:(baB - UtaaB) =0 | (1.6.3)

or
2 -
ot - 20tH + K=0 . (1.6.4)

The roots of this equation

. = (at)z = H + /Hz-.-l(

1

(1.6.5)
/2 '
on= (ot)u— H-VH -K

are called the prinetpal curvatures of the surface at a point M € M .
The principal curvatures are always real; using (1.1.22), (1.1.23) and
(1.1.18) we obtain

20 =D, +b> , K=b ba- b;bf (1.6.6)
and then
s -0 = o -7 4 applzo . ' (1.6.7)
Note that H2 - K may be equal to zero if and only if
1 2 1 2
b1 = b2 and b, =b; =0 (1.6.8)

and only then QG = O = H. Such surface points are called spherical
(or umbilics), and any direction at the point is principal.

At any surface point, except spherical, the two principal curvatures

(1.6.5) assume different values such that

1
= — + = . oD
0.0 K , > (oI OII) H (1.6.9)
It is possible now to give geometrical meaning to K and H depicted .

in Fig. 7.
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K>0 K=0

Fig. 7

The point M € M is called eliptie when K > 0, parabolic when K =
and hyperbolic when K < O. A surface consisting entirely of one type of
points mentioned above is called the surface of posttive, zeroth or

negative Gaussian curvature, respectively.

I1f t(I) and t?II) are two principal directions corresponding to UI
and Orys respectively, then using (1.6.2) we find
B & _ _ B & =
Pag = 1%p S(n txn) T Pap ~ C11%ap’ tn Bp) = © (1.6.10)
or
(0, -0 ) % B = (o, -0t T =0 (1.6.11)
II 28 (1) (II) 11 I'~(II) ~(I) :

and this means that, unless the point is spherical, the two prineipal
directions are orthogonal.

If we multiply (1.6.3) by v* then

b vatB = g a vatB =g

o8 g Lot=0 (1.6.12)

and this means that in principal directions the geodesic torsions of the

surface curves vanish,
T, =1T. =0 . (1.6.13)

A curve on a surface, whose tangent at each point is along the principal

direction, is called a line of principal curvature.
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It is easily seen now from (1.6.11) and (1.6.12), that the necessary
and sufficient conditions for the coordinate curves on M to be lines of

principal curvatures are

a, = b12 =0 . (1.6.14)

Such coordinate systems are used frequently in shell literature.

Let us now discuss in more detail the physical components of curvatures

of the coordinate lines on a surface M.

Consider an orthogonal coordinate system 61, 92 on the surface, and let
C be an arbitrary curve, Fig. 8.

Fig. 8
Then using (1.4.6) we obtain
o Aaae“ ds,
t<a.> = Aat = T3s " as
a 28% ds . (1.6.15)
= ¢ .2 5 —
Vea> = BgY s ds

From Fig. 8 we obtain another representation for these components

- sinvy , t<2> = cos Y

ct
1]

(1.6.16)

\Y = cos Y r vV sin vy

<2>
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Using definitions (1.4.8) of the physical components, we obtain from
(1.5.8), (1.5.9) and (1.5.15) the following relations for normal curva-

tures and geodesic torsions

o, =Db t t s, O

t <aB> <a> <B> v b<ag>“<a>v<3> ’

(1.6.17)

Te = Ty = "PegpsVensteps

With the help of (1.6.16), these become

. 2 . 2
O, = b<11> sin'y - 2b<12> siny cosy + b<22>cos Y
2 . .2
ov = b<11> cos 'y + 2b<12> siny cosy + b<22>51n Y (1.6.18)
= = _ : 2 2
T, =T, (k211> b<22>)51ny cosy + b<12>(sin Y - cos ¥y)

In particular, for vy = O we cbtain from (1.6.18) the formulae for

orthogonal coordinate lines:

6, =g, =b =-1

t 2 <22> R2
1

oy =0y =bgy, =R ' (1.6.19)
1

T. =T = b = e —

t \Y <12> R12

o are the radii. of normal curvatures and R, , the radius

of geodesic torsion of the orthogonal coordinate lines, respectively.

where R1 and R

The sign convention adopted here is compatible with our definition of the
surface unit normal n with respect to the curve principal unit normal m,

Fig. 6.

In analogy to (1.6.19) we can define radii of curvatures of an arbitrary

surface curve C to be

1 1 1
o = e — ’ g 2 e — ’ T =T S - — (106.20)
v Rv t R, t v th

and using (1.6.19) the relations (1.6.18) become
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d . coszy _ Ssin2y + sinzy
R, & Rz B
1 2 1 1 1
R__=_c°Rﬂ‘*'-2- sin2y( -R—-R—-) (1.6.21)
vt 12 1 2
1 _ sinzy sin2y . cos’y
R, R *R. *TR
t 1 12 2

If BI, 01! are lines of prineipal curvatures then from (1.6.20) and
(1.6.14) we obtain

1 1
_0' = e I} ag = . - ’ T =T =T1T=0 (1 .6.22)
I RI II RII I I1

where R, and R__ are the prineipal radit of curvatures.

Let Y be an angle between the 61 coordinate line and BI principal line.

Using (1.6.21) for radii of the orthogonal coordinate lines 81, 82 we

obtain the relations

1 _ coszl + sinzy

Rl RI RII
=2 sin2y( g - 2-) | (1.6.23)
12 I II

1 sinzy + coszy

R, Ry Rir

For general nom-orthogonal system of coordinates 61, 92 it is also
possible to use the notion of radii of curvatures. However, the resulting
relations in terms of principal radii of curvatures become more complex,

therefore we do not discuss them here.
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Chapter 2

DEFORMATION OF A SURFACE

By a surface deformation we understand a one-to-one mapping between
two surfaces in three-dimensional Euclidean space. One surface is called
the reference (or undeformed) surface while the second is called the
deformed one.

Two different descriptions of deformation may be used: Lagrangean or
Eulerian. In the Lagrangean description geometry of the reference surface
is supposed to be known and all gecmetric quantities of deformed surface
are expressed in terms of geometric quantities of the reference surface
and displacement vector between these two surfaces. In the Eulerian
description geometry of the reference surface is expressed in terms of

deformed surface geometry and displacements.

In this chapter exact relations valid for arbitrary smooth deformation
of a surface are discussed in both Lagrangean and Eulerian descriptions.
The presentation of Lagrangean description is that suggested by KOITER
[6] and by our previous papers [8,10,11,12]. The presentation of Eulerian
description follow the authors papers [9,12]. Various exact formulae for
linearized strain and rotation quantities as well as for the non-linear
surface strain measures are obtained in terms of displacements. Compati-
bility conditions for the strain measures as well as transformation rules

for covariant surface differentiation are derived.

2.1, Deformed surface geometry

Consider two surfaces M and M in three dimensional Euclidean space,

Fig. 9. A one-to-one mapping
M=xM or T=x(x (2.1.1)
which is non-singular and has a unique inverse, is called a deformation

of the surface M. We call M to be the reference (or undeformed) surface

while M to be deformed one.
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Fig. 9

-Using (1.1.2) and (2.1.1) we obtain

£=f00%) =554
~ ~k
= £%) + u@©" (2.1.2)

where 8% are the surface comvected coordinates and the vector 2,=‘£ -x

~

is known as displacement vector of the surface points under deformation
(2.1.1).

Let us identify all geometric quantities of the reference surface
M with those already defined in chapter 1. For the deformed surface
similar gecmetric quantities at M € M, related to ME M by (2.1.1),

will be distinquished by a dash:

- = =0 = =af = =af = = = =aB = =K =
2‘!' n, a2, adB' a , _bqu b, H, K, EQB' €, I'A-GB' PC!B' RCBAIJ
Covariant differentiation with respect to deformed surface metric will be

etc.

denoted by a double stroke ( ”la, for example GGIIB' Bg“A etc.

Let us express all geometric quantities of the deformed surface M
in terms of geometric quantities of the reference surface M and displace-
ment components with respect to the reference basis 2, B Such an

approach is called Lagrangean.
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Thus if

u=uM =zxlxMl - M =

(2.1.3)

a

=ua +wn=au
~

o
a <+ wn
~ o~ ~

then from (2.1.2), (1.1.3) and (1.1.21) we obtain

=k k k

a =X = (x +u )i, =
~a oK oo o~k (2.1.4)

where

- A
1(18 = aukl-s =
- baB
=w + b"u
wa .1 o A

aQB + (puB

(paB = ua|B w = eaB - maB (2.1.5)

The components ¢ are known as the linearized rotations of the normal

to the surface. The quantities (pm are the components of a surface

B
tensor. The components of its symmetric part denoted by

1 =1 -
euB 5 (‘PGB + wﬁa) =3 (ua|8 + uBla) buB" (2.1.6) |

are called the linearized surface strain tensor components,the components
of its skew-symmétric part with an opposite sign defined by

=1 - =
W=7 (tpm - (Das) =3 (u u ) € B(p (2.1.7)

B|a alg (]

are called the linearized in-surface rotations,and the surface invariant
¢ defined by

LB, _1 a8
(1] 2 € waB > € uBla (2.1.8)
is called the linearized rotation around the normal.
A vector ¢ defined by
= €Ba(0 a, +Pn
$ 38 on -(2.1,9)

is known as the linearized rotation vector.

In terms of ¢ the formula (2.1.4) may be written as
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A
38,4 %ed t2%2, (2.1.10)

a -

~
In terms of these linearized quantities we can define also the

componenets Mg of the linearized tensor of change of curvatures of the

surface by the relation

1 A A '
uuB = - 5 (q’a|8 + (DBIG + bamBA + meuA) (2.1.11)

The name "linearized" associated with all these Lagrangean quantities
comes from the fact that, for very small strains, displacements and
rotations the vector ¢ describes the small rotations of the material

elements, while ea and uaB are small surface strain measures; these are

B
supposed to be the "best" strain measures in the linear theory of shells
[13]. All linearized quantities are linear functions of displacements u v
However, for arbitrarily large deformations, different quantities will

be needed to describe finite stretches and finite rotations of the surface.

2.2, Lagrangean surface strain measures

The geometry of deformed surface M is described by components of the
metric tensor 508 and the curvature tensor saB’ which at M should satisfy
the Codazzi-Gauss equations. To describe the surface deformation let us

define the following surface strain measures

Lla

Yo © 3 aB as ) (2.2.1)

) , K = _(baB - b

aB af

The quantities YaB are known as components of the surface Lagrangean strain
tengor while Kgg 2T€ called the components of the Lagrangean tensor of
change of curvature of the surface.

It should be noted that the definition of the strain tensor components
is generally accepted in shell literature. However,the definition of the
changes of surface curvature varies depending on the author. One important
difference come from a sign convention adopted. Our sign convention used
in series of papers [8-12] agrees with that of GALIMOV [7] and the one
used in linear shell theory by GREEN and ZERNA [2], CHERNYKH [3] and
NAGHDI [4]. It is opposite to that used by KOITER [6] and KOITER and
SIMMONDS [16]. SANDERS [14] and BUDIANSKY [15) overcame the sign convention
difficulties by defining with opposite sign their curvature tensor baB'
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Besides,any functionally independent combination of YaB and KaB may
be chosen as a measure for the surface curvature changes. In what
follows we shall use occasionally the Lagrangean tensor gdefined by

A

BYAG) (2.2.2)

i} 1A
paB = KGB + 3 (baYAB + b

as the tensor of change of curvature of the surface. This tensor has
the feature, that in the limit for small strains, displacements and
rotations it gives us the measure for the linear shell theory (2.1.11)
which is supposed to be the "best" choice according to [13]. It should
be noted, however, that KRATZIG [40] has recently discussed the structure
of the linear shell theory with the help of diagrams by TONTI [41,42].
Such diagrams have been constructed in [40] when the linear parts of YuB
and KaB have been chosen as the basic strain measures of the linear shell
theory. In what follows we shall use YaB and KaB as the preferred strain
measures for the non-linear shell theory, although the TONTI diagrams for
the non-linear shell theory have not been constructed yet.
Using (2.1.4) and (2.1.5) we obtain

a, =3a -a, = IA 1., +9©

aB ~a ~B *a AB a’B
: A (2.2.3)
BT T I IR VIR A

and from (2.2.1) we find general and exact formulae for Yop in terms of

linearized quantities

=L ¥ - =
Yag = 2 Liahpg * 9% ~ 3p) =
=t ro +d o, 00 = (2.2.4)
2 TaB Ba ‘a’AB a'B : ce.

1 A A 1
eaB + 2 (ea - m-a)(eAB - NAB) + 5‘“59@

Similar relations for Kas happen to be more complicated. First let us
note that using (1.1.13) and (1.1.15) we obtain '

B _ '[3' aB
eaB ' € =¢35€ (2.2.5)

EGB =

» |1,

For any surface tensor‘i € 72 on deformed surface M we have the following

relation
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- _ = - "\ - -)
T = lTaBl = laaAT'B| = IacXHT'BI =
_ =1 zohAzBuz =
a3 € T T | (2.2.6)

where (1.1.18) has been used. Applying (2.2.6) to the components a

aB
and using (2.2.5) and (2.2.1) we obtain
8 _Lemebuy o
a 2e € aaBGAu
=1 Bu . a, oA L S
3 Eale (6B + ZYB) (Gu + 2Yu)
' (2.2.7)

Thus the surface invariant §/a is expressed entirely in terms of the
surface strain tensor invariants.

The unit normal .!;!: of deformed surface M follows from (1.1.20):

- 1 B -
h 2 Ea a X'SB =
(2.2.8)
(*] a
= na + nn = na + nn

We can obtain the components from (2.1.4), (2.2.5) and (1.1.20):
- aB A - fg' A A
n, J_IG GM’ ake= V3 ("OA]"u cpul.l)
'. = g B A H = -LJ-a: -
D3 J_'e“ €ulals = 3V3 ‘1-1 >.’

The curvature tensor components b

(2.2.9)

from
Bo=f 8 =8 (B - [gd) =
aB ~ ~q,B8 B afrA
- - - (202-10)
Differentiating (2.1.4) with the help of (1.3.16) we obtain
- A -
B8 = Yoap® * %ed = 3la 2.2.11)

where

a8 of the deformed surface may be found
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déas = lfalB - b;‘pa N dfsu (2.2.1 )
= uAlaB - b;bzuu - bﬁw's - bzw,a - :lﬂw
a.=¢, +b 1 =4
aB  “alB " "ABa  Ba (2.2.13)
= baB + w'uB - bzble + biu”8 + bgul|a + b2|8ul

Substituting now (2.2.11) and (2.2.8) into (2.2.10) we obtain from
(2.2.1) the following general and exact formulae for KB

= - AL
Kop = ~(ndyg + md] o = byp) (2.2.14)

where in terms of linearized quantities various terms have the following

expressions [6] (see also (7.3.8))

a._ _ K, 1 k2 1 Ay 2
‘/a n=1+80_+3(8) 7 0.6, +0 (2.2.15)
a K A
#;nu = =-(1 + O'C)u)‘1 + @ (6}‘u - wlu) (2.2.16)
d. =b _ +%(p, + y + Lo, - ) +
a8~ Cag T2 ulg t Dl 2% T “as
(2.2.17)
1.2
+ E.bB(elc - mku)
A A A A
‘ﬁals %8 * %|a °ae| - b @ (2.2.18)

An expression forJ % follows.from (2.2.7) and (2.2.4).

It is easily seen from (2.2.15) to (2.2.18) that, when expressed in terms
of linearized quantities, the components KaB become extremely complicated
non-rational (square root!) functions. They become even more complex if
expressed in terms of displacements u,w and nobody as yet has tried to
use them without approximation. Nevertheless, the formulae (2.2.14) and
(2.2.4) are exact and form the general basis for various approximate

variants of the non-linear Kirchhoff-Love type shell theory.
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2.3.iagrangean compatibility conditions

Six components 5d and Sa of the metric and curvature tensors are not

B B
independent from each other, but have to satisfy the Codazzi-Gauss equations
1{1.3.27y; which for deformed surface will take the form:
=af=Au=
€ b, =0
€ Palu

e%BzAM % TK T 5 B
€ €X (rd.Bu,A M raurx.BA M baubsk

(2.3.1)
) =0

From (1.3.2), (1.3.3) and (2.2.1) we obtain

- 1 - - - -
N8 ™7 Brg,g * g0~ %) T
=% (a +a -a ) + (y +Y -y ) *
K K K _ . K '3 K -
* rABYta * raBYAn * rlquB * rBuYAx * raAYKB * PBAch<
: K
= Newas t Mals * Msja ™ Yag|n) * HagMac
K
- (aAK + 2YAK)raB M (Yla|8 + Y18|a - YaBIA) (2.3.2)
or
T =a, I 4
2.a8 " B ag T Maas
(2.3.3)
=K '3 =KA
raB raB + a YKGB
where
Y =Y +Yy -y =
a8 Malg T Magle T TaB|a (2.3.4)

. L
Ta,8 T Mp,a = Yag,A ~ agYak

are the components of a surface tensor, and the contravariant components
EKA of the deformed surface metric tensor can be found from (1.1.19) to
be

= . E‘“E*Baus =2 @+ 2<% By (2.3.5)

cB)

?aking partial derivatives of (2.3.3) and writing them, as far as
.possible, in terms of covariant derivatives we obtain
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- K _
= GoTeu * Yapd 2 =

=3

G.Bu'l

= * + + ) +.
(a rulayn Buacv rBu aarrBu,A

aK,A

K + 1K S -
Yasu,)\i raAYKBu . rBAYanu - ruAYaBK (2.3.6)

- vV - Vo oK L= oK
( ZYuKIA *Taadue ¥ Tiadaw oy * Bk By,

K K K
YoBu|A T Yepn * rBlYaKu * ToaYagk

and from (2.3.3) it follows that

=K = 3 —Kp -
™ T (ry, + 3Py V@& T

ap K.Blz o pau ) =

v
gx T Yepa
(2.3.7)
o= XV K K =KV
akvraurBA + rauYKBA + PBAYKau ta YnauYKBX

Contracting some terms in (2.3.6) and (2.3.7) , which are symmetric in ‘

a,Bor A,u indices inside the brackets of (2.3.1), and using (1.3.17) we
obtain

=aB=Ap = =K = -
€ve (ra.Bu,A + raurx.BA)

= E“BEA" [a, ¢ S 3B 04 r:A) + 3V

3
K rBu.A Bu xap kBA * ZPBuYaKIA *

. K - -
* Yaglux * Yau|sr T Yeular * rBA(YuKIu * Yaule T Yeula ¥ Yealu ¥ Veu|e T Youl

= E%BgAu 1- x =KV
€€ [27au|81 + 3 auKR'BAu + a YnauYKBA] (2.3.8)
But from (2.2.5), (1.3.24) and (1.3.25) it follows that
zaB=Ap |1 kK _
€e 2 (aax + 2YuK)R'BAu
(2.3.9)

_ geBzAu a . K
= eBghu by, Pay) *+ 22 XY

8
and the first term on the right of (2.3.9) is similar to the final temm

in the Gauss equation (2.3.1)

with the help of (2.3.3) the Codazzi equations (2.3.1) may be trans-

formed as follows

N=
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zaBhuz _zeBhr ks ko g _
G Poxllu =€ e [oexu fgubnk r;ubﬁlc]
= =af=An - - K =KV _ -
g*bgh [lcgy = Bgy) |, = (P, + &y )k, = B )] (2.3.10)
= E“BEA"[K _Kv(b ]

- b + -
Bl|u BkIu a KA KKA)YvBu
Finally, with the help of (2.3.8), (2.3.9) and (2.3.10), the Codazzi-
Gauss equations (2.3.1) lead to the following exact eompatibility conditions

upon YuB and KGB

aB An =KV _ _
€ €A [KBX|H + a (be KKX)YvBu] =
(2.3.11)

=KV
CIS

K aB Au - 1 - -
KYK reve [Yau|BA bauKBA *2 augr ~ 2@ YkaquBA)]- °

As the surface deformation has been defined (2.1.2) entirely by three
components of displacement vector u, the compatibility conditions (2.3.11)

assert that the six components YaB and « are not independent. An arbitrarily

aB

chosen set of six functions YaB and x_, of the surface coordinates 8% may

aB
describe a deformation of a surface in three-dimensional Euclidean space if

and only if the functions satisfy the compatibility conditions.

It is important to note here, that while the conditions (2.3.11) are

quadratic with respect to k__,, they are quite complex with respect to Yap*

It follows fram (2.3.5) andu$2.2.7) that we have polynomials of the second
degree with respect to YaB standing in the denominator of last expressions
of (2.3.11). That makes the conditions (2.3.11) very difficult to handle

and nobody has tried, as yet, to use them without approximation. Neverthe-
less, the conditions (2.3.11) are exact and may serve as a basis for various

approximate variants of the non-linear Kirchhoff-Love type shell theory.

When we express all quantities in (2.3.11) in terms of linearized
quantities (2.1.5) to (2.1.11), three exact relations between the
linearized quantities may be obtained. One would expect them to be extre-
mely complicated. However, it was shown recently by the author [17,18],
that in terms of linearized quantities the compatibility conditions
(2.3.11) can be reduced exactly to the following simple form
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aB-Au _1 .« _1 « _ WK . _
€€ [(HBA 3 bBeKX 2 b).elcﬁ) lu bA(GKBIu + Gmls esulg)] =0

(2.3.12)

aBAn =
€€ [eaulel + bau“BA] (o}

It is interesting to note here, that these condition are linmear both

in 0
af
of shells. Within the linear theory [3,4,6], many restrictions have been

and uaB and have exactly the same form as in the linear theory

used to show the conditions are satisfied (small strains, small displace-
ments and rotations). In [17,18] we have shown that the conditions
(2.3.9) are satisfied exactly for an arbitrary deformation of the surface
in space, without any limitations of strains, displacements or rotationms.
This may be verified by direct substitution (2.1.6) and‘ (2.1.11) into
(2.3.12).

2.4. Eulerian description of deformation

Deformation of a surface has been described as yet entirely in terms
of Lagrangean quantities defined with respect to the reference surface

geometry.

It is possible, however, to describe deformation of a surface in a
dual way, in terms of quantities defined with respect to deformed
surface M. such a description of surface deformation is called Fulerian.

Let us express all geometrical quantities of the reference surface
M in terms of geometrical quantities of deformed surface ﬁ'and displace-

ment vector components with respect to deformed basis

fl

= G(M) =EM) - rlM()]

i, - - -l -
ua +wn=ua +Ww
~ ~ o~

&

(2.4.1)

1]

Then in a similar way as for Lagrangean quantities, we obtain the
following relations for various Eulerian quantities

A = S S
B "l *RA=13 + §p 2.4.2
n=f3 +Af =na+hnd
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T = Bl = g + Ty |

Pus = “Salg * B,g¥ = 8,5 ~ Uyp (2.4.3)
®, = ¥ ,-B.5,

88 = = 7 Fy||p * g’ * Pus

Bap = +% (ﬁaIIB _-Blla)é Eaea (2.4.4)
b= &%, = 35,

(2.4.5)

SifTee Py LE P Py
B= W2 €6 1,1 =547 T,I, -1 1

For an invariant a/3%, from a formula dual do that used in (2.2.7), we
obtain

a 1 zadzBu
==3 €€ aasa)m
=1-27 + 2635 - %75 (2.4.6)
o a'B B'a o
where for the Eulerian strain measures we have the formulae
S
YaB 2 of oB
_ -1_ (; I}‘ I ) 6{5 , (2.4.7)
~ 2 “aB <a AB a' B
K =-=(b,~b )=
ap af 0B : (2.4.8)
- -, A= - =\ =Aw
= ~lbyg ~R®, g+ Bgly,) — iy (T} 15 - Bgly]

These strain measures have to satisfy some Eulerian compatibility
conditions. These conditions may be obtained along similar lines as the
Lagrangean ones (2.3.11). In Codazzi-Gauss equations (2.3.1) we need to
express all geometrical quantities of the reference surface M in terms
of geometrical quantities of deformed surface ﬁ and Eulerian strain measures
?;8 and E;B' The transformations are quite similar to those presented
before in (2.3.2) to (2.3.11). In particular, for Christoffel symbols we
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obtain
= - =K -
rA.aB aAKraB YAaB A
(2.4.9)
=Kk _ =K KA-
raB B raB 2 Yyag
where
g = Yaal|8 T Yaglla” YaB||a
(2.4.10)
KA _ a3 KA _ _=KOozAB_
a’ =< (a 2€7¢ YaB)

With the help of (2.4.7) to (2.4.9) some terms in the Codazzi-Gauss
equations (1.3.27) may be transformed to the form

aB Ay _ 0B AU - KV - - -

€€ bBAIu =€ € {KBA”u»f bs}‘”u+ a” (b, + K,) YvBu}

e*BeM (p +5r ) =-28%7 4 (2.4.11)
a.Bu,A ap’ K.BA a K o

af AM - = = KV
+ - - +
ereT 2Yuu||BA aubBA a YKauYKBA)
After some additional transformations we obtain ‘the following exact

Eulerian compatibility conditions for YaB and EaB to be satisfied

efeM i (5

8X||u +a (bK)‘ + KKA)YVBu] =0

(2.4.12)

- KV=

=aB=Al -
€ e[y auKBX + a YKGHYVBA)

==K = 1 _
+ + -
Ky au|lern * Pap®er "2 1=0
It is easy to see that these conditions are really dual to the
Lagrangean ones, and cquld have been written at once, keeping in mind
the opposite sign in defintions of Lagrangean and Eulerian strain
measures with respect to the metric and curvature tensor components,

respectively.

Both descriptions of the surface deformation - Lagrangean and
Eulerian - are equivallent from mathematical pqint of view. Bowever,
from physical point of view they are not equivallent, as in most
engineering problems it is only the reference surface configuration
vhich is known in advance. The defprmed surface configuration is the
one we try to find by solving the problem and, in general, its geometry

is not known before the problem is actually solved. Thus from engineering



- 42 -

point of view the Lagrangean description is preferable and we will use

here, as fax aspossible, the Lagrangean description.

2.5. Transformations of covariant derivatives

According to (1.3.12) at the deformed surface M we have as well
e* =€ =0 (2.5.1)
ly = aplly |

Using (2.2.5), (2.3.3) and (1.3.12) we obtain
_aB -aB -0l —KB ..B —-0K

= € + T € +T € =
€ “Y Y KY Ky

2) e“’%J%e“B +J§'[(r°‘ £ 3y )evf
a ',y a 'Y a KY Aky

—BA
a YAKY

I
-~

B oKy _ ' |
+ (PKY + JETl =0 (2.5.2)

Contracting (2.5.2) by EaB we obtain
"a al ,—0h K . =BA K _
2( = ):Y + 5 (a Ga + a 6B)Y1KY =0 (2.5.3)
and transforming in a similar way the second of (2.5.1) we finally find
(y2) -Jﬁ o
a’,y a YAKY

"5' a KA
( Z'),Y + a a YAKY

In these lecture notes we shall use frequently some vector and tensor

(2.5.4)

fields defined at points of the reference surface, y ev, E'E T2, and
at points of the deformed surface 2 €V, i € ?2, which are connected by
‘deformation (2.1.1). The components of these fields with respect to

appropriate bases will obey the following rules of transformation:

a o 0B _ o3 aB

{av , T JET 4 o

PR CR S R
a a a ' aB a af

Then with the help of (2.5.4) and (2.3.3) we obtain the following
transformation rules of covariant differentiation '
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#l, = (g0l =

= (J—l) v¢ o+ EVG'Y + -;7 (r- + Ea)‘y}‘ yv< =

= o2 v + (Ea)‘v'( ¥y )YAK-Y (2.5.6)
EqB||Y= ( _g_TaB)“ _ (J_') aB FTaB'Y .

+ -i-*- [(r:Y + €\°"‘y}\w)'r'<B “‘2# -B"YA yr><] = | (2.5.7)

J:_[Tasl aA KB + EBATaK _ EKATGB)YAKY]
and similarly '
(Evﬁ) IIY= E[vdlv -7 Myay¥e * Yaey'a! | (2.5.8)
(gTaB) “Y= % [Tugly _ 5%A (YM:YTKB * YagyTax ¥ Y)\KYTGB)] (.2.5.9)
In particular case when y = a and TOLB = TBG the transformation rules

become
(Fv )II J_' |  (2.5.10)
(y2 °f) o= \/—'[ “BI “A(zyms - YKB“)TKB] (2.5.11)

It is now quite obvious how to obtain similar relations with_@ as a
multiplier in (2.5.5). In the same way one may obtain appropriate dual
formulae as well, but in our mainly Lagrangean approach we shall not

_ need them.
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Chapter 3

DEFORMATION OF A THIN SHELL

In the previous chapter an exact theory of deformation of a surface
has been developed without any reference to shell theory. Any shell is
a three-dimensional body in which one dimension is much smaller than
two other dimensions. Our intuition suggests, that the thinner the
shell the better its three-dimensional behaviour may be approximated
by two-dimensional quantities describing deformation of its middle
surface. It will be shown in chapter 6, that for small elastic strains
and under some assumptions about external surface forces, the strain
energy function of the "first approximation" shell theory is indeed
expressible in terms of strain measures of the shell middle surface
only. Unfortunately, under unrestricted (large) strains such a proof
is not yet available and perhaps impossible. Thus, in order to express.
the shell deformation in terms of quantities defined at its middle surface,
some reasonable constraints upon the shell deformation should be intro-
duced. Then methods of constrained continua by WOZNIAK [43] may give us
some estimates of reaction forces due to introduced constraints. We
expect these reaction forces to be small in interior domains of the

shell.

In this chapter a non-linear deformation theory of a thin shell is
developed with the help of Kirchhoff-Love constraints. Under these
constraints deformation of a shell is completely described by deformation
of the shell middle surface. Geometrical properties of a normal coordinate
system in the shell are discussed and Lagrangean and Eulerian descriptions
of shell deformation are developed. Then the polar decomposition theorem
is used to decompose deformation of a neighbourhood about a point of the
middle surface into rigid-body translation, pure stretch along principal
directions of strain and rigid-body rotation of principal directions of
strain. Lagrangean and Eulerian descriptions differ only by different
order of these elementary deformations. The structureof various Lagrangean
shell strain tensors is discussed and exact formulae for the finite
rotation tensor as well as for the finite rotation vector are derived.

By using explicitly the notion of finite rotations we are able to

derive here many interesting formulae most of which have not appeared
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in the shell literature before.

In the authors thesis [12] general theory of finite rotations in
shells has been developed under more relaxed constraints "material
elements, normal to the reference shell middle surface, remain straight
and tangent at deformed middle surface points, to the real three-
dimensional deformed material fibres" ., Most of results of this chapter
have already been obtained in [12] as a particular case of more general
results. Nevertheless, here we derive the relations valid unter K-L

constraints independently from the very beginning.

3.1. Normal coordinates

Let us consider a body S consisting of particles X,Y,... € S, [19].
A onte-to-one correspondence between the particles X € S and points
P € Pc E, in three-dimensional Euclidean space is called the configuration
of the body S, P=«k(X), k : S+ P c E. If one dimension of the region
P € E, occupied by the body in a configuration x, is much smaller than its

other dimensions, then such a body is called a shell.

Fig. 10

Let us introduce in the region P the normal curvilinear coordinate
system {ei}, i=1,2,3, such that a surface defined by 83 = 0 is the
middle surface M of the region, and o3 = ¢ is the perpendicular distance
from the surface M, - %-S r s %-, where h is the thickness of the shell,
Fig. 10. The set of particles Y = K-I(M), M € M, form a material surface

called the middle surface of a shell S. In normal coordinates we can
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easily obtain the following relations [12]

R=L+iz

g(p TR P r 23TE3TR (3.1.1)
v = &% v _ VB _ V0 3 _
9 %0+ T MR T, T
a _ o _ - B o
Vo= 2 'Y 6 Eﬁw 8
¥ ¥ o oy
W, =g -a g
°o= 8 aB (3.1.2)
_ &Y ¥ 2.9 @
~GB+CGbB+C¢SbAbB+...
= a = 1: - 2
U Iuw| 'J'a 1 2TH + LK
= . = 4%, B -
(%™ %o % ™ Yoy
- a.B _ 2%
= 6¢6¢(a33 2;bmB + C babAB)
W_ P .gY = AV aB _ w8 _vo
g =g g T ukea 99 gp, = (3.1.3)
| - s oot @™+ 20p®® 4 32l 4 L)
33 3
g33=g =1 ’ g(p3=gq) =0
| g- log4l = lag,l

Here p is the pogition vector of a point P € P,‘gw or g?, o, =1,2,

are the covariant or contravariant base vectors of a surface MC at

o

distance ¢ from M, and g¢¢ or g are the covariant or contravariant

] as well

components of the surface M; metric tensor. Besides, g or g
as gij J describe metric properties of three—dlmen51onal Euclidean

space E in the normal coordinates ot.

In a way similar to that used for the surface M, we may introduce in
E spatial alternatzon tensor components €, ijk’ € i3k , spatial Christoffel

symbols Gl i3’ ij' spatial covariant differentlatlon « ) of spatial

: k
tensor components and other geometrical quantities, and obtain the

following relations [2,3]:
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_ ) i3k _ & 3. K
€k = 93 % g0 9% + € g xg-g
G = . = l ( + - )
143 - %1°5%,5 52 Yi,5 Y 914,17 %151
X k1 k K
€39 61,353 "%i,5°7%°9 ,5
. (3.1.4)
v = Vl g = 1
~,k 3 =21 ik
m
Visk = Vi,k T Cix¥m
i _ i i m i
Tk = Ty * GkaTj CxTom

It is important to note here, that for components of various quantities
defined at point P € P out of the middle surface M we have used different
Greek indices ¢, y, 0, 0 = 1,2, in order to distinguish them from compo-
nents of similar quantities defined at the middle surface points M € M,
for which indices o, B, A, M, k= 1,2 have been used. This convention has
been introduced in the author's papers [12,25,35] to be compatible with

the notion of absolute tensor analysis.

This convention eliminates possible confusion and allows in the normal
and skew coordinate system a simpler description of tensor fields in
shells [12,25,35]. In the convention adopted by GREEN and ZERNA [2] or
NAGHDI [4] spatial tensor components with respect to a2, n are distinguished
by a bar from those with respect to g leaving the index unaltered. Then
this bar is omitted in all surface relations, which occasionally may cause

some confusion.

The spatial meiric tensor | € L2 = (l ® W in the normal coordinate

system may be represented by components with respect to various basic

vectors
1=a"-9 g eg =g 09 -
=aa&ga038+2®£=2q83a+292= (3.1.5)
="$%@2¢+£°n'u‘£g¢°38+292

from which we see that u$ and ug

tensor with respect to mixed basis. It is convenient to introduce a

are just components of the spatial metric

tranglation tensor g € L2
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gEng 03“4-11&3 p g—1=68a ® w+262 (3.1.6)

l

!
®
a

with the help of which we obtain the following formulae:

g=i-t
. 2 2 (3.1.7)
g - =g49gg = i'- ZQR + T B

a v v -1 8
g, =693 , g =ug a
~0 3“"”' ~ - (3.1.8)
HTg -

These relations allow us to express in coordinate-free notation quane

tities at P € P in terms of those defined at M € M and the distance Z.

3.2. Lagrangean shell strain measures

In the Lagrangean description, the displacement of a particle
X €S from its position P = k(X) in the reference shell configuration
to its position P= K(X) in the deformed one, Fig. 11, is described

by a spatial displacement vector referred to the reference basis

i 3

v =y =plP(E)] -p() =vg, = V49 (3.2.1)
| \
| 4 P dg\ G
M g \
| Y e \
P i M
r X ?

Fig. 11
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Thus for differentials

- _ = i_ i
dp = B'ide (gi + z'i)de
= Fap (3.2.2)
where a tensor E € L2 has the form
E=FE(P) =1+grad vy =
(3.2.3)

. .
2:%92 *X,;%3 =3:°8

This tensor is called the spatial deformation gradient tensor. It
fully describes deformation of a particle neighbourhood during shell

deformation from the reference to deformed configuration, respectively.

According to Kirchhoff-Love constraints, material elements of the
shell, which are normal to the reference shell middle surface M, remain
normal to the deformed shell middle surface M and do not change their
length. Thus at the shell middle surxrface, under Kirchhoff-Love constraints,

the shell deformation gradient tensor G € L, has the following form

§=8m =E® |, _ =
a (3.2.4)
=3a ®a +n®n
4\0 ~ ~ ~

Using (3.2.4), (3.1.6) and (3.1.7) we obtain the following expressions
for spatial quantities in terms of quantities defined at the shell middle

surface:
E=§6g =G -%&g (3.2.5)

y=u+1zg (3.2.6)

vhere under K ~ L constraints

B=

1)

)n =

e

W
'
s

(3.2.7)

Q

na’ +(n~- 1)

m=na +(n-1)n
~L ~

It is shown in continuum mechanics [19], that in the Lagrangean
description of strain we use mainly Green strain tensor E, € L2 defined

by
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1 T i |

= =L -1y = 3.2.8

E E(P) > (gf, L) Eijg ®g ( )
1 K1 1

= b = - . 9 - . 3.2.9

Biy =3 Wiy ¥ V4,0 Y9 V1,4 7 @34 - 934 )

It follows form (3.2.5) that under K - L constraints the tensor E may
be expressed in terms of quantities defined at the shell middle surface

according to the relation:

E = 2—1 (y + 5.5+€2,y)g'1 (3.2.10)
where
'I = -;- (ETS = v]\'o) = .15 (EQB - aas)f.a ® SB
= —cThe - - a B ‘
X =-(GbG - b) (baB baB)s ® a (3.2.11)
v==y (5% -1% =L G5 - b, )a" 8 a°
~ 2 WA~ ~ T2 o AB o AR~ ~

It is easy to recognize that Yy and x are the Lagrangean strain measures
of the middle surface (2.2.1). The third strain measure V is not independent,

and may be expressed entirely in terms of Yy and x by the relation

2=‘;‘[‘2 )L+ 20 @ k) - B (3.2.12)
where the first two of (3.2.11) have been used.

Another representation for N which does not contain an inverse opération
of tensors, has been obtained by the author [12] with the help of Caley-
Hamilton theorem applied to the curvature tensor b,

B2 -(trb)b + (deth)a =0

« a (3.2.13)
trb=b_ =2H , detb = |b | =K
~ a ~ B
Then for the camponents vaB from (3.2.11) we obtain
1 - -
vaB = -Kyaﬂ - HKuB - 2( K - K)aa6‘+ (H - mbuB -
(3.2.14)

-(K - K)Yyg = (B - K, g

where
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= _uy-la,_o _ a ., aB ~af
H-Hs=3 3 [ K, 4H(Yu + v yas)-+27 (buB
T og= L eaB _ a , 2aB _ ~aB
K K-za[nc baB 4K(Ya+Y YaB) k (b
in which
~af _ _ai_Bu - 0B A _aB
YO =ETE Y, Taty, ~ Y

EGB = GQAGBMK aaBKA - KaB

Al A

aB

(3.2.16)

Thus, under the K - L constraints, strains in a shell are described

entirely by two strain measures y and x of its middle surface.

3.3. Eulerian shell strain measures

In the Eulerian description we use the spatial displacement vector

referred to the deformed basis

<1

= ¥(P) = B(P) - p[P(P)] =

i3, = 7,9
278

Thus for differentials

dp = dp - (grad ¥) dp = F dp

where

"y
[
Cl
]
Land |
1
Q
A4
o
o)
<
]

t
g

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)

(3.3.5)
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In the Eulerian approach strains are described [19] in terms of the

Almansi strain tensor E defined by

E=i® - sE-ehE =53 07 (3.3.6)

Biy=g Gy =95y =5 @y AR akl\_'k;li‘-'l;[j) (3.3.7)
In terms of surface quantities

Flegegh =@t - rpehi! | (3.3.8)
and (3.3.6) takes now the form

E=@HTE+ i+ 295" (3.3.9)
where

T =g U =5, - e o &

£ =-[b -G b6 1=-(B,-b )2 ea (3.3.10)

£ R B~ ap

5 =3 - @HT =5 @5y, - v, 03 @ 3

and V is expressible in terms of i and K by relations dual to (3.2.12) or
(3.2.14).

By comparison of (3.2.11) and (3.3.10) the following transformation

rules between Eulerian and Lagrangean strain measures are established

T - -1 T -1

Y=8y ., xy=1(6)xs
T - 1.7 -1

k=8x8 . x=1(6 ) kG (3.3.11)
- - T

r=g% , 3=@ e

It is important to note here, that in convected coordinates the
Lagrangean and Eulerian strain measures, when given by their components,
have exactly the same formal definitions, (2.2.1) and (2.4.7), (2.4.8).
However, these components are related to different temsor basis, which is
obvious from tensor definitions(3.2.11) and (3.2.10). Unfortunately,

according to convention usually applied together with convected coordinates,
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the same Greek indices are used to describe vector and tensor components
associated with the same material particle with respect both to reference
and deformed bases. Most papers on the non-linear shell theory are
written entirely in terms of component notation, and the important
gecmetrical difference between Lagrangean and Eulerian description of
strain is thus hidden from view. Here we shall use occasionally this

absolute tensor notation to show this difference explicitly.

3.4. Polar decomposition of shell deformation

The fundamental feature of any non-linear shell deformation is the
occurence of finite rotations of the material elements. Finite rotations
may appear even within small strains, in the case of thin bodies: bars,

thin-walled bars, plates and shells.

In the non-linear continuum mechanics the rotational part of deforma-
tion, described by a finite rotation tensor R, has been discussed by
TRUESDELL and NOLL [19]). An equivallent description of rotational part
of continuum deformation, by means of finite rotation vector 8, has been
used recently by SHAMINA [20] in her discussion of various compatibility
conditions in continuum mechanics. An exact theory of finite rotations in
shells, in terms of the finite rotation tensor R and the finite rotation
vector 2, has been developed in the author's thesis [12]. Here we present

the special case of [12] compatible with Kirchhoff-Love constraints.

According to (3.2.5) and (3.2.7), the deformation gradient tensor G
provides complete information about the shell non-linear deformation
compatible with K - L constraints. As G is non-singulér (€L§), then
according to polar decomposition theorem [19] it can be uniquely represen-

ted by the following two formulas

S=RU=YR , & =u'RT=gW"

~ ~e

v (3.4.1)
where U and V are right and left stretch tensors, respectively, and R is
the finite rotation tensor. The tensors U and V are positive definite

+
(€ L2) and symmetric (€ Lzs) while R is the proper orthogonal tensor (€ L‘2j+)

T
g=ygs . y=v¥sg' . u-g7R (3.4.2)
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FB=RR =1 , R =K, detR =+ (3.4.3)

Decomposition of G in terms of U in (3.4.1) is compatible with the
Lagrangean description of deformation; in terms of V it is compatible with

the Eulerian one.

From (3.2.4) and (3.4.1) we obtain

3 =Ga =RS =V , A=Gn =Rn (3.4.4)

- - -1%

@Y=y (3.4.5)
where

¥ —ga , Ye-yto (3.4.6)

w NW "~ "~ ~

* *

a =Ra v a® = rRa® (3.4.7)

~0L ~ ~xL ~ ~~

The intermediate Lagrangean basis éu + b is obtained by stretching the
reference basis a , D with the help of stretch tensor U. The intermediate
Eulerian basis g, n is obtained by rigid-body rotation of the reference
ba.sis Eu ' B by means of the finite rotation tensor R. Thus for these tensors

we obtain the following exact formulae:

-1 va
U=X aaa+n0n,U =a ®a 4+ neéen
- *0L - - -1 * -0 - - .
V=a ®a +n®n , V =a ®a +n®n (3.4.8)
v - [+ -
R =38 Qaa+n0n=§ ®a +no®n
~ ~CL ~ ~ ~ ~ ~ ~ ~

In what follows we shall use the intermediate basis 'éa » n compatible
with Lagrangean description of deformation. The basis E, n was used by
SIMMONDS and DANIELSON [22,23], who took @ as an independent parameter
of the shell deformation. The relations between @ and displacements have

not . beeh discussed-in [22, 23].
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3.5. Lagrangean surface strain tensors

It follows from (3.2.11) and (3.4.2) that

g=4l-2r . y=3@-p (3.5.1)

and from (2.2.1) it follows that U becomes the non-rational square-root

function when expressed in terms of displacements.

Let us discuss now the structure of the Lagrangean surface strain
measures. As the tensor U = U(M) is positive definite and symmetric
then, according to a spectral decomposition theorem [36] it has three
real and positive eigenvalues U., r = 1,2,3 in three orthogonal
principal directions defined by triad of unit vectors 51, which satisfy
the set of equations
fl\"r ™~ o~ l('r .}55 = 6::s (3.5.2)

It is seen from (3.4.8) that n is one of the principal directions,
say'kb £ n, and the eigenvalue in this direction is equal to 1. Thus in
this spatial orthonormalbasis tensor E’has the following diagonal form

y-= 01}51 @51 + 02152 @.’Sz +neén | (3.5.3)

The tensor Y = y(M) is symmetric as well, although in general it is
neither non-singular nor positive definite. Thus [36] it has three real
etgenvalues Y, in three principal direction which, according to (3.5.1),
are the same as for U. Thus Yy may be put in the following diagonal form
Y = Yk &k + vk, 8k, (3.5.4)

~

W J_.‘

and the third eigenvalue of X is equal to 0, according to K - L constraints.

In what follows we shall use a modified Lagrangean surface strain tensor
¥ defined in terms of U or y by

~

=2—}‘_

=¥ 02" ® af (3.5.6)

1<
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It is important to note here, that a numerous relations which are
non-rational in terms of Y become polynomials when expressed in terms of

i. For example, using (3.4.6), (3.5.6) and (3.2.11) we obtain in terms

of "f’
A R
I (5 + yi)(Gg + ys)aAu , (3.5.7)
2V, = 2 * Yalog

and from (1.1.13) and (2.2.5)

= _ ,5 Coah U VAL MV
EaB = aB = (Ga + Ya) (6‘3 + YB)G:MJ
5 _ 1‘ af VA i Vi
- = =€ E (6 + cl) (68 + YB) (3.5.8)
Au '[ a VA, u af
E Ya) (dSB + YB)€

which enable us to obtain as well

3“8

1]

al By, .Y vy P vp
8§ +
€€ (6 + YA)( u)aYp

(3.5.9)
_ af ] v, A
a ._J—IE EMJ(G +Y3)2'

Additional results are given in [12]. Note that all of these formulae

a
a

<
Q

are polyncmials in terms of ¥

~

3.6. Finite rotation tensor

From (3.4.8), using (2.1.4), (2.2.8) and (3.5.7) we obtain the following
general expression for R in terms of displacements
R=5u8(a +u ) ® (a +¥aA)+(naa +nn)®n (36'1)
~ '~ ~,0 ~B BA~ ~Q ‘o ~ b
{

According to the spectral decomposition theorem [35] the proper
orthogonal tensor R has only one real eitgenvalue equal to +1 and two
complex conjugate eigenvalues. Let 24 be unit vector of the principal
direction corresponding to real eigenvalue of R. Choosing arbitrarily
a unit vector & -‘-31 we may define uniquely a third unit vector

&3~ & sz as well, and in this orthonormal right-handed basis sr
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the finite rotation tensor takes the form [12]

R=¢g ® e, +cosw (32 032 +33 833) - sinw (32 833 - &3 852) (3.6.2)

1

Direction defined by e, is called the arts of rotation of R and the

angle w, |w| <m, is called the angle of finite rotation around the axis

of rotation.

It is easy to show geometrically how tensor R acts on a vector v, Fig.

12,

Fig. 12

A vector v may be decomposed into p2] along e and ,Y,p J_sl . Then if

a =g (52, .Y.p) the vector v has the form
y=y + ’Y’P = vlsl + vp(cos ae, + sin a'g3) (3.6.3)

If the vector v is acted on by the finite rotation tensor R, then

*
we obtain a new vector v which in the frame defined by L takes the form

e

= Rv=v,e, +Vv_coso{coswe, + sinwe,) +

1~1

+ v, sina(coswe; - sinwe,) (3.6.4)

=v,e + vp[cos(a + a.o)'(\a'2 + sin(a + w)33]

1

It is evident now, that the tensor R rotates the vector Vv through

the angle w around the axes of rotation defined by -
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3.7, Finite rotation vector

It is possible to describe finite rotations by means of an equivallent

finite rotation vector Q, which has direction defined by & = g and

magnitude equal to [sinw . Thus for |m[ <7

2 = sinwnge (3.7.1)

~

In terms of 'g for the components of Vv we obtain, Fig. 12,

1

U T sinZa @TYE
(3.7.2)
1
Yp =X in?a €VR

Under rotation through the angle w the vector \2) refmains unchanged,

while xp swings into the new vector, Fig. 13,

*
vV = coswv_ + g Xy =
~P ~P ~P (3.7.3)
cos w
—coswx.'.gxx-sinzw (,8 .Y.)E

Using the indentities
cosw= 1-2 sinzw/é » sinw= 2sinw/y cosw/j

Rx (@xy) = (2 v - sin‘uy (3.7.4)

~

we finally obtain

* 1
.Y."X+gxx+ 2coszm/2gx (gxx) -
1 (3.7.5)
=coswy +Q x v+ mz(g‘x)g
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In particular,using (3.4.4) we obtain the relations for deformed shell

middle surface basic vectors
v 1 v
= +
'g'a 2"2,“"'2(:0 w/2 g x (ﬁ*fn)
(3.7.6)

- 1
= —_r
2 24-2)(24— 2cos w/zgx (2)(2)

The finite rotation vector g is defined uniquely by the tensor R.

Recalling that

r = xki a = xk i

~ ~k ! ~o , o~k

e .I.E“Bxk xl . im (3.7.7)
~ 2 F1e ] ,B klmr~

it follows from (3.6.1) that R may easily be expressed in an orthonormal

tensor basis by

R==g i (3.7.8)
where Rkl depend only on geometrical parameters of the reference surface

M and displacement vector u. Then the orthogonal matrix components Rkl

allow us to calculate the axis of rotation and the angle of rotation as
follows:

klm .
Re1dm

. _ 1
g sinwe = 2e

1 1
cos w = 5 (trg— 1) = 3 (R11 + R22 + R - 1) (3.7.9)

33

2coszw/2 =1+ cosw , sinw = Vl - coszm

These formulae express the components of = Q(u) with respect to the
orthonormal basis ~i.k' Its components with respect to the reference surface

basis may be found using (1.1.3), (1.1.4) and (1.1.12).

It is possible to express g in terms of u and with respect to the
surface basis directly. The expressions are more convenient for our

future purposes.

Let us find first components of @ in the intermediate basis éa, n.

Multiplying (3.7.6) by ¥ or g and using (3.7.5) we obtain
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- v _ LY v
za-ss = cosmamB +Q (Sa X3B) +
N 1 @-Yya-¥ (3.7.10)
2cos?w/; '~ ~' '~ RB
- v _ v 1 v
n-a, =9 'Qg’ﬂgu) + 3;3;2;7; 2 -n(Q gu) (3.7.11)
a -n=9'(§ xn)-*'———lz-'-—(ﬂ-:?{)(Q-n) (3.7.12)
~NL O~ o~ Ay~ 2cos‘w/a ~ ~' '~ o~
Contraction of (3.7.10) by éaB gives
= _1_-(18— v = | .
Qen-= 3 € 2, SB = Q (3.7.13)
and substracting (3.7.12) from (3.7.11) we obtain as well
g .- é—é“s(ﬂ-g -3 on) = (3.7.14)

Then the general expression for {1 in terms of displacements follows:

_lzaR = v _= | |V - .Y
'g—2€ et('ggu a, '5)28+(2u 33)3] (3.7.15)

where various quantities still have to be expressed in terms of u by

(2.2.5), (2.2.7), (2.2.4), (2.2.8), (3.5.7) and (2.1.4).

An equivallent simple formula for @ has also been found in [12] to be

x5 +n x @) (3.7.16)

1 v
8=3 &

Both representations (3.7.15) and (3.7.16), after some transformations,give
us the following formula for @ with respect to the reference basis 2,08

{121,

_ A__aB A yA U
2Q = Elu[n a (6a+ya)(pB]3 +
(3.7.17)
—aB, A vA, .U
+ Ekua (Ga +Ya)l°8'2

The formula is exact under K ~ L constraints.

Let us show here in more detail that both relations (3.7.16) and
(3.7.15) give really the same formula (3.7.17) for .
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With the help of (3.5.7), (2.1.4), (2.2.8) and (1.1.20) for both

terms of (3.7.16) we obtain

-\éa x éa = (62+¥:“)3>‘ x 398 ( llf&eu +@om) =
= €, 3@, +¥h1l a - (3.7.18)
- GAMEGB(62-+¥2)w35u
nXxn=nx(na, +nn)= € n>‘a‘J (3.7.19)
~ ~A Ap ~

Together (3.7.16), (3.7.18) and (3.7.19) give exactly the formula (3.7.17).

Reduction of (3.7.15) to (3.7.17) requires some additional effort. The
first term iﬁ (3.7.15) is transformed with the help of (2.2.5), (2.2.8),
(3.5.7) and third of (3.5.8) as follows:

=af - V.,V _ ja aB, A L VAL B v -

€ (n a)ge—\}anAE (6a+Ya)(GB+YB)5u
—yEn fE - o |
=Yz M 7 € 2 = Exun a (3.7.20)

Using (2.1.4), (1.1.19), the first of (3.5.8) and the second of (3.5.9)

for the second term in (3.7.15) we obtain

zaB - vV _ _ -ak=Bv= v __=zaB = =v _
€ (‘sa 3)38— a a Gmtpmgs a w8€av3 =

__._aB_AvApvp . a2 V0 <T VT, B
=-a g (S +Ya)(6\)+Yv)€lp vae GUT(6°+Y0)3 =

o
_ _ =aB Aovh pT uo_ |

=-a wB(éa’+Ya)€Ap€ Euwg =

_ ~0B, A VA u

= €Xua (Ga-+Ya)wﬁg (3.7.21)

Finally, with the help of (1.1.19), the second of (3.5.9), (2.2.5) and
(2.1.4) we may transform the third term of (3.7.15) as follows
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E“B(Ea 'és),‘l = 5“"58‘?“ (8, .58)2 = 5KBEK\,(§,B BATE
= e (3, - {-;T'e"“eux(sﬁ +¥h a1 =
= - 35 €, 6 +¥hatig -
R DS S BLE (3.7.22)

The latter together with (3.7.21) and (3.7.20) gives us exactly the
formula (3.7.17).

Thus we have prooved that both vector relations (3.7.15) and (3.7.16),
expressing finite rotation vector § in terms of displacements, are in
fact equivallent and in the common reference basis 3, B reduce to the

same formula (3.7.17).

3.8. Relations in terms of finite rotations

In the authors thesis [1 2] many useful exact relations for the

middle surface have been derived in terms of finite rotation vector 2 .

Here we recall without detail derivation some of these relations
valid under K - L constraints. Some of these relations will be useful

for our future purposes.

From (3.7.6) and (2.1.4) we obtain

_y .o A VA 1
57 Yagd *OptYRIRNY ¢ amoeme; £ @ra)
Y =a -u +(6>‘+¥A)[€ (Q-n)-&—z—1 (xa )(2xa,)]
afp ~a ~,B B 'B" Tad '~ ~ 2cosfw/p ~ o A

From definitions (2.1.4) and (2.2.8) , together with (3.7.6), we

obtain the components of deformation gradient tensor

A VA 1
laB - (68+YB)[aAa+€Aa(£'B) Zcoszw/z (Rxél)(gxgn)]
Y SREY) | La0 1
0 = (68+¥B)[€ak(2 2) - Sooatar; @XD) @x3,)]
(3.8.2)
_ A1
Ny = €83 5555707, @*3) @0

1

= - X
' Teostar; @R

=]
1
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Differentiation of @ along convected coordinate lines in three-
dimensional continua has been discussed by SHAMINA [20]. In our case

of two-dimensional shell middle surface we obtain from [20] the following

relation
a8 1 1
—_—= + = - .8.
deB cos w Ko 29"(58 m—;gx(gxﬁs) (3.8.3)
where Xg is called the vector of change of curvature of the coordinate
line 96, since
“pKgR® + Kg = -—de L (3.8.4)
de ae
For.53 the following relation in terms of the surface strain measures

has been obtained in [12]:

_ ’3" Au av |V
'E'B_ 56 [(KB)\+bBYGX)au +

(3.8.5)
1 vkv
+ - -
or in terms of the finite rotation vector
ag  ,ag g,
Ko = + 7 x Q + —= tguw/z Q (3.8.6)
B ggB 2cos®w/z 44 aob

Covariant differentiation of the intermediate basis éu, n may be

expressed in terms of '58 by
¥ = (b -k )n+5AuY . -k, x4
~a|B aB  af’~ BB A ~B A~
(3.8.7)
Bjg = [ 230, + 2, 0, g <2
From (3.8.5) it is easy to find KoB in the form
_1 = 3 yAi _ 1 Ay Ay
Keg = 2 (Eak'56+€8lfu) a > (baYAB+bBY)\a) (3.8.8)
This relation, together with (3.8.6), gives us the expression for KuB in

terms of g
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The relation (3.8.8) suggests the possibility of defining a new modified
tensor of change of curvature of the shell middle surface E with components

v oo 1 Ay Ay 2
paB = KGB + > (baYAB'+bBYla) (3.8.9)

linear part of which coincides with uaB defined in (2.1.11).From (3.8.8)

we obtain the simple formula:

v _1 = = VA
Pag = 32 (EGAE'B + EBA'Ea) a (3.8.10)
By means of (3.8.6) the tensor E may be expressed in terms of { as
well. The tensor may be of particular interest when some approximate

variants of shell deformation under restricted rotations are discussed.
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Chapter 4

DEFORMATION OF A SHELL BOUNDARY

Deformation of a shell near the boundary is essentially three-dimen-
sional. When the methods of constrained continua are used [37] the reac-~
tive forces due to assumed constraints may be significant in a boundary
zone of depth comparable with the shell thickness. Here we are not going
to discuss the full deformation of the shell in this boundary zone. This
problem for a non-linear shell behaviour has not been solved yet. Within
the linear theory of shells, GOLDENWEIZER in several papers (see [44]
for example) discussed the problems of the shell boundary zone and
KOITER and SIMMONDS [6] have proposed some modifications of the boundary

conditions at a free edge.

The goal of this chapter is to examine the implications of K - L
constraints on deformation of the shell boundary. This limited goal has
been solved only recently by NOVOZHILOV and SHAMINA [21] and more
general results under relaxed constraints mentioned in the introduction
to chapter 3 has been obtained in the author's thesis [12]. Proper
description of deformation of the shell boundary admits the formulation
of new variants of the geometrical boundary conditions for interior

shell equations.

We begin with describing the geometry of the deformed shell boundary
subject to K - L constraints. The total finite rotation of the boundary
material element is found as a result of superposition of finite rotation
of principal directions of strain (discussed in § 3.7.) on a finite
rotation due to pure stretch along principle directions of strains. Geome-
trical boundary conditions in terms of displacements as well as in terms
of the total rotation vector and the elongation of the boundary contour
are derived. We discuss here various differential relations at deformed
boundary which allow us to describe the deformation of the shell boundary

entirely in terms of combinations of strain measures as well.
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4.1, Geometry of deformed boundary

Let C be the boundary curve at the reference middle surface M, given
by

8! “6%(s) , 6% =06%(s) (4.1.1)

where s is the length pa?ameter of C. We assume here that the reference

shell boundary surface 3P is orthogonal to M along C. Hence, position of

any P € 3P is defined by

B = p(s,t) = xr(s) + tn(s)

(4.1.2)
with C let us associate an orthonormal triad v, t, n, Fig. 14.
_mm—e .
7 S — T~
\ ~
/P \ ///ﬁ \
/ ¢ - \
/ \ // 4 \
/ PRo_~#t ~ < N
aP et v / P \
M 2 g Jé ~,
\\/ C Q 0
S
~ \
\ / ]
d o &
f \

On

Fig. 14

After a deformation compatible with K - L constraints C transforms
into C and 9P into 3P, which is still orthoganal to M, and for any
P e op

B(P) = p(s,7)

4]
n

(4.1.3)

I(s) + zh(s)

In the deformed configuration the orthonormal triad v, t, n is

a,, n where

~th o~

transformed into an orthogonal triad‘év,
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dy dl‘.

3= —=t%F =t +— (4.1.4)
~t ds ~a ~ ds o
- - - = oA a -
a = a *xn=€ ta =¢Y—va =
~V ~to~ Ao~ a

dy (4.1.5)

= (£+a;)x(£+,§)

These are not unit vectors; their lengths are

at=

a, gl _ , '
J(aa8+2ya3)tt = 1+27tt

According to the polar decomposition theorem (3.4.1) the deformation

o0
]
o
"

(4.1.6)

of the boundary may also be decomposed into a rigid-body translation,

v X
the pure strain realized by means of U, y or y and the rigid-body rotation
realized by means of R or Q. Thus there are such intermediate vectors

v v .
a,, a for which
~v

~t
- v v 1 v
= +Qxa + o—apg— Qx (2xa
O‘?ft oet ,9, ~t 2cos w/z ~ (~ Nt)
- v y 1 v
=a +Qxa + >——m— QX% x a
5\) ~AN) ~ A 2cos w/z ~ (~ Nv)

These vectors follow from (3.5.7) and (1.5.3):

v v .o v o, B B
= = + + =
2. gat (an YuB)t (viy+t't)
_V v
= Vet (LY )L (4.1.8)
v _V _ v _y
By TRXR= 4y JN - YL

4.2, Total rotation of a boundary

It follows from (4.1.8) that under the pure stretch of the principal
directions of strain, the vectors ¥ and t not only change their lengths,
but suffer rotations as well. This comes from the fact that directions
defined by V¥ and t do not coincide in general with principal directions

of the surface strain tensor.

Let us denote the fintte rotation vector caused by the pure strain

by ét' Then applying (3.7.16) we obtain
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o~

[

1
v X
'~

v
a
2v1 +27tt ~v

v (4.2.1)

th - .V
- ——————n = s:.nwt‘p‘

/1 +2ytt'”

rz}::)<

The axis of the rotation is seen to be along the normal to the surface

M and

v 1+V
v Yot Tet
sinmt= - —_————— ' cosw, = ————
4! +2Ytt' 2! +2Ytt|
v (4.2.2)
Yl +2y,  +1+y
2 cos2 _ tt tt
cos wt/z =
/1 +2'yt'tl

Transformation of v and t into é\, and '\é't may thus now be expressed in

the form

(4.2.3)

rzrm<
u
—
+
N
<
oy
ot
| o |
1 las
+
‘g':o<
X
At
+
N |-
;".9
X
S
X
a
[ —

It is seen from (4.2.3) and (4.1.7) that the transformation of » and

Lt into E'v and consists of extension of these vectors by the factor

a
~t
V1 +2Ytt and successive superposition of two rotations realized by the
finite rotation vectors ‘ét and @, respectively. It is convenient to replace
these two subsequent rotations by a 8ingle equivallent rotation realized

by an equivallent totql finite rotation vector -

Note that the finite rotation vectors are not vectors in the usual sence.
The superposition rules for these vectors are different from the usual
addition rules of a linear vector space. Rules of superposition of the
finite rotation vectors are discussed in detail in some courses on
analytical mechanics of rigid-body motion (see LURIE [24] for example).

In our notation the superposition formula for 2, takes the form

v
Q..
- _ ~t o~ 2 v ZV l v
gt (1 ) [cos w/29t+cos “’t/22+.2 gxnll (4.2.4)

4cos2d t /2coszw /2
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where (4.2.1) and (4.2.2) together with (3.7.17) have to be used.

By means of this total finite rotation vector the transformation

formulae for v, t, n become
~ S~ o~

§v= \/1 +2Ytt[3+2t XA’.*_I——ﬁtx(gtxA’.”
2cos?w 2 ’
t/
5t=V1'+ZYtt[t+tht+ 1 th(tht)]
2cos mt/z
E=n+8 xn+ 2 @ % D)

2coszmt/Q

4.3. Displacement boundary conditions

(4.2.5)

According to (4.1.3), (3.2.1) and (3.2.6) the boundary surface 3P

is uniquely defined by assuming two vector functions

u(s) = A(s) , ,?,(S) = B(s) at C

£= B3, * B, * 6

Then using (3.2.7), (4.1.4) and (4.1.5) we obtain

- 0B
8 :E = _ 8 -n a Vo ‘58 -
v 1 + ZYtt 1 +2Ytt
1 a _ -aB
= —v.a (u °n)
1 +2Ytt a a B
- - .a
; £-3,  @-n -3t 1 i’--n
t 1 +2'ytt 1 +2y ¢ 1 +2ytt ds ~

From an identity

B-£=(Qm-p-n =2-1

with the help of (4.3.2) we obtain as well

=1 _ 2 4 a2y
B =141 - (1 +2y,,) (B2 +82)

(4.3.1)

(4.3.2)

(4.3.3)

(4.3.4)

(4.3.5)

(4.3.6)
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It follows now from (4.3.4), that Bt(s) may be calculated entirely in
terms of u(s), and then using Bv(s) we may calculate B(s) according to (4.3.6).

Thus only u(s) and B (s) are independent displacemental variables.
The geometrical boundary conditions of the type
u(s) = A(s) , Bv(s) = b(s) at C (4.3.7)

will be called the displacement boundary conditions of the K - L non-

linear theory of shells.

4.4, Kinematical boundary conditions

The deformed boundary surface 3P has been described by the equations

(4.1.3). Let us differentiate (4.1.4) with respect to s and § to obtain

p a op dr
ERE A TR TR - PR (4.4.1)

These differential equations define the same boundary surface aP
implicitly with the accuracy up to constant translation. In order to
obtain explicitly the boundary surface we need only solve these differen-
tial equations. The equations (4.4.1) are defined uniquely if at C the

following quantities are specified:

a.(s) = M(s) , n(s) = L(s) (4.4.2)

where
da -
M(s) = t(s) + 3= , L(s) = n(s) + B(s) (4.4.3)

It follows from (4.2.5) that,ék and n at C may actually be expressed

in terms of only four independent quantities: three components of the
total finite rotation vector‘gt and the relative elongation Ytt of the
boundary contour C. Vector‘gt has been expressed in terms of displacements
by (4.2.4) and the expression for Yer DAY be found from the relation

du 1 du du
e "2 HmrIE T (4.4.4)

Thus, if @ and vy, are specified at the shell boundary C, then E& and
E follow from (4.2.5). That defines completely the right-hand sides of
differential equations (4.4.1) of deformed boundary surface 3P.
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Geometrical boundary conditions of the type

2e(8) =m(s) v (s) = 1(s) at C. (4.4.5)

will be called the kinematical boundary conditions of the K - L non-

linear theory of shells.

Using (3.7.16), for E% we obtain the following formula

1 qB qS
2, = ———— {vx[(t+ —)x(n+B))+ tx— }+nxpB (4.4.6)
~t /1—+27;: ds ~ ds

From (4.4.6) and (4.4.4) it es easy to note the following relations

between quantities assumed at the shell boundary contour:

1 - aa
2m (s) =—-{3X[£x§+a— x(£+'§)]+£x3-} +
T+271 S s .
: (4.4.7)
+£x 2
da ; du
1(s) =t'g;+-i-*a-s-‘a—§ (4.4.8)

4.5. Differentiation along deformed boundary"

Differentiation of the reference triad of vectors v, t, n

along the reference boundary contour C follow the relations (1.5.7) or
(1.5.11) and (1.5.12).

Let us define the untt vectors at the deformed boundary

- 2 ’ - 2t ’
x___. ———— v 'E‘ 2 —— (4.5.1)
V1 +2Ytt “+2Ytt ' .

For the orthonormal triad ¥, t, n at the deformed boundary we have
differentiation rules similar to those'for‘g,‘g,‘g to be

35 TR FGET L 0 G T LR (4.5.2)
gt = l+27tt (au\&+rb§+xb§) (4.5.3)

where Et, T . and K ¢ are the normal curvature, the geodesic torsion and
the geodesic curvature of deformed boundary coutour C. The additional
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factor v1 +2Yti: in (4.5.3) comes from the fact, that in convected

coordinates
dr ar .- -
Y ez =4 _r-ds
el Ml (4.5.4)
ds _ 1= | _ _
== |3t| = .’1+2ytt (4.5.5)

where s is the lenth paramenter of deformed boundary contour C.

The vectors ¥, £, N are expressible in terms of v, t, n by (4.2.5),

from which the following identity may be derived

(4.5.6)

&1

o\’-
~e

Wt
-]
u
[\
o
o

Let us differentiate (4.5.6) with respect to the length s along the

reference boundary, and use (4.5.2) and (1.5.11) to obtain

<t _ - -
— = . X -V X —_
23 Lt a - @xy-yxn

(4.5.7)

Using (4.2.5) and trigonometric identities (3.7.4) we can derive also

the following formula:

BXp-¥xp=2cosut+Q xt -

(4.5.8)

1
- 2coszwt/2 e *x @ x0

As the vector gt is defined in the deformed shell configuration, then

by the polar decomposition theorem it has to be expressible in terms of

v . . .
some vector 2’4: defined with respect to the reference triad of unit vectors,

by the following formula

- v v 1 v

(nl = wl +Q| XxXw, + m— QI x (Ql "Q‘t) (4.5.9)
where

V. - - ' ‘

[N Y1 +2Ytt' (°u3+TtE+Ktr5) (4.5.10)
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After quite long transformations, which are not presented here,
carried out with help of trigonometric identities, for both parts of

(4.5.7) we obtain

- - - _ v v _
B (nxy=-yxm= [2coswtgt+ Q. x8,
(4.5.11)
1 v
——— 2 x (2 xy)] -t
2cos mt/;;T t ~t
"Bt Xy - uxn) - 2@ xw) ot = -[2cosw @+
1 (4.5.12)
+ gtx-@-t - 2coszwt/2 '%tx (gtxgt)] "t

Now, using (4.5.7), (4.5.9), (4.5.11) and (4.5.12),we obtain the

formula for differentiation of the total finite rotation vector of the

boundary
i - —3—— 0 x (2 xk) (4.5.13)
ds t~t D 25t ~t deoste ot St~ e
where
v :
=W, - W . (4.5.14)

X, is called the vector of change of boundary curvature during shell

deformation subject to K - L constraints.

Let us note here, that all differentiation formulae depend only on Lct.
Really, if components of ~kt are supposed to be known, then ?ét follows from
(4.5.14), w, follows from (4.5.9) and from (4.5.2) derivatives of orthonor-

~t -
mal triad E, .§.' 'x:'n’ along deformed boundary contour C bhecome known as well.

4.6, Vector of change of the boundary curvature

Let us express components of Xe in terms of the reference middle surface

geometry and surface strain measures. It follows from (1.5.11) and (4.5.10)

that

= -k -k ;
k. eed ¥ Koet T Kol (4.6.1)
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where
-k = l*2v 0 -0,
k,, = T+2y ‘T -1, (4.6.2)
Tk T IH2N e K -k

Let us differentiate with respect to s the deformed triad of vectors

at E Then
d - _ d a . B _ = o a B -
dsg’t-des (at)t (%’Bt +E'at ,B)t
=fr® +3% yact+a e 1P e b -k ) t%efn =
AB VAR '~ ~ - ,B apf R
_ .0 —av A, B- —
= (g +8y gt VLR + (0, -k )T (4.6.3)
Lg-5 tf=-m - 95%P (4.6.4)
ds ~ ~,8 af  aBf’~ e
Recalling that
3, =My [t (4.6.5)
we have the relations
da dy dt |
— = — LB Tray, o (4.6.6)
S v, s |
dat , 4a A
ds ds 1 +2y ds £ (4.6.7)
V1 +2'ytt tt
From (1.5.8), (4.6.7) and (4.6.3) we obtain
vy i :
142y, 0 =R+ == ——— (0_-k_) ' (4.6.8)
tt 't ds W t tt
and using (1.5.10), (4.1.5) and (4.6.3) we obtain
s % 1 By 1 B
T+ oy ke= -85 =~ 77— Va2 "2 3 "
M+ey . ' 2 1+2y o ©¢
tt tt
(4.6.9)
= + S S (k, = v EKA utB)

T+2y,, Va ¢ ™ % Yaag®
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Finally, using (1.5.9), (4.1.5) and (4.6.4) we obtain

4! +2Ytt T

]

it

|2
f
1
|
<

t
(4.6.10)
1 a =Ka B
a

/3—1-5;:;? a k af afB

Using [12] an equivallent expression for ;t may be derived in the

form

M2y T S S LN PPN LD B) (4.6.11)

t a t A +2b;Y K)t
V1 +27tt' o

uB

In (4.6.9) and (4.6.10) the invariantv-:— and the components 53“® have
to be expressed in terms of strains by (2.2.7) and (2.3.5), respectively.

Thus ot, Tt

boundary geometry and the surface strain measures at the boundary. This

, and Et have been expressed in terms of the reference
representation is exact under K - L constraints.

4.7. Relations in terms of physical components

The formulae for ?t and Et are written in terms of tensor components
at C. For better understanding of approximations in shell theory, it is
convenient to have these formulae written entirely in terms of physical
components at C. Such formulae have been obtained in [12] by expressing
various tensors in (4.6.9) and (4.6.10) directly in terms of physical

components.

We note first, that physical components of the tensor YAaB follow from
(2.3.4), (1.5.4) and (1.5.5); with the help of (1.5.10), (1.5.15) these

components assume the form:
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- _ Aa B _
Yort = Malg ¥ Vagla " YapgA!V EE =

1]

Z(YAavAta)letB - (Yaﬁtats)lxvx -

A a Aa o A

- 2(YAQV IBt YoV ¢ IB)tB + zYaBt IAth =

dy dy
_ vttt A A
=2 ds ds 2(thvkv IB'+YtttAv IB *
+y. vt +y  tt% 18+ 20y v £% 4yt £°| o =

wa 'B 'vta !B vta ‘A Tee e I

dy dy
= g Yt _ __tt -
=2 ds dsv + ZKt(va Yed) * ZKvat (4.7.1)

In a similar way we obtain as well

o, B, A
= ' + - =
Yeet = Majg *Magla " Yag[M T E
dy . (4.7.2)
et
ds T *¥ee
For an invariant a/a we obtain
a_ oy 2
a s LH20 ) A Y T (4.7.3)

To express EKu in terms of physical quantities, we first use (2.3.5)

express it in terms of ia . for which we can easily obtain

B

a,= (1-+2yvv)vav

" $20 VD FE V) (L H2Y Dt (4.7.4)

B

If we use the identities

€f = vatB - tavB :
tgta = v“vu =1 , t°va = v“tu =0 , (4.7.5)
then from (2.3.5) we obtain
= 2 vV a ey ) - @ e ey P ey )] (4.7.6)

If we use these formulae then, according to (4.6.2), we obtain the

to

following relations for the components of the vector of change of boundary

curvature [12,21]
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K

kK. =g, (1 - —2 ) + te (4.7.7)
tt t Vi +2v V1 o+ 2
et Yee
- 8¢/ — - -
ke = Ja (v1 2y (T o+ )+ 2y (0 Ktt)] T, (4.7.8)
. =Ku-_;_‘[?)- ,/ﬂ teoey )+
nt t 1 +2Ytt a 1+2y__ +2y “t vt

B Wy Wee 72
+4= —_ - — ¢+ + -
a (2 ds ds,, 2K\JY\)t 2Kt(Y\;\) Yt:t):|

Using [12] an equivallent expression for kvt may be derived in the

form

Kp = Tl —1 J-—;-I— 1) +——1——-—E{(1+27tt)(n
/1 +2ytt' a /1 +2ytt'

(4.7.10)
*20,¥ e T 2Ty T 2Y (K 200y, 2T Y ) )

t

These expressions are exaet under K - L constraints.

t

4.8. Deformational boundary conditions

In (4.4.1) we have presented differential equations which define
implicitly the deformed boundary surface 3P. Differentiating those

equations again with respect to s we obtain

25 25 22
Eodga Sy, B 4y i 4 (a.8.1)
9s ds ~t t;ds ~ ! asac_ds-vt.' ds ds ~t T

These differential equations define implicitly the same boundary surface
9P, with accuracy up to translation linearly varying with s. The
equations are defined uniquely if at C the following quantities are

specified

— a —
3.(s) = E(s) , o n(s) = Q(s) (4.8.‘2)

Gle

where in terms of é(s) and g(s)

dt a%a dn dB

P= = + 3z ¢ 2 = Es-,+ i (4.8.3)
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It follows from (4.5.1), (4.5.2) and (4.5.3) that é%.ét and é%ﬂé at

C are completely defined by the vector Qt and the scalar Yee® Since‘gt
has been expressed in terms of)st by (4.5.14) and (4.5.9), in place of
‘Qt we may use‘st. In fact, jk is more convenient, as it is defined expli-
citly only in terms of the components of surface strain tensor YuB and
the components of the tensor of change of surface curvature xaB’ calcu-
lated along the reference boundary contour C. Thus the right-hand sides

of (4.8.1) are completely defined if the following conditions are specified

zk(s) = g(s) ’ Ytt(s) = 1(s) at C (4.8.4)

The conditions are called the deformational boundaryconditions of the
K - L non-linear theory of shells [12,21].

For g(s) it is possible to obtain the expression in terms of m(s),
which has been used for kinematical boundary conditions (4.3.7). By an
analogy to analytical mechanics of rigid-body motion, where the instanta-
neous angular velocity is expressed by the same relation in terms of the

finite rotation vector [24], we obtain for g}s)

dm 1 a dm
g(s) = — - me—/Y1-m-m +EKE] (4.8.5)

ds 1+ q—:igjiﬁw ~ ds ~ -~

It has been noted in [21], that there are no othef variants of geome-
trical boundary conditions beyond those presented in (4.3.7), (4.4.5) and
(4.8.4). Indeed, to obtain those boundary conditions we need. to differen-
tiate again (4.8.1) with respect to s and [. As a result we obtain linear
combinations (with coefficients of the type a+fb, a,b = const) of the

derivatives of é and‘ﬁ. Therefore, the higher-order derivatives of é

t t
and‘ﬁ are expressible in terms of the first derivatives, and derivatives
of‘é(s,;) of higher than the second order are expressible in terms of

(4.4.1) and (4.8.1).
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Chapter 5

BASIC SHELL EQUATIONS

The two-dimensional equilibrium equations and the appropriate
natural boundary conditions for the non-linear theory of shells under

K - L constraints may be derived in many ways.

The Eulerian equilibrium equations for shells, obtained by direct
integration over the shell thickness of Eulerian three-demensional
equilibrium equations of a continua, have been discussed, for example,
in the works of NAGHDI [4,5]. Natural boundary conditions are then
constructed by appealing to variational principles. The stress resultant
and stress couple tensors defined in this way happen to be non—-symmetric
in general. It is possible, however, to introduce some syhmetric combi-
nations of these unsymmetric surface tensors and after additional trans-
formations (see [3,7,26] for example) express all shell relations in
terms of these symmetric stress and couple resultants. KOITER [6] postu-
lated a two-dimensional Eulerian virtual work principle, from which
both Eulerian equilibfium equations and natural boundary conditions may
be obtained in terms of symmetric stress and couple resultants. They aré
symmetric by definition, being coefficients of symmetric surface strain
measures in an invariant virtual work expression. This direct approach

is compatible with K - L constraints.

Various forms of the Lagrangean equilibrium equations and appropriate
natural boundary conditions, in terms of symmeiric stress and strain
measures, have been discussed by the author either on the basis of a
Lagragean form of two-dimensional virtual work principle [8 - 11] or
by direct integration of the Lagrangean three-dimensional equations of
the continua over the shell thickness in the reference configuration
[2,25]. Both ways have been discussed in the authors thesis [12] within
relaxed constraints, and results under K - L constraints have been

obtained in [12] as a particular case.

Here we begin by postulating an Eulerian two-dimensional virtual
work principle, from which Eulerian equilibrium equations and natural

boundary conditions in terms of symmetric quantities are derived. Then
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we relate the results to those which would follow from direct integration
of a three-dimensional stress state in a shell. Transformation rules
derived here allow us to introduce various Lagrangean quantities defined
with respect to the reference surface geometry. A Lagrangean form of the
shell equations is obtained and some possible modified forms are derived.
Finally we discuss briefly a form of the two-dimensional constitutive

equations for an elastic shell.

5.1. Eulerian virtual work principle

It has been shown in chapter 3 that, under K - L constraints,
deformation of a shell is described entirely by deformation of its middle
surface. Thus under K - L constraints all external or internal forces

and couples should be referred to the shell middle surface.

In the Eulerian description all forces and couples are referred to the

deformed surface geometry.

Let the shell with simply connected middle surface be in equilibirum
under the surface load‘é, per unit area of deformed surface M, and boundary

force‘i and couple‘g, per unit length of deformed boundary E, Fig. 15,

Fig. 15

Then for any additional virtual displacement field 8u, subject only

to geometrical constraints

65 = 66 3" +6Wh (5.1.1)

"~
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there should be two-dimensional Eulerian symmetric stress and couple resultant

tensors B aB
= N %828,5=M Eusi“'s (5.1.2)

{4

such that the Eulerian virtual work principle takes the form

=af,— 0B - _
“(N GYuB +M SEaB) dAa =
M (5.1.3)

= Hﬁ-agdi + I(g-ag+g-5§t) das
M c

The left-hand side of (5.1.3) expresses the internal virtual work
(IVW) done by internal stress and couple resultants on strains due to
the virtual deformation of the surface. The right-hand side of (5.1.3)
expresses the external virtual work (EVW) done by external surface forces
‘E and boundary forces g and couples g on virtual displacements and

rotations of the surface.

Under virtual displacements (5.1.1) the shell middle surface moves

from deformed M to an adjacent M' configuration, deformation between
M and M' being infinitesimal. Thus the virtual strain measures 8y, 6k
~n o~

and the total virtual rotation vector Gﬁt are linear in du. If geometric
quantities of M' are denoted by x', Eé'.g'a' a'

, b'_ etc. then with
~B’ ~of
the help of (2.2.4) and (2.2.14) we obtain

bvi = .!'- v _3 = ) = -1— a a -b W
o =7 (ayg ~8yg) = 88,g = 5 (88, o+ 66y V=B 60 (5.1.4)

1]

k8 = = g ~Pag)

W B su A o e SR VA
- Gw“aB- baéu)\HB-bﬁsuAHa- banssul+ bab)‘B(Sw (5.1.5)

It follows from (2.1.10) together with (2.2.8), (2.2.9) and (2.1.9)

that
= = =A== 2 A e =
qu = Gylag + 6@ x 2, = Gexmg + 6 x 2y (5.1.6)
6n =63 xR=26§xn (5.1.7)

and using (4.2.4) and (4.2.1) we obtain
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- Y = = ¥
80 = 69, + 62 = 62 - &Y .1
= 64 - 80 .n (5.1.8)

Y
Here Qgt is the virtual rotation vector of the surface boundary due to the

pure virtual stretch along principal directions of virtual strains, and

s

6% = 6§ = €% (60 3, += 65, 7) (5.1.9)

B 2 T Ba

is the virtual rotation vector due to the rotational part of the virtual

deformation.

When g defined in (2.2.2) is used as the tensor of change of the surface

curvature, the left-hand side of (5.1.3) takes the form

IVW = ” 7*Psy g * B *Bsp o) 43 (5.1.10)
M
where
650:8 - SEaB * %'(Bz6§k8 * 5267Aa’ = 61-ImB

(5.1.11)

1 - - =X - =X~
=-3 (6¢h||8+ 6¢B|h1+ bdeBA + bBGmax)

The new Eulerian symmetric stress and couple resultant tensors defined in
(5.1.10) as coefficients of the virtual strain measures in this invariant
virtual work expression, are related to those defined by (5.1.3) according

to

o8 - 508 4 LEtEtf 4 BBy, iR - 0P (5.1.12)

-

5.2. Eulerian shell equations

Let us introduce (5.1.4) and (5.1.5) into (5.1.3). Keeping in mind the

symmetry of NaB and MaB and using Stockes theorem IVW can be transformed

as follows:
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IVW = ”[ﬁ“ﬁ(dﬁa“ - b 6w +

B aB
M
+ M (- 8wy - 2568 B, . 66,+ DB, ,6m ] dA =
aB lag A8 Talig"TAT Parag
- SoBe= i _ raB = _7 ~oBg= _
= ”[(N Gua);ls N Hséua b gN 6%
M
i (m"‘Baw g+ M“B“ - 255 Pea I+ 265 oG E)) g 83, -
~a=AB AB A= =aB,-q .= _ (5.2.1)
- (oM )HBGu +b M H g 83 + B b, JHi" 6W] da =
—0 —A a—AB
= - ”{[(N °‘ 8)||B PO L
M
=aB - aB__ =a=AB - -
+ [M HGB +b g (N bM )] 6w} dA +
—af =-a=AB, .- =oB = _~aB. .= 1= -
+ I[(N - bAM )Gua‘r M ILIGw M Gmh]vsds
C

As the virtual displacement field GE is arbitrary within M, for the

surface forces E such that

-a- -
= +
p ac p

(5.2.2)

-7

1o

the surface integrals in (5.2.1) and (5.1.3) give us the following Eulerian
equations of equilibrium

aB

P -5 M"B)H MS||

(5.2.3)

I
(@)

BB+ Byp “B bg‘mm) +B

to be satisfied within an arbitrary internal region of the surface M.

An equivallent form of the Eulerian equiblibrium equations, written in

terms of n°P and i°%, [6], follows from (5.1.12) and (5.2.3):

[..(!8 ; (—b-ABﬁuA Q—AB)]” a AB” =0
(5.2.4)
5P| . +B 7+ B =0

af
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Let us define the vectors

=B _ =-aB =B~ =8 _ = =aB-A
N" =0 a, +Q0n , M = EaAM a (5.2.5)
where '
8 = §*8- B%P = 2%y L B - BE (5.2.6)
A
-8 _ —aB _ =0B
Q¥ =mrf| =al (5.2.7)

It is easy to show that (5.2.3) and (5.2.4) are components, referred
to the deformed surface basis éu"ﬁ' of the following vector Eulerian

equilibrium equations
R, +p=0 (5.2.8)
~ B B ~ s &

Besides, we have the relation

=B =B _

M +a XN =0 5.2.9
which is an identity in the present theory. In the case of dynamics, when
rotary inertial forces are taken into account, or even in static case,
when we want to take into account some external surface moments, the
equation equivallent to (5.2.9) appears independently of (5.2.8) as a

local form of moment of mamentum or, in statics, the independent moment

equilibrium condition about an origin O in space, [11,23],

With the help of (5.2.5) and (5.2.1) the Eulerian virtual work principle

can be written in vector form

-II§B||B‘6EdK+JE 65- M°%5-6u )7 a5 =

M

(@]}

(5.2.10)

AR

= ”é-sgdm[(g-sg + K-6Q)ds
H c

where we have used the following transformation

- 785 . 5@
~ ~,0

=0f

- - =A - =
-M7'n. (BuAg |a+ Gwlwg)

= _ woB = A= o _ _ 5OB.~
M (Gw,a + baéux) M 6¢h (5.2.11)



- 85 -

But in terms of physical quantities at C

Gwh = va&pv + tasmt (5.2.12)
65 = 5“\,3 + 6ut£ + 6w5 (5.2.13)

where from (2.1.5), (1.5.8) and (1.5.9) we obtain

- -0, .- =A o
tht =t (Gw'a + baﬁu)‘)
4 (5.2.14)
== (Sw) + ctﬁut - Ttduv
Keeping only linear terms in (4.3.3) we have as well
&p\) = -68\) ‘ (5.2.15)

With the help of (5.2.14) and (5.2.15) we make the following trans-

formation of the last term in (5.2.1)

- |5*Bss 3 = ITM 60 -5 M &5 -
JM D) 28 ds = J[TtMthuv o M 68U,
C C
d ,- - da - - - - -
- M 60 ¢ = M )6+ MvvtSBv] ds =

(5.2.16)
I - E e R
= J[_dg (Mtvr\l-) Su + M\NGB\,] das +

+ ; [Mtv(si-i-o) - Mtv(si—o)]éw(si)

where the term outside the line integral describes Jump discontinuities

of Mt at corner points of C labelled by 5 = s; . 1i=1,2...N, Fig. 16.

Fig. 16
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If we put (5.2.16) into (5.2.1) or the left side of (5.2.10), the line

integral becomes

N
I(Ev .55+MW63\,) ds +Z; [Mtv(si+0)--Mtv(si—o)]6w(si) (5.2.17)
l=
C
where
P o= NPV, + 2 (M q)
~y ~ B ds tv~
- - - - (5.2.18)
=P V+P t+ n
v~ tv~ nv~
- =aB =0=AB, - = + =
va = (N bAM )va ] TtMtv
= - (moB _ -a=AB - - - =
Ptv = (N bAM )tavB °t £v (5.2.19)
- _ _aB - _d-.-
Pw™ M ”ave as Mev

The vector gv is called the effective internal force at the boundary

C.

Using (1.5.4), (1.5.8) to (1.5.10) and (1.5.15) we can express (5.2.19)

entirely in terms of physical quantities.

P =N -GM 4+ 2T.M
v va ovav 2TtMtv
Ptv = Ntv + TtMvv - zotMtv : (5.2.20)
= vV tv -
nv d§v ds Kt(MW Mtt)

af B8

In terms of physical components of n and - according to (5.1.12) we

would obtain

n
v \AY t tv

1 - -
tv - Pty Y3 (m -m_) (5.2,21)

Wl
]
+
|
al
1
w
Qft
“v
=]
ot
+
N[
-

'
<
<
ct
<
1
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In order to transform the line integral of EVW in (5.1.3) consider the

boundary forces and couples of the form

[» PN

FE=F 2y + Fn = va + FtE + Fn (5.2.22)
k=€ .K% =Ky +Kt (5.2.23)
~ Tal~ t~ i : *E.

We assume here K to have no component along 5, but take into account

"~

its component along 2. In most papers [4,7] the last one is assumed to be

zero as well,

With (5,2.23), (5.1.8) and (5.1.9) we obtain
- - - - _ - .- -
Ig -8, ds = IK 8 ds (5.2.24)
C C

This relation may be transformed in exactly the same way as in (5.2.16).

That for the line integral of EVW in (5.1.3) gives us

N
[(5- 85 + K 8B )dS + g[xt(sim)- K, (5, ~0)16W(5,)  (5.2.25)

C

where the effective external force at C is defined by

- - a - -
5 - E + a‘g (Ktﬂ)

- - - (5.2.26)

= v + n

Rvg + Rts Rng
Rv = Fv + rth
R, =F - okXK (5.2.27)
- - da -
FTn P TE

The term outside the line integral describes again the jump discontinuities

of iv at the corner points of C, Fig. 16.

It has been shown in § 4.3., that four scalar quantities u and Bv
define uniquely the deformed shell boundary surface 313; All line integrals

have been expressed here in terms of variations of these quantities. Thus
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for unspecified geometrical constraints of the shell boundary from (5.2.17)

and (5.2.25) we obtain the following Eulerian natural boundary conditicns

Mvv = Kv ‘ (5.2.28)

]
ot

ém|

to be satisfied at smooth parts of C and the concentrated force
{[M, (5, +0) - K (5, +O0)] - [M_ (5, - 0 - K (5, -0 ]IF(5,)) (5.2.29)

to be applied at each cormer of C.

These natural boundary conditions (5.2.28) and (5.2.29) are exact

under K - L constraints.

5.3. Relation to three~-dimensional stress state

The Eulerian stress and couple resultant tensors ﬁaB and ﬁaB has been

introduced in (5.1.3) by definition, as coefficients of strain measures
in the invariant internal virtual work. Let us relate them now to the

unknown stress distribution in a shell.

Let C be an arbitrary smooth curve at the deformed surface M. According
to K - L constraints, the curve C generates the cross-section surface 3P,

which is orthogonal to M, Fig. 17.

Fig. 17
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Let S be the length paramenter of the curve C and v, E, n form the
~ A~ o~
triad of orthonormal vectors associated with the point M. Let us define
the second curve C*, as the intersection of the surface 3P and the

* and with the orthonormal

surface § = const, with the length parameter s
triad‘i*hg*,‘ﬁ* = 5 = §3. Recalling that, according to (3.1.1) to (3.1.4),

for the normal coordinate system

) .
-k _ TR _ cRpoo. O
=" t g =t 'pga t a
o* = 5*%5% = v%ivaP - 5 3P (5.3.1)

we obtain

-0 ~0=¥p - =P—*

= ' = .3.2
t uwt Vg _qu‘p (5 )

from which it follows that

™ as* = 6‘;’{“ as (5.3.3)
Gz as* - 65‘& v, 48 (5.3.4)
- - -
ds” = puds (5.3.5)
an* = as*ar = 7dsar (5.3.6)

-k
The Cauchy s8tress vector, acting across a surface element dA with

%
the unit normal ¥, is given [4,19] by

- - % —ilp_ - -(pj -k
T % =Ty =T V. =T "V g,

i e =3hace (5.3.7)

T 2‘0V¢+T B\)w

"

where i’= iiiii ® ij is the symmetric Cauchy stress tensor at the
]

point P € 3P,

With respect ot an arbitrary point O in space, an action of the stress

vector 2(2* is statically equivallent to an action of the Eulemtan resul-

)

tant force and couple vectors N, -y, and M -
f P -N(x*) ~(‘¥*)

per unit length of the curve C, defined by

, each acting on and measured
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- - _ = — ,
Ig(z)ds = JI'(S’,*)dA (5.3.8)
C aP

- - - = _ - T o -
J('g x E(S’.) + ’13(2)) ds J(g X 3('2*))dA (5.3.9)
C P

Using (4.1.3) and (5.3.8) we have

M - s = n T - . .1
I'!"(,‘.’,)ds tn x z(v*) da (5.3.10)
C aP
Introducing (5.3.7) into (5.3.8) and (5.3.10) and using (5.3.6) and

(5.3.4), after integration with respect to [, we obtain

N._ds= [Ny as, |M,_.as = M5 as ' (5.3.11)
~(V) ~ a ~(V) ~ «
¢ C C C
where
-0 +0% , 5= 7% (5.3.12)
h/2
o*8 = |m*T™st ag
| A
-h/2
h/r2
78 = [%TWsB rac (5.3.13)
Je U] .
-n/2
h/2
3 - Jﬁ'fw’és-dc
¥
-h/2

Let us assume further that the middle surface load E defined in (5.2.2)
is a resultant of the external forces, acted on the upper and lower surfaces
of deformed shell, and the body forces in deformed shell space, resultant
surface moment due to these forces being neglected. Then the global force
and moment equilibrium conditions about the origin O of any part of the

shell, cut out by a closed contour C; take the form
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\_’B ds + Jﬁdi =0 (5.3.14)
(£ x N +m)vd§+JEXEdi=g (5.3.15)

By using Stockes theorem, these global equilibrium conditions can be

put in the following local vector form

ﬁB

Nllg+g=2 |

EB“B +§‘B y ﬁe -0 (5.3.16)
or in components along deformed basis éﬁ, n

*Flly- Bjg" + 5= 0

58”8 +Ba8§“8 t5=0 (5.3.17)

§°B|IB- g* =0 . (5.3.18)

EBu(ﬁas + BIRP) = o | (5.3.19)
Let us eliminate O from (5.3.17) by using (5.3.18) to obtain

Bllg- BR g + B =0

(5.3.20) .

=af = =aBf - _
R “Ba+ byg *+B=0

The symmetry condition (5.3.19) can be satisfied by introducing the

following new variables

8 = 5% 4 B3RP = 9P L L IR 4 BER
A
- - - (5.3.21)
08 - g(aB) | zlaBl ‘
It is easy to see that (5.3.19) now becomes
e <o (5.3.22)

Ba
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-0 .
what means that S B are components of a symmetric surface tensor.

Using (5.3.21) and (5.3.22) the equilibriwn equations take now the form

(5% - 5RO - BROE |+ 5% = 0

A A
(5.3.23) -
=(aB) = =af =a=(AB) |-
R + - b.R + =
“lgg* Pypts AR ) +B=0
Note that these equations do contain only symmetric quantities §GB
— -1
and R(aB). In particular, the antisymmetric part of moments R[ Bl has
been eliminated. In fact, under K - L constraints R[QB]are quantities
of higher order. If we assume §[GB] = O then under the following
substitution '
78 & 5B , %8 & g (*B) (5.3.24)

the equilibrium equations (5.3.23) become exactly the same in form as
those derived in (5.2.3) from virtual work principle, and the-vectors
(5.3.12) become exactiy the same as those defined by (5.2.5). The

relations (5.3.24) give us the physical interpretation of the surface

-0 -af

tensor components N~ and M~ and their relation to a three-dimensional

stress state in the shell.

5.4. Lagrangean quantities

Usually only the reference (undeformed) configuration is known in
advance. It is desirable then to use those quantities which are defined
'in and/or referred to the known geometry of the reference middle surface .

M. Such shell quantities will be called Lagrangean.

Let us recall first,that according to (3.4.4) (2.5.11) and (2.5.12)

we have the following transformation rules

i =8, + Dn=¢6n . (5.4.1)

(ngs)llB - J%VB|B (5.4.2)
a , B _ el @ 0B -aK _ Ay

(J.é T )IIB = Ja [T lB+a 251, Yl T ] (5.4.3)

These hold for any surface vector Y € V and any symmetric surface tensor
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TE T2, which components with respect to the reference and deformed

configurations transform according to (2.2.5).

The transformation rule for an arc differential have been already

obtained in (4.5.5) to be

ds = v1 +ZYtt ds (5.4.4)

and transformation formula for a surface differential can be obtained

as follows

- - 1 - 2, = 1.2
n (glde x gzde ) = Elzde de

Jie aslaps? = \E‘:dz\
a 12 a

Multiplying (4.1.4) and (4.1.5) by ds and using (5.4.4) the following

o7
>
§

(5.4.5)

transformation rules can be obtained as well

- - ,5' '
veds 3 des (5.4.6)

a (]

ths = (6B + 278)tads (5.4.7)
=B = _ l’g' B Bu A, a

v ds = 3 (Ga + 2€aA€ Yu)v ds (5.4.8)
ttas = tPas . (5.4.9)

Note the simplicity of (5.4.6) and (5.4.9).

Consider an arbitrary smooth curve C at the middle surface M generating
a normal surface 3P. Let us introduce the Piola-Kirchhoff stress vector
acting at a point P € 3P across a surface elementciA*with the unit
G*) defined

%)

normal 2f, Fig. 18, and related to the Cauchy stress vector i
in (5.3.7) by the relation

=T 5% aR ' (5.4.10)

where

an* = Jg- an* (5.4.11)
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Fig. 18

The stress vector T u*)
Piola-Kirchhoff stress temsors T and S, respectively, by the following

defines at P € 3P the first and the second

relations [19]

- * *
E(v*) T v FSv (5.4.12)
where

5, o8 A1 T
T T . ® g. T(F 5.4.13
: L9 93 g ( ) ( )

_ oid _ ’gf -1- -1.T
S=8 . 8 = F T 5.4.14
~ ,.g,l ng,j g ~(~ ) ( )

If we now use (5.4.10) to (5.3.8) and (5.3.10) then it is easily seen
that it is possible to define the Lagrangean resultant force and couple

vectors E(v) and 5(v)' each measured per unit length of C, such that
N, .ds = |7, +.aa*= NPy as (5.4.15)
~(v) ~(v') ~e R T
C aP c
|m, as = A x T, x.dA¥ = cuby_ ds (5.4.1€)
~(v) ~  ~() ~~ B
C 14 C

It follows now from (5.3.11), (5.4.1), (5.4.3) and (5.4.6) that

QB = -E-GNB R ' E{‘B = @ (Q-I)TEB (5.4.17)

a "~~~
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and ,
B _ .aB 8 B _,Ja aB_A :
N =03 +Qn ., M =y37 EaAM a (5.4.18)
QaB = n*B —'BzMKB
(5.4.19)
g8 _ ,aB Bk _ Au
Q" =M |la+ a (ZYKAIu Yeu (A M
The Lagrangean stress and couple resultant tensors defined by
N = N“Ba ® a ' M= MaBa ® a {5.4.20)

are connected with the Eulerian tensors (5.1.2) by the transformation
formulae

N=y2g'mehHT , R=yZang' (5.4.21)
w=VEREHT . f- yEend (5.4.22)

which follow from (5.4.17) and (5.4.1).

It is easy to recognize the same structure of transformations
relating N, M to E, lz and the one relating S to z in continuum mechanics
(5.4.14) . The Lagrangean tensors N and M form a two-dimensional analogue
of the second Piola-Kirchhoff stress tensor and may be called the second

Piola-Kirchhoff stress and couple resultant tensors, respectively.

It follows from (5.1.2), (5.4.20) and (5.4.21), (5.4.22) that the
components of the Eulerian and Lagrangean tensors in convected coordinate
system are connected as follows

§oB - B, iR . \/% u>P (5.4.23)

i)

Despite the simple relations (5.4.23) the components appearing at both

sides of (5.4.23) are referred to different tensor bases éﬂ ® a, and

f
a, 2] 23' respectively. In many papers,written entirely in component
notation with respect to convected coordinate system,this important
gecmetrical difference between the Lagrangean and Eulerian tensors

do not appear at all,which occasionally cause some confusions.

All formulae may be rewritten in terms of stress resultants and stress

a
couples n B and maB, related to those introduced in (5.1.12) by
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0B _ @naﬁ . w0 ‘I.f. m®F (5.4.24)
a a

Then (5.4.19) takes the form

al _ aB .1 =B al _=a AB
Q" =n" +3 (bxm bxm )
: (5.4.25)
B _ 0B =Bk - Au
Q" =m lu + a (2YK>‘Iu qulx)m

and other relations become obvious as well.

5.5. Lagrangean shell equations

Let p be the surface force measured per unit area of the reference
middle surface. With the help of (5.4.17) and (5.4.2) we obtain from (5.2.10)
and (5.2.8) the following Lagrangean equilibrium equations written in

vector form

ex +p=0 (5.5.1)

and while identity (5.2.9) becomes

M + G XGN =0 5.5.2
Keeping in mind that
o
p=pa +pn =
~ ~ (5.5.3)

the component form of the Lagrangean equilibrium equations with

respect to the reference basis 2y B follows from (5.5.1) to be

(l?AQ)‘B+naQB) !B - bg((pAQAB +nf) +p =0
(5.5.4)
AB 8 o AR a B -
©,@"" + ng") g - B, (17,0"" + 0% +p =0

The latter result has been obtained by the author in [10,11].

Note that the Lagrangean equilibrium equations (5.5.4) contain only‘
the quantities defined in an referred to the known geometry of the
reference surface. The covariant differentiation is carried out with

respect to the known geometry. Hence, these equations may be used directly
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for numerical computation even at this stage of generality. However,

the Lagrangean equations (5.5.4) are much more complicated than the
Eulerian ones (5.2.3), as components of the surface deformation gradient
tensor G appear explicitly in (5.5.4). That is in complete analogy to
equations of equilibrium [19] of continuum mechanics when the second
Piola-Kirchhoff stress tensor is used. Because of the appearence of the
non-linear displacement functions I?A’ ¢k, n®, n in (5.5.4), the
Lagrangean equilibrium equations can be solved, in general case, only

in terms of displacements uyr W

In order to derive Lagrangean natural boundary conditions, let us use
the transformation rules (5.4.1) to (5.4.9) and rewrite the Eulerian
virtual work principle (5.1.3) entirely in terms of Lagrangean quanti-

ties.

We note first, that (5.2.10) can easily be transformed to

-”(.ezssﬂs tdgda + J(.QEB- sg - M¥gn- oy Jvpas =
M C ‘
(5.5.5)
= “B-G‘g‘dh + I(g-ég +5-th)ds
M C
where now [10,11,12]
Su = Guagu + éwn ' (5.5.6)
_ _ 1 a —o) =By
th = 82 GYGB( T3ov +2Ytt 3 2 € vkvu)g,g (5.5.7)
1l 1T o a .of
62,'3[(5 ) a x65' + 56 G nx (Gg'ax'gss)] (5.5.8)

The Lagrangean boundary force F and couple K, per unit length of the
boundary C, are related to E and E given in (5.2.22) and (5.2.23) by

. = + | F = a .
E=1 2Ytt'£ Fa +Fn (5.5.9)
K=/T+27_ K = ealx“g}‘ +Kn (5.5.10)

In these relations we have used the following abbreviated notation

A ) :
L&h-fgﬁ »8n =na +nn (5.5.11)

£ 3

=)
~0
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The variations of the Lagrangean strain measures Y and K follow from

(3.2.11), (2.2.4) and (2.2.23) to be

1A py
8¥,g = 3 (1 8L, g+10 01, + © 80, + ©.80)

1 1 (5.5.12)
=20(Ca, " S3p) =7 (88, "S3,* 3, " %8 ¢
6Kk _ = -néd -d 6n - n}‘Sd - dA én
af af af AaB ‘aBf A (5.5.13)
- _ -KA .
= -slga,) g 8nl = -(8uy 0 - & vy 00 ) -Gn

Now with the help of (5.5.6) to (5.5.13) the virtual work principle
(5.1.3) can be rewritten entirely in the Lagrangean form [10,11]

aB af -
”(N GYGB + M GKaB) da
M

= “B GBdA + [(5-63 + K- 6£t)ds
M C

(5.5.14)

From (5.5.14) follow the Lagrangean equations of equilibrium (5.5.1) or
(5.5.4) and the appropriate natural boundary conditions (see [10,11]),

expressed entirely in terms of the Lagrangean quantities.

5.6, Modified equilibrium equations

The Eulerian equilibrium equations, written in component form (5.2.3)
along deformed basis 'éa' é, can be expressed entirely in terms of the

Lagrangean quantities.

According to (5.2.6), (5.2.7), (5.4.19), (5.4.21) and (5.4.23) we

obtain the following relations

o =J§TQ“B , o =\,§QB (5.6.1)

Using transformation rules for covariant differentiation (5.4.2) and

(5.4.3), the equilibrium equations (5.2.3) become

aB =0K AB _ ro B a-a _
o) |B + &Y 00 beQ” + Y7 P o} (5.6.2)
ofl. +5 o+ 42p=0 (5.6.3)
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or in terms of NaB and MaB
aB o kB, —aK AB _ =A uB
(N bKM )|B + a YKAB(N bM ")
(5.6.4)
_ 30, AB —Bk Aup "é_a _
bB(M |A + a YKAuM ) + 2P = o
af Bk Ay _r af _ =a KB a.-. _
M |as+ (@Y, M )|B byg ™ bM )+Jap =0 (5.6.5)

—0K a

where (2.3.5) should be used for a =, (2.2.1) for BaB' (2.2.7) for

and (2.3.4) for Yeru This mixed equilibrium equations, obtained

originally in terms of n(’"B and maB by DANIELSON [27], are expressed

a

entirely in terms of the Lagrangean quantities. Moreover, when the

B B

. . . a af |
constitutive equations are used to express N and M in terms of YaB

and KaB, we obtain these equilibrium equations expressed entirely in

terms of strain measures YaB and KaB. Assuming that the boundary conditions
are expressible in terms of strains only, this form of the equilibrium
equations, together with the compatibility conditions (2.3.11), allow

us to solve the shell problems directly in terms of strains. When the
displacement field u is needed as well, it can be obtained by additional
independent integration of the strain-displacement relations (2.2.4) and

(2.2.14).

The‘equations (5.6.4) and (5.6.5) may be used to obtain still another
form of the Lagrangean equilibriwm equationg. Remembering that (5.6.2)
and (5.6.3) are component forms of (5.2.8), let us transform in (5.2.8)

the basis éa"ﬁ as well according to (2.1.4) and (2.2.8) to obtain

a , AR Ak ug _ A B
l.A(Q ~[B + a YKHBQ bBQ ) +

o8 AB, . & _
+n Q7|5+ b0 +p =0

(5.6.6)

BI =A A B

A K g =
WA(Q 8 + a YKuBQ bBQ ) +

8 AB
+ +b + p=
n(Q" | + b0 +p=0
These equations (5.6.6) derived originally in [12] are equivallent to
those of (5.5.4), but (5.6.6) do not contain the covariant derivatives

of deformation gradient tensor components.



According to the polar decomposition of G, the transformation formulae

(5.4.21) and (5.4.22) can be presented in the form

- v - v

= @RNRT , M= ‘,-f- RMR (5.6.7)

a~~~ ~ a~~~
v
B=ung = v e}
(5.6.8)

v Vi
M=umy = MBY e ¥
~ ~ o~ ~O NB

Let us introduce the vector resultant with respect to the intermediate

.V
basis a , n by
~a~

¥ -unf - 2R -

- Qaﬁéa B

(5.6.9)

In terms of (5.6.9) the Lagrangean equilibrium equations (5.5.1) become

B

v
BN ) [g+p=2 | (5.6.10)
where
VB _ VB VB 1 VB ’ .
RN =N +@x N+ oogrg 8% @x N (5.6.11)

The component form of (5.6.10) with respect to éu' D can be written by

means of the quantities

(5.6.12)

where (3.7.10) to (3.7.12) and (3.7.6) should be used to express these
scalar products in terms of finite rotations. Then, using (3.8.7) and

(3.8.5), after transformation we obtain [12]

af ~ap , A VA .V kB _
T Iﬁ + a (Gu + YM)YAKIBT
_ ,5 au B . VB, A K ’gf aB Mo, VM, K _
3 € EAB(GU + Yu)bKT + 3 € €Ku(6B + YB)p =0 (5.6.13)
8 A VA of _
T|B+(sa+ya)bm'r +p=0
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Another equivallent representation of (5.6.10) along '\éa may be obtained
with the help of (5.6.2) and (5.6.3), together with (3.7.10) and (3.7.11),
or (3.5.9), (2.1.4) and (2.2.8) which leads to

B =-x_B

- a,, KBi. ., -xp A
G, -2 g+a Y262 baQ) +

(5.6.14)

+ G5 @, + B0 +y2 € (6 + Ypt = 0

~

while the component of (5.6.10) along n is the same as the second of

(5.6.6) . This representation has been noted in [12].

5.7. Constitutive equations of elastic shells

The system of equations of the non-linear theory of shells is not
yet complete. Two shells with the same geometxry and boundary conditions,
under the same external loading may behave in different manner, because
they are composed of different materials. Here we discuss some features
of the two-dimensional constitutive equations for an elastie shell subject

to K- 1L constraints.

Let o(E) be a three-dimensional strain energy function (elastic
potential) of the homogeneous elastic solid measured per unit volume
of the undeformed shell configuration. It has been shown in [19,28]
that for such a material the reduced form of the Lagrangean constitutive
equation is ,
30 (E)
oE

~

(5.7.1)

§‘=

The explicit form of ¢ ('g) depends upon the assumed material symmetry
conditions. If, for example, the solid is supposed to be Zsotropic, then
O0(E) is an isotropic tensor function which, according to the representation

theorem [19,28], has the form

g = a(IE, IIE, IIIE) (5.7.2)

~o ~ "~

where the principal invariants of EE L2 are defined by
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i

IE=trg = E;
=2 tere)? - erg?1 = Lt ? - gled
E 2 ~ ~ 2 i ji
. (5.7.3)
IIIE=det§ = lEjI =

-é—[(trg)3- 3tr52trg + 2tr53]

Let us define a two-dimensional shell strain energdy function, measured

per unit area of the undeformed shell middle surface, by the following

relation.
”ZdA = I”odA (5.7.4)
M P
from which h/2
I = Iuodt; (5.7.5)
~h/2

Under K - L constraintslg is expressible in terms of two shell strain
measures Y and ¥ and normal coordinate [, according to (3.2.10) and (3.2.12),
and ¥ = u(g), as has been shown in (3.1.2). Thus performing the integration

in (5.7.5) we obtain I = z(Ya ). As the work done by internal stress and

K
B’ "aB
couple resultants on virtual changes of strain measures should come from the

virtual change of the shell strain energy, we obtain

_ af aB
JIGZ da = JI(N GYO.B + M GKaB) da (5.7.6)
M M
However .
9z oL
6L = Sy + Sk (5.7.7)
ayaB aB axaB aB

Moreover, the stresses and strains are symmetric. Therefore we obtain from

(5.7.6) the following Lagrangean constitutive equations for an elastic shell

aB _ 1 oL 9L ap _ 1 ) 9L
N = 5 ( + ) , M 5 ( I -t )} (5.7.8)

aYuB aYBa af fa



- 103 -

The explicit form of (5.7.8) for an i8otropic elastic shell under K — L
constraints would follow directly from (5.7.5) with (5.7.2), (5.7.3),
(3.2.10), (3.2.14) and (3.1.2).
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Chapter 6

SHELL EQUATIONS UNDER SMALL ELASTIC STRAINS

The various shell relations discussed in chapters 2 to 5 have a purely
geometrical character. They are exact under K - L constraints,are valid
for unrestricted strains and rotations, and do not depend upon the shell
material properties. We do not know, however,about the influence of K - L
constraints on the unknown three-dimensional stresses and strains in a

shell space.

In this chapter we shall discuss possible simplifications of the shell
equations in the case of a thin shell composed of an isotropic elastic
material. Here the strains are assumed to be small everywhere in the
shell. The K - L constraints are initially rejected here. Series expansion
technique combined with a priori estimates of stresses obtained by JOHN
[31] make it possible to show that, within an error of the first approxi-
mation, the state of stress in the shell is approximately plane and
parallel to the shell middle surface [32]. The change in shell thickness
during deformation happens to be of primary importance in this case.
However, the shell thickness changes may easily be taken into account only
by proper modification of the approximate constitutive equations. Thus
the exact results of chapters 2 to 5 may still serve here as a basis for

various simplified shell relations.

We begin here by recalling the form of three-dimensional strain energy
function of a linear elastic material. The displacements and strains are
expanded into series with respect to the normal coordinate which also give
the series form for the shell strain energy function. The order of magnitude
of all terms in the strain energy function are then estimated for a thin
shell under the assumption of small strains. The consistent first and second
approximations to the shell strain energy are constructed, and the appro-
ximate constitutive equations of the first approximation theory of shells
are derived. The consistently reduced canonical form of intrinsic shell
eugations is derived, and simplified sets of shell equations valid for

membrane, bending or inextensional bending shell problems are given.
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6.1. Strain energy of a linear elastic material

For a non-linear elastic material the three-dimensional strain energy

function 6(E) can be expanded into Taylor series

1 1

0=0(Q) +K-E+37L-(E®E) +3T M- (E®E®E) + ... (6.1.1)
where

30 (E)

X=7E ,E =0
32q(E)

b g (6.1.2)
330 (E)

M=

~ "~ 3E BE 3E |§.=9,

The structure of the elasticity tensors K € L2,‘£'€ L,y M€ L for an

isotropic material have been discussed in [29,30].

Let us assume that the reference shell configuration is free from

A
internal stresses and the strain energy becomes zero in this configuration.

Then

6(Q =0 , K=0 (6.1.3)
For many engineering materials, such as steel or aluminium, the higher-
order elastic constants appearing in M are quite small. The yield strains
for such materials are also very small. That makes the experimental deter-
mination of these constants virtually impossible and hardly necessary.
However, these constants may be a factor in problems of shells composed
of man-made (rubber-like) materials or in shell problems arising in
biomechanics. Since we are interested here primarily in shell problems
arising in engineering, it is reasonable to discuss only the linear elastic
materials for which higher-order elasticities vanish by definition. In this

case the strain energy function becomes

o1 ijkl _ '
o] 2L EijEkl _ (6.1.4)

where the elasticity tensor has the following symmetry conditions

piIkl | p3ikl 431k klid (6.1.5)
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In normal coordinates of the reference shell configuration, the relation

(6.1.4) takes the form

o =t @

@33
EWEGO + 2L EWE33 +
3y30 3333

133‘;,123(J + L E33E33)

(6.1.6)
+ 4L

and the constitutive equations (5.7.1) may be expanded into
W _ oo wPp33
S =L Ee0 + L E33

3y _ _3¢3c 3963
s =1L E3U + L Ee3 (6.1.7)

33 3360 3333
S =L Eec + L 233

When the material is homogeneous and isotropic, the elasticity tensor

can be expressed only by means of two elastic constants

piikl o 1 kg3l

i 2v__ _ij k1l
= 3% 9 +gilgdk + 1052 g1g"h (6.1.8)

where E and v are the Young's modulus and the Poisson's ratio respectively.

6.2. Series expansions

Let X : P + P be a deformation function of the shell regarded as a three-
dimensional body, P = x{P), X = K o K-l. Under a general deformation, the
material fibres which have been straight and normal to the reference surface

M may become neither straight nor normal to the surface M= x M), Fig. 19

Fig. 19
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The spatial displacement vector v = v(P) defined in (3.2.1) can be

expanded into series with respect to r [12,25] to obtain

v=u+ C,?, +ou. (6.2.1)

where, for thin shells, only the linear part of this expansion is indicated

here. In the relation (6.2.1) the vector B has the form

~

B = ( —1)n=53-n=e°‘a + Bn (6.2.2)
~ '~ ~ ~ ~, ~ ~0L ~
where
. - Q -
g—g(P)P=M—2‘u®3 +33@)3 . (6.2.3)
The vector 53 = 53 (M) defined by

is tangent at the surface M to this deformed material fibre . which before
deformation has been normal to M. It is obvious that, in general, vector
53 may be neither unit nor normal to M.

The shell deformation gradient tensor G € L2 defined by (6.2.3) describes

exactly the deformation of the neighbourhood of the shell middle surface.

It follows fraom (6.2.1) to (6.2.4) that, when Kirchhoff-Love constraints
are not used, deformation of the neighbourhood of the shell middle surface

depends upon two tndependent displacement parameters u and 8.

For the components of Green strain tensor E defined by (3.2.8) we obtain

the following expansions [12]

E (P)='1§'(§ .

o 903y "8 3y = |

a_B 1 2 '

chyw[YaB L5 kgt Kg ) LAY g+ eeel

1. |
Eyp(P =3 @3°9,~-n-g,) = (6.2.5)

L]

1 - -
33 =7 @3°93 -8 = V33 % -
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Here the components of the shell strain measures are defined by

= Al.l
ZYaB th + wBu +a ¢ka“hs + wth
2 = + = + Y, - bA - bA +
KeaB) = %aB * %a = Yag T YBa T Pa®rg T Pg%a

AT

Au _ A _ A

ZvaB a ¢Aawu8 bawAB bBwAa + waws (6.2.6)
2y, =@ +8 +avte g +¢8

3a a a Aa o

=y -p Au
Kig = Vg ~ P8y + 2 wlasu * 9,8
2y.. =28 + a'"p. B + g2
33 ATy
where qu and wh are given in (2.1.5) and

A A A _ A
Vg = B[, - BB s Yy =B o *DyB) (6.2.7)

The strain measures X K and Vv appearing in (6.2.5) differ from those
defined by (3.2.11) because here we do not impose the K - L constraints.
Still in § 6.2 and § 6.3 we keep the same symbols for these generalized
measures and show that within the first approximation they can be approxi-

mated by the measures used in (3.2.11).

Let us recall that in the normal coordinates we have, according to

(3.1.2) and (3.1.3), the following expansions

o™ = 6%6% 2™ 4 2057 & 3p20 N 4 L)

(6.2.8)
u=1-2CH + 2K

This allows us to express the components of elasticity tensor in series

form as well

Lijkl = + ..0) (6.2.9)

In particular, for an igotropic material from (6.1.8) and (6.2.8) we obtain
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LzBAu - 2(1E~:w) (aaAaBu + aauaBA + l_fxz)_vaaealu)
S T [2a™ b + p™aP) 4+ 2¢a®pB & s 4

+ 1—:’-‘2’—\, (@Bt & b8 ©

(6.2.10)

LgBA” = ET%IGT [(3a“AbEbK“ e S 3bszAaBu) +

+ (3a““b5b“* + 4B 4 3b:bK“aBA) +

+ T%%; (3a“8b2bK“ + ap®BpM BbgbKBaAu)]
15 - ST iy 2
L3833 o o T 2 (6.2.11)
17 = Tiw T e
L e T o
AL 57%137 21BH (6.2.12)
1" ity o

It follows now fram (6.1.4), (6.2.5) and (6.2.9) that the three-
dimensional strain energy function can be expressed as well in series

form

o=a, + gol + ;202 + ... (6.2.14)

where oo,_01 and o, are expressible in terms of the quantities defined

at the middle surface M by the relations [12]
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383u
o YagYap Y Yo YupY33 o Yag¥au*
(6.2.15)

_ 1 _aBAp af33
1 5% Yagfow *Z7Y Yap"amtPo Kiep)¥3s t
(6.2.16)

oB33 i 2L3B3u + 2L383\1

Ly YegY33 o Y383y 1 Y3gY¥3y

+ -;- e + OB

aBAu K K +
o (aB)* (An) 1 Yag“ ()

0, = Lo Yqulu

afAu + LaB33v y + LaB33K(aB)Y33 +

1
+ E'LZ YaBYAu o) af'33 1

(6.2.17)

af33

383 3B3u
L2 YaBY33 + + 2L

o F3g%3u 1 Y3gFa,

+

1
—2-L

3B83u

2L, "Y3gY3,

+

In the case of an Zsotropic material the formulae (6.2.10) to (6.2.13)
should be used in (6.2.15) to (6.2.17).

6.3. Approximate shell strain energy function

The constitutive equations (5.7.8) of an elastic shell have been expressed

by means of a shell strain energy function defined by (5.7.5).

Let us now introduce the expansions (6.2.14) and (6.2.8) into (5.7.5) and
perform the integration. As a result the following explicit formula for
the shell strain energy function can be obtained

’ 2
h
L= h[oo + 13 (0, - 2Ho, + Ko ) +

h (6.3.1)
+ 35 (0, - 2Ho'3 + Ko,) + vedl

80
It is seen that I is an tnfinite series with respect to the shell
thickness h. In what follows we estimate the order of magnitude of all

terms in (6.3.1) under the following assumptions:
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a) The shell is thin, h/R << 1, where R is the smallest principal
radius of curvature of the undeformed shell middle surface M.

b) The shell deformation is such that (h/L)2 << 1, where L is

the smallest wavelength of deformation pattern at the surface
M.

c) The strains are small everywhere in the shell, max EEI =n<<1,
where Er are three eigenvalues of the Greeh strain tensor E

of the shell.

Let the surface coordinate system be chosen in such a way that for
the various components of metric and curvature tensors the following

estimates are satisfied.

a ~a®®=0(1) , b ~b*Bap®

B B 8 ) (6.3.2)

Here ~ means "is of the same order as" and O( ) means "of the order of".

The exact estimates of the stresses and their deriva-
tivés in an interior domain of a thiﬁ isotropic elastic shell under small
strains have been discussed by JOHN [31]. He applied the standard energy
integral method to the non-linear elliptic partial differential equations
describing the behaviour of a thin three-dimensional body, subjected to
the forces applied only at its lateral boundaries, and obtained the

following a priori estimates for all stress components:

o3 33

s™ = oEn = 0(En8) , S>> = O(En82?) (6.3.3)

The small parameter 6 expresses the common measure of “"smallness" of
various quantities introduced in the assumptions a), b) and ¢) and has
the form [31, 9, 19]

8 = max ( ‘kl ' 'tl l\/‘tl ’ /7?) (6.3.4)
L R ‘ .
Here d is the distance of the point P € P under consideration from the

shell lateral boundary 3P.

The estiamtes (6.3.3) still remain unchanged [12] if we admit some
smooth distributed loading, applied at the upper and/or the lower boundary

of the shell space, which gives the resultant surface force

p* = O(En® ) , p = O(Ene2?) (6.3.5)
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For the bending theory of shells the strains in a shell space caused
by stretching and bending are of comparable order of magnitude. Thus it
follows from (6.1.7) and (6.3.3) that

=0(n) ~ hl<3B = 0(nd) (6.3.6)

Yag ™ P¥ (aB) Y38

From (3.2.14), with the help of (6.3.6), (1.1.22) and (1.1.23), we obtain

2. 2
h®v, g = 0(v6°) , (6.3.7)

and the third of (6.1.7), together with (6.3.3), (6.3.6), (6.2.11) and
(6.2.13), gives us as well
2 ;
Y33 = = T Vi *+ 0(ne%) = o(vm) (6.3.8)
Note that the transverse strains Y33+ which describe change of the shell

thickness'during deformation, happen to be quite large although the

33
corresponding transverse stresses S  are very small, (6.3.3).

By using the estimates (6.3.6) to (6.3.8), we may now estimate the

order of magnitude of the most important terms in (6.3.1).

According to (6.2.15) to (6.2.17), the formula (6.3.1) consists of
the 4 terms proportional to h, the 20 terms proportional to h3/12, an
unspecified amount of terms proportional to hs/BO. and an unspecified

amount of terms of the higher order.

The estimation of all terms proportional to h5/80 may be omitted at
once, since they are much smaller than the leading terms in (6.3.1).
Careful estimation of the remaining 24 terms shows [12] that there are
two léading terms O(Ehnz), one term O(thnz), one term O(szhnz) and
five terms O(Ehn294) or O ¥§-Ehn262). Thus, for the shell strain energy

function we obtain the following approximation

h _aBAp Ef_ : aB33 :
Ferghy Uegha Y 12 Fed) ) Y P YagYaa t
3
¢ B 3333 D el + (6.3.9)

2% Y33¥33T12 M1 Yag“ o tMe Y3gY3y

h2 h3_aBip

2.4
+ e K3BK3u) + L ) +O(Ehn"0 )

135 YGB(VMJ - 2Hk On)
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2

where the estimate %5 < 9 has been used.

The relation (6.3.9) is the consistent second approximation to

the shell strain energy function [12].

When a shell theory is based on (6.3.9), some additional higher-
order stress and couple resultants, corresponding to the strain measures
(6.2.6), should be introduced. In such shell theory the number of inde-
pendent equilibrium equations and geometrical or natural boundafy
conditions increase to six, since both u and B should be used as indepen-
dent displacemental variables. Such consistent second approximation
shell theory has been constructed in the author's thesis [12], where

all further details may be found.

Within the greater error the estimate for I becomes

h aBAu h? aB33
=3 Wagau ¥ 12 “@p) oy’ ¥ DY YogY¥3z *
(6.3.10)
¢ 53333 + o(Enn%e?)

2 "o Y33Y33

The two terms with Y33 here may be transformed with the help of (6.3.8)
and added to the first term to obtain

aBAy Qﬁ LaBAu

=h
L= T Y Y12 % e 0w

2 ) + o(Em%?)  (6.3.11)

where the modified elasticity temsor has the form

aBfAu - E aAaBu

oau_BA 2v aB Au
3(14v) (a a + — a a

H 1-v

+ a ) - (6.3.12)

The two elasticity tensors in (6.3.11) are not the same. The difference
between them follows from (6.3.12) and (6.2.10) to be .

aBAu aBAp _ _E . 22
H Yo T 2(1+v) (1-v) (1-2v) . (6.3.13)
It means thatsz using HGBAu in place of L aBAu in (6.3. 11) we would make

an error Of 53 Ehn ). This is always permissible provided = 73 < 0(6 ).

2
Moreover, as the shear strains Y3B do not appear explicitly in (6.3.11),

it is also convenient to express approximately K(aB) in terms of the

surface strain measures. Note that, according to (6.2.5), (6.3.6) and
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(6.3.8), the following estimate for the vector‘§3 may be used

3; = /142y, B [1+om®)] =
v K (6.3.14)
= -75v) Bl +ome)]
This allow us to obfain
K = l.(a -a +a,-a -2a -+n ,) =
(QB) T2 ~ ~3'B ~B ~3ra ~ ~IB
2
_ v _ K ne nce
=Kt T (baB Keg! Y« *OU R Th ) (6.3.15)
2
- yn o vno
= KQB + Of R ' h )

Here k are the components of the tensor of change of curvature of the

aB
shell middle surface defined in (2.2.1).

Introducing (6.3.13) and (6.3.15) into (6.3.11), we obtain the final
form of the consistent first approximation to the shell strain energy
function

2

_h _aBAu h* 2.2
L= 5 H (YaBYAu * 13 KQBKM) + O(Ehn"67) (6.3.16)

The result had been originally obtained by KOITER [32] with an additional
assumption that the state of stress in a shell in approximately plane |
and parallel to the middle surface. Here we have introduced only the assump-
tions a) to ¢) and then have taken into account the stress estimates (6.3.3),
which have been obtained in [31] under the same assumptions. Thus, within
the consistent first approximation to the strain energy, the state of
stress in a shell is really approximately plane, which results only from
the assumptions a) to c¢) and (6.3.5).

Note that the addition of terms of the type bﬁyke to the tensor KGB
in (6.3.16) do not affect the accuracy of the first approximation, [32].
Thus, according to (2.2.2), the relation

2

- h _aBip he 2.2 . ‘
z > H (YaBYAu + 13 paBpAu) + O(Ehn 687) (6.3.17)

is the consistent first approximation to the shell strain energy function

as well.
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‘The formula (6.3.16) expresses the known fact that, within the first
approximation, the small strain energy of a thin elastic shell depends
entirely upon the bending and stretching of its middle surface. The
out-of-surface effect caused by a change of the shell thiCkﬁess appears
in (6.3.16) only in the modified elasticity tensor HuBlu. This is the
main reason why the results obtained in chapters 2 to 5 may serve as an
adequate basis for deriving various approximate relations valid under

the assumptions a) to c).

6.4. Constitutive equations

The constitutive equations of an isotropic elastic shell under small

strains follow now from (5.7.8) and (6.3.16) to be

neb - H“B)‘"y}‘ + O(Ehng?)
u
=cla -\:)ymB + vaaBY;] + O(Ehnez)
(6.4.1)
MmB = H aBAuK + O(Ehznez)
Au
B af A

D [(1 -v)k* + va

KA] + O(Ehznez)

Here C and D are the tensile-compressional and the flexural rigidities

of the shell respectively, as defined by

Eh Eh3
C = =
T-v2 ¢ P T 1za99 (6.4.2)

In terms of the "best" variables the constitutive equations have

exactly the same form

n®® = cli - vy®® + va®y)1 + o(Enne®
| (6.4.3)
n*® = bl (1-v)p®® + vaaBp;] + (EhZne?)

which follows from (6.3.17).

Within the first approximation the constitutive equations (6.4.1) and
(6.4.3) for a shell are exactly the same as the ones used in classical thin
plate theory . They do not depend explicitly on the shell curvature, they
are free from coupling terms, and their symmetric st;ucture is also re-

markable.
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The constitutive equations (6.4.1) or (6.4.3) are linear in terms of

the strain measures and can be inverted to obtain

A 2
Yop-= AL(1 +VIN o - va N1 + 0(n6")

g A nez (6.4.4)
Kog = B[ (1 +\;)MmB - \)aaBMx] + O Y )
or
Yy,=al(1+v)n , - va nA] + o(nez)
oB af aB A
{(6.4.5)
=B[(1+vIm - va ml] + Of LT-‘2-2)
Pag = aB «B"A h
where
1 1 12 1
A=ER c(ivy ' B=EnZ " BD(1-v%) (6.4.6)

In the past 50 years many efforts have been made to derive "more exact"
constitutive equations of the first approximation by taking into account
various bending-stretching coupling terms. It is quite clear form (6.3.9)
that, if only some selected terms O(Ehnzez) are taken into account; the

B 8 cannot lead

resulting shell theory expressed only in terms of Na and Ma
to the more accurate results. The accuracy of the strain energy function
may be raised only when all terms O(Ehnzez) are taken into account. Thus
the shell theory may be improved only within the conéistent second
approximation to the strain energy, in which the strain energy caused

by components of shear'y38,change of normal due to shear'K3B,higﬁer-order
strain vaB and transverse strain Y33 are taken into account together
with the strain energy caused by coupling between tensile-compressional
and flexural strains. Then the formula (6.3.9) would provide us with the

B ana u®6 together with the consti-

improved constitutive equations for Na
tutive equations for some higher-order stress and couple resultants
corresponding to the additional strain measures [12], which should be

additionally introduced into the shell theory.

6.5. Reduced shell relations

Under the assumptions a) to c¢) many other shell relations discussed in

chapters 2 to 5 may be simplified as well.

Under small strains we can use the following estimates
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o |

=1 + 272 + O(nz) =1 + 0(n)

+ 2y

]

B = aaB B = aaB + 0(n) | (6.5.1)

aaB = a\mB - 2Yu8 + O(nz) = amB + O(n)

]
-3

I‘l.ctB A.aB+ O(T) v Tap = Tap * O3

aB eaB + o r €

Mmi
1]

-O.B = EQB + O(n)

where the parameter A, used here to estimate the surface derivatives, is

defined by [31, 9, 16]

~A=%=mM(Ld,6R ) (6.5.3)

3=

The components of strain#mB are quadratic polynomials (2.2.4) in
terms of displacements and their gradients. The components of change of

curvature « follow from (2.2.14), where

oB
_ oK o1 k2 1ok 2900 AL 2
n=1[1+ 6, +3 (8)) 5 eue'c + @ 11 Y, +0(n )] (6.5.4)
N _ - K A _ ’
n, = - 1+ °K’¢h + (eAu . ”xu’][l +0(m] (6.5.5)

should be used. Note that in (6.5.4) we need to take into account the

more accurate estimate for‘Fsz because the leading term ba of the pro-

a B

duct ndu is cancelled in (2.2.14) by the term —baB'

8

From (2.2.4) we obtain

A_ A1 A 1o 2 '
YA = e)‘ + 2 e].leA + 2 ‘p(p)\ + w (6.5-6)

It is evident from (2.2.14) and (6.5.4) to (6.5.6) that, under small strains,the

components of Ky become polynomials up to the fifth degree in displace-

8
ments ua, w and their gradients.

It follows from (3.5.7), (3.5.9) and (3.8.9) that for the quantities

associated with intermediate basis éu' h we obtain the estimates
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i =alt+oml, &=a1+o0m]

(6.5.7)
v 2 N n?
YaB_YaB"'O(n) P oas—ouB+O(R)

The reduced formula for the finite rotationvector g,follows from

(3.7.17), (6.5.5), (2.1.5) and (6.1.4) to be

_ (B K A _ _
20 = {€7 [2+6)0, -9 (6, -w )3, + 2em}1+0m] (6.5.8)

This relation is quadratic with respect to displacements and their
gradients.

In a similar way many other geometrical results may be simplified as
well [12]. In particular, by expanding the relations (4.7.7) to (4.7.10)
in series with respect to the strain measures at the boundary, we obtain
the following reduced components of the vector of change of boundary
curvature '

Kee ® Kee ¥ OV

kvt MK e + 2(0t - Ktt)th = T Voy (6.5.9)
dy dy
vt tt
knt N2 ds: dsv + ZKvat + Kt(va - Yt:t)

The simplified relations for physical compoments of the effective internal
force follow from the reduction of (5.2.20) to give ’

~ - +
P\’V NV\) UVMVV 2t tMt\’
. _ . ,
Pro M Ney * Ty ~ 2000 = ke Mgy (6.5.10)
dMVV th\’
o + + -
Pov ® 35, as " %My T M

The relations (6.5.9) and (6.5.10) differ from those derived within
the linear theory of shells by CHERNYKH [3] (in terms of different changes
of curvatures and stress resultants) by the underlined terms only, which

describe the boundary normal curvature changes during the shell deformation.
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6.6. Bending shell equations

When the small strains in shell space caused by stretching and bending
are of comparable order in the whole region, the error indicated in the
constitutive equations (6.4.1) allows to make essentional reduction of

equilibrium equations and caompatibility conditions.

Within the same order of error, we obtain for QuB and QB in (5.4.19)

o*f = N O(Ehz-g- , Ehn®)
| (6.6.1)
= C[(l-—v)YaB + vaasy;] + O(Ehnez)
B _ ,oB 23?
Q" =M | +O(EnT) (6.6.2)
_ 128 aB A 2n62
= p[(1 -v)k |a + va Kkla] + (En"5)

Using (6.3.2), (6.3.6), (6.5.1) and (6.5.2) for some terms in the
first of the compatibility conditions (2.3.11), we obtain the following

estimates
=KV _ L I n62
a b\Yyg = OlRY) = Olg;
2 2 (6.6.3)
7V = o(1) = o( ¥,
kA Y hA hA
and similarly for some terms in second of (2.3.11) we obtain
2
ky$ = o(3) = o1
) ) (6.6.4)
KV _ _ nd
YeauYugr = 0(3Z) = 0l57)

The compatibility conditions (2.3.11) can now be reduced to the form

B _ B _ . n62
kelg = Kglg = O3 (6.6.5)
Bje _ B _ .Ba _ .aB 1 Ba_ aB _ _ nb2
Yu'B YaIB (baocB baKB) + 3 (KaKB KaKB) = O(sz-) (6.6.6)

The equation (6.6.5) gives also the sharper estimate for QB to be

) :
QB = DK;IB + O(Eh? Bi—-) = o(rah2 %) B (6.6.7)
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Using the estimates (6.6.1) and (6.6.5), the mixed equilibrium equations.
(5.6.2) to (5.6.5) are reduced to

B8 - _ nod

NaIB + P, = O(Eh ——) (6.6.8)
aB a  a B . - _ 2 no? |

1:.<m|B *+ (bg - KN, + B = O(EW" T3z) (6.6.9)

If the shell problem is going to be solved in terms of the strain
measures YaB and KaB as independent variables, the constitutive equations
(6.4.1) may be used to express the equilibrium equations in terms of the

strain measures

B B - _ n62
cla -vyylg + vyl 1 + B, = o(Eh =)
(6.6.10)
a B @ _ @ — oy B BAT L = o 2 ng2
DacalB + c(bB KB)[(I VY, + vdaYA] + B = 0(Eh” )

The relations (6.6.10), together with (6.6.5) and (6.6.6), form a set
of six equations for six strain measures Yap and Koep O be solved. Four
of the equations are linear and two are quadratic in the strain measures.

The geometrical boundary conditions may be expressed in terms of the
strain measures through deformational variables’lst and Yepr where'(6.5.9)
should be used. To the natural boundary conditions, expressed by‘gv and
é%'mvv' we should apply (6.5.10) first. Then they can be rewritten in
terms of the strain measures by using the constitutive equations (6.4.1).
Thus, if the boundary conditions are expressible in terms of the strain
measures and the surface forces'g are given along the deformed -basis, the
geometrically nonlinear shell problem may be solved directly in térms of
strain measures without first having had to calculate displacements.
However, the displacement field may be calculated, if necessary, by
additional integration of the strain-displacements relations (2.2.4)

and (2.2.14), in which (6.5.4) to (6.5.6) should be used.

The geometrically non-linear bending shell problems may also be solved
in terms of displacements. The consistently reduced set of three displace-
ment equations follow easily from mixed equilibrium equations (6.6.10) by
introducing the reduced strain-displacement relations (2.2.4), (2.2.14)
and (6.5.4) to (6.5.6). Note that the first of (6.6.10) then‘becomes
quadratic in displacements and their gradients, while the last one
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contains displacement variables up to the seventh power.

If displacement and natural boundary conditions as well as the surface
forces are known with respect to the undefbnmed geometry, thé Lagrangean
equilibrium equations (5.5.4) or (5.6.6) should be consistently reduced
and expressed in terms of displacement variables. It is easy to see that,
by substituting either (6.6.1) and (6.6.7) into the (5.5.4) or (6.6.10),
(2.2.15) to (2.2.18) and (6.5.4) to (6.5.6) into (5.6.6.), we also obtain the
consistently reduced sets of three equations in terms of displacements
and their gradients. These equations are more complex than fhose following
from the mixed equations (6.6.10), since in this case the components of

the deformation gradient tensor appear explicitly in the equations.

6.7. Quasi-shallow shell equations

The simple structure of the relations (6.6.5) and (6.6.8) makes it
possible to present the solution of bending shell equations by means

of tWo scalar functions.

It is easy to see from (6.5.3) that here the wave length of

deformation patterns have an upper bound
. 2 .
()<< 1 or [K[A© << 1 16.7.1)

The lower bound has already been indicated as the assumption b) in
§ 6.3. Deformation patterns of the type appear frequently in bending
shell problems [6].

According to (1.3.21) the double covariant derivative of any surface

tensor may then be estimated as follows

2

9 :
TGB“H = TGB'MA + O(Trz') (6.7.2)

where T = max iTri, and Tr are eigenvalues of T. Thus up to the error

indicated in (6.7.2) the subsequent covariant differentiation is inter-

ehangable.

Let us introduce the curvature function W and the stress function F

by the relations
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2
B o wlByoc
o a

(6.7.3)
B _ Bu_ 1A 8 2
N = €,€ Flu + P+ O(Ehng")

Both scalar functions should be three times continuously differentiable.
With (6,7.3) the compatibility conditions (6.6.5) and equilibrium equations
(6.6.8) are satisfied within the order of error already introduced into

the equations, provided Pz is a particular solution of (6.5.7). The
compatibility condition (6.6.6), with the help of (6.4.4) and (6.6.8),

transforms to

a: B a B af 1 aoB af
ANaIB + (bBKOl KB) 5 (KBKa KaKB) +
, (6.7.4)
+ A(1-+v)§“|a = 0(%§rﬂ

When (6.7.3) is introduced into (6.6.9) and (6.7.4), the following set
of two equations for W and F should be satisfied [6, 12]

o

B

a

aB Bu
DWIaB + €, 8

- wlz)rla + (b WlZ>Pz + b = O(Eh
(6.7.5)

n82

a 1 _jo, 1A a(B aBy _
- -.,7w|B)w|]J + A[Pala - +v)pB|a] = 0(57)

AFlgg N eaxesu‘bs
These so-called quasi—shallow shell equations describe the behaviour
of geometrically non-linear bending shell problems with "small" Gaussian
curvature with respect to lengths of deformations patterns. In solving
these equations, we do not need to refer to dispiaceﬁents, although some
difficulties may arise with specification of PS (dﬁe to the tangent
surface load), as well as with the proper formulation of the boundary

conditions in terms of W and F.

6.8. Canonical shell equations

The reduction of shell relations in § 6.3 to § 6.7 has been carried out
under the assumption that the small strains in the shell space, caused
by independent stretching and bending of the middle surface, are of compa-

rable order in the whole shell region.

In many shell problems there are some regions in which the small strains

caused by the membrane forces may happen to be of essentially different
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order (higher or smaller by the factor 02) from those caused by thé
moments. Within these regions the reduced equations (6.6.5) and (6.6.8)
may not be accurate enough, since they contain only the leading terms
of one kind: changes of curvatures or membrane forces, respectively.
Thus, in general, more accurately estimated equations are needed in
order to describe properly the shell behaviour in these limitting cases

as well.

The refinement of equations (6.6.5) and (6.6.8) may be carried out

B

by selecting stress resultants N** and changes of curvatures Kyg 35S

B
two independent variables of the shell equations, [27]. Indeed, in this

case we are able to obtain a much better estimate for QaB which,

according to (5.4.19), (6.4.1), (6.5.1) and (2.2.1), becomes

of afB B

o*P = NP - D(b:: - K:)[(l -v)k<P + vaKBK;] + o(Enne?dy - (6.8.1)

' b
This estimate introduces an error O(Eh %?—) into the equilibrium
equations (5.6.2). Within the same error the second term of (5.6.2) can

be reduced with the help of (6.5.1), (6.8.1), (6.4.4) and (6.6.8) as

follows:
EGKYKABQAB = (2y:i8 - YABIa)NAB + o(Eh%i") =
= 2a[ (1 +v)N: - végl\f;”B AL
- A[“'+V)NAB - \)a)\BNE]imN)‘B + O(Ehﬂgij =
(6.8.2)
= ZA[N:NAB + \a(b::N)‘B - NaBN;)]IB -
- %'[(1 +\;)N;\E;N)‘B - vN;:Ng]Ia +
+2alQ +v)N§\l§A - vN;ﬁa] + o(Ehﬂg—l-t
But using the identities
Ny = SNC - E(WE}NN:
N8 aafry - Yty (6.8.3)
p YK
aBA€Av = EBAaXv
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we obtain the relation

a AB aB A,
(NA N NA)IB
_ _aB Ak Ay | -8B - aB A
=a (N, N = Ny K)| (NN NN g = (6.8.4)
=41 AB _ WP
7 N = MNg) |

This relation is also an identity for any continuously differentiable

symmetric surface tensor components.

With the help of (6.8.4) the relation (6.8.2) now takes a simpler

form

1 A8
-z Al - N+ \m N ]|

—0K AB

37 Y, 60 2A(N°‘ A8, |8

- (6.8.5)

h“e)

+a2a[ U +v)N;§A - vN;‘Ba] + o(En

For the third term in (5.6.2), by taking into account (6.6.7) and
(6.5.1), we obtain the following estimate

=B ___a _  a A ne
-bgQ" = -D(bg KB)K}‘|6+O(Eh T (6.8.6)

In this way, all terms in equilibrium equations (5.6.2) have been
consistently refined within an error O(EhIEL-), which is smaller by the

factor 62 than the error used in the bending shell equations (6.6.8),

In exactly the same way, the reduction of the first of the compatibility
conditions (2.3.11) may be carried out within a smaller efror than in (6.6.5).
Let us replace EKV by aKv in the second term of (2.3.11). This, according
to (6.5.1), introduces an error O(%%rﬂ. Then using (2.3.4), (2.2.1) and

(6.4.4) this term can be estimated as follows:
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B B

=k B8 _ K _ K _ _
€.aB€A bXYK.u = by = Ky (2 B YBIK)

K _ K B g o8t |
(bg KB)YKla +0(15) =
_ K _ K B _ Ao - Bl 1 _
= (b, k20 +\))NK]B 2"")\|K (1 \))NBIK] |
. (6.8.7)
- A(S - KX Bl _ vaBn né’, _
A(bg KB)[(I +\»)NK|m vGKNAIa] +o(iy) =
B _ B - B _ B Al _
=-2A(1+V) (b - Kk )Py + Av(by - KB)N)\IG

_ K _ K, B K _ KA nG“
Al +v)[(b8 KB)NKIa + (b Ka)N)‘IK] +0(37)
Taking into account (6.6.9) together with (6.8.1), (6.8.5) and (6.8.6),

the refined equilibrium equations take the following form

8 A B B A B A A B B A
NaIB - bl (1 -v)b ky + vbaKAJIB - DbaKA|B + ol -k K, + ‘"caKAHB +
B A A8 1 B A B1
+ DKGKAIB + 2A(NaNA)§B > Al (1 VINNg + "NANB]'a + (6.8.8)
A A= A= _ ne"
+ 2a[ (1 +\))Nap)‘ \JNApa] + (1 +y,)p, = O(Eh =—)
o8 @ _ o B - _ 2 ng?
DK(IIB + (bB KB)N(! + p = O(Eh —):'2-) (6.8.9)

Taking into account (6.7.4) together with (1.1.18) and (6.8.7), the
refined compatibility conditions take the following form

Bl _ B _ A, B B A B, A
Kalp = gl = BV IO+ boN] ]+ Avbeny] 4

A (B B\ A BA| .
+ A1 +\:)[|<BN)‘|0l + Ka“l'B] -A\)KBNAIa (6.8.10)
B B- _ _, ne"
-2a(1 +V)bapB + 2a(1 +v)|<ap‘3 = 0(-——-m )
o B a B a B 1 aB abf
ANa'B + (bBKa baxﬁ) -3 (KBKa ncancs) +

(6.8.11)

2
+ A+ = o(%%—)
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The relations (6.8.8) to (6.8.11) are the canonical form of intrinsic
equations in the first-approximation non-linear théory of thin elastic
shells [16]. They describe accurately the behaviour of a shell in the
whole internal region independently of the ratio of bending and membrane

strains.

The equations have been derived here in terms of symmetrié variables

aB

N and k., and with all surface force components Eu, p taken into account.

aB
The refined shell equations of this kind have been originated by

a8 and -k

apf
normal component p of the surface force has been taken into account.

KOITER and SIMMONDS [16] derived the equations in terms of nmB and -0,

DANIELSON [27] in terms of (in our notation) n where only the

B
in the absence of surface forces (cf. also [9]), while all the surface

force components have been taken into account by the author [12, 33].

6.9. Membrane and inextensional bending egquations

For some shell problems it is possible to predict in advance.the type
of solution in the whole internal shell region. The prediction may be
used to reduce initially the canonical shell equations (6.8.8) to (6.8.11)
within the error already introduced into the equations. The expected
solution of the problem may then be obtained from a much simpler set of

equations without any loss of accuracy.

Let Yy and k be the maximal values of the shell strain measures defined

by

Y = max IYpI ¢ K = max !Kpl (6.9.1)

where Yp and Kp are eigenvalues of the tensors y and k.

The ratio %?-describes at any M € M the estimate of the relation
between the small strains in the shell caused by bending and sﬁretching
of the shell middle surface. In respect to the ratio it is convenient to

introduce the following classification [12] of the shell theories:

kh

1) < 0(62) - membrane theory

Y
Kh _
2) 1;- = 0(0) - small bending.theory
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3) —

]
@]
—~
—
e

|

bending theory

4) — = 0(lﬁ - large bending theory

5) — 2 O(azﬂ - inextensional bending theory

Let us use the estimates indicated in this classification to reduce

the canonical shell equations (6.8.8) to (6.8.11).

For the membrane shell theory it is neceifary to estimate in (6.8.8)
to (6.8.11) all terms containing KaB = O(I%%— . The terms of order of

the error indicated in these equations may then be omitted. As a result

we obtain the following reduced set of equations

B AB L ) A B
NaIB + 2A(.NaNA)IB 7 AL - VINNG + \JN)‘NB”a +
A= Ao A= net
+2a[(1 +VIN P, - vapa] + (14y,)B, = O(Eh =) (6.9.2)
2 ng?

afB - _
bBNa + p = O(Eh —A-z-)

B _ By _ A B B A
KuIB KBIa A(1-+v)[bBNAla + baNlIB] +
BM - BS . o(n& -
+ AvbBN}‘la 2A(1 +V)b By = O g7 (6.9.3)
B =0 _ n62
ANalB+A(1+v)p o = 0052

It is easy to note that the non-linear (quadratic) equilibrium equations
(6.9.2) can be solved with respect to oA independently of the state of

strain in a shell ,provided that two boundary conditions are expressible

B. In this sense the membrane shell problems are statically

B

in terms of Na

determined. The additional conditions (6.9.3) for N*" make the membrane

B mathematically overdetermined. This

shell equations with respect to N
means that the membrane state of stress may occur in a shell only under

exceptional circumstances.

Similarly, for the tnextensional bending shell theory it is necessary
to estimate in the canonical shell equations all termé containing
NaB = O(Ehnez). The terms of order of the error indicated in the equations
(6.8.8) to (6.8.11) may then be omitted. As a result we obtain the foilowing

reduced set of equations
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By . -vbkP B A - bbb
Na|8 Dl (1 -vb k) + vbaKA]IB DbaKAIB +
A B B A B A
+ D[l -V Kk, + VKGKA]|B + DKGKA|S + (6.9.4)
A - ne"
+ (1 +Y)‘)pa --O(El’l——.A )
ox®|® + B = o(En? ne?,
alg 2
Bl - kB = o( e, (6.9.5)
a'B B'a hA T
«B _,aB 1 oaB  aB _  no
beKa Pakp = 2 (Kg¥q Ka¥g! = 0(5T)

It is easy to note here that the non-linear (quadratic) compatibility
conditions (6.9.5) can be solved with respect to K@ independently of
the state of stress in a shell, provided that two boundary conditions are
expressible in terms of Kas. In this sense the inextensional bending shell
problems are geometrically determined. The additional condition (6.9.4)
for K,p makes the four equations with respect to KB mathematically over-
determined. This means that the inextensional bending state of strain may

occur in a shell only under exceptional circumstances.

For the small bending {or large bending, respectively} shell theory we
should estimate in (6.8.8) to (6.8.11) all terms containing KGB
{or NaB = O(Ehn6)}. It happens that within the error indicated in these

= o
= o(%)

equations only the terms quadratic in Kag {or quadratic.in NaB} may be
omitted here. However, with a possible small loss in accuracy, we may
admit the greater erxror in the first of equilibrium equations and in the
first of compatibility conditions. Then for both small and large bending
shell problems the bending shell euqations of § 6.6 may be used.

Let us point out again that the advance simplification of shell
equations is possible only when the unknown solution satisfies any of
estimates indicated in 1) to 5) in the whole internal shell region. Still
one should always check at the end of calculations to determine whether
the solution obtained from simplified shell equations indeed represents

a satisfactory and predicted type of solution.
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Chapter 7

GEOMETRICALLY NON~-LINEAR THEORY OF ELASTIC SHELLS UNDER
RESTRICTED ROTATIONS

Polar decomposition theorem applied to displacement gradient tensor jei
has made it possible to decompose in § 3.4 the shell deformation into the
separate translation, strain and rotation. In the reduction of basic
shell relations discussed in chapter 6 we have used the assumption that
the strains are small everywhere in the shell. We have not made so far
any restriction as to the magnitude of the rotatitons of the shell material

elements.

For many engineering purposes it is hardly necessary to allow the
rotations of any magnitude. Many shell structures would become unservi-
ceable if really unrestricted rotations were permitted to occur. It is
certainly worthwhile then to discuss the possible reduction of shell
relations resulting from the consistently restricted rotations. The
well-known classifications of the approximate shell equations have been
proposed by MUSHTARI and GALIMOV [34] and KOITER [6]. In. [34] the restric-
tions on the components @ and ¢ of the linearized rotation vector ¢
have been used to make a clear distinction between three approximate
variants of shell equations with "small, medium or large bending". In
[6] four approximate variants with “"infinitesimal, small finite, moderate
or large deflections" have been clearly defined by using various restric-
tions of displacement gradients and components of ¢. Note that in both
classifications the name "rotation" is correctly avoided, since neither 2

nor displacement gradients describe finite rotations of the shell material

elements.

There are many papers in which various approximate variants of shell
equations, obtained under similar to [6,34] assumptions, are called as to
be valid under "infinitesimal, small, moderate, large etc. rotations". The
names are given apparently on the intuitive basis, without defining
precisely the meaning of the "rotations" which are supposed to be restricted

in some sense. This sometimes may lead to confusions.
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It is clear from chapter 3 that the consistent classification of the
approximate shell relations, resulting from the appropriately restricted
rotations, should be expressed in terms of either the finite rotation
tensor R or the finite rotation vector . We prefer to deal with the vector
£, since within small rotations it may be approximated by the linearized
rotation vector ¢. However, when the rotations become not small the numerical

~

values of g differ from those of §.

Here the consistent classification of shell relations is proposed in
terms of the finite rotation vector‘g. The case of small rotations coin-
cides with the classical linear theory of shells. For moderate rotations
various consistently reduced strain-displacement relations are discussed.
The application of the Lagrangean virtual work principle leads then to
the consistent sets of shell equations. The consistent strain-displacement
relations are constructed also under the large rotations. At the end we
discuss some relations for thin plateé under small,; moderate and large

rotations.

7.1, Classification of rotations

The finite rotation vector @ is uniquely defined in (3.4.1) by the
angle of rotation w around the axis of rotation described by the unit
vector e. It is possible then to‘restrict either the magnitude of w or

the direction of &.

The angle w appears in all the formulae through some trigonometric

functions. Let us expand the functions into Taylor series at w = O to

obtain
1 3 1 5
- - — — ) -
sinw W 31 w + 51 e
1 2 1 4
cosw =1 - CTH w o+ ZT-m - eea (7.1.1)

2, . 1 2 1
2cos w/o = 2 - TR TR

A substantial simplification of the shell relations may be obtained in
the case when the functions (7.1.1) are approximated only by the firet
terms of the expansions. Approximation of the functions by first two terme
‘results in only slight simplifications, which may happen to be useful in

some particular shell problems.
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Within geometrically non-linear theory of elastic shells the parameter
0 defined in (6.3.4) has been used as a common measure of various small
quantities. In terms of 0 the following classification of magnitude of

the rotation angle may be introduced:

1) v £ 0(82) - small rotations
2) w = 0(8) - moderate rotations
3) w=o008 - large rotations
4) w 2 0(1) - finite rotations

Within the small rotation shell theory w << 1 and (7.1.1) may be

approximated only by the first terms as follows:

sinw = w + 0(96)
+ oo (7.1.2)
2+ 0(94)

-

Cosw =

2coszw/ 2

For moderate rotations m2 << 1, but (7.1.1) may still be approximated

only by the first terms

w + 0(8°)
cos w 1 + 0(92) (7.1.3)
2coszw/2 =2 + 0(82) '

f

sinw

Within the definition of large rotations we have w? << 1. In this case
approximation of the functions (7.1.1) only by the first terms would intro-
duce a relative error 0{(6) with respect to 1. Thus in this case the proper

approximation should contain first two terms in the expansions

sinw = w - L w3 + 0(62/9-')

31
cosw =1 - %mz + 0(68%) (7.1.4)
2coszm/2 =2 - -il-!-mz + 0(92)

This classification restricts only the magnitude of Q for lw| < 772,
since then 0(|g|) = O(sin w) = O(w). The direction of the rotation axis
may still be arbitrary, Fig. 20 a, However, most of the éheil structures
are more flexible in the out-of-surface direction than in the direction
tangent to the surface. It is recomended then to use different restrictions
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on components of § in the direction tangent or normal to M. The name
“"small, moderate, large or finite rotation" may then be associated with

the particular component 2, or @ - n, Fig. 20 b and c.

I
M o
Fig. 20
7.2, Linear theory ‘of shells
When all the rotations are assumed to be small then
2| = o6 , Q-a, = oe? , Q-n= ote?) (7.2.1)

From (6.5.8) and (2.2.4) we obtain the following estimation of the linearized
quantities

= 2 = 2, - S
"p = O(e ) ’ ‘-Pa = O(e ) I eae = 0(']) : (7.2.2)

The appropriate reduction of (6.5.4), (6.5.5) and (2.1.4), (2.2.8) gives us

n=1+ 0(n)

2
- + 0(né)
H (7.2.3)

21 1-.':’

]

=g [t +00%H] alt + 06%)]

a
~a

The finite rotation vector 8 given in (6.5.8) can be approximat';ed by

B

o 2
2 E(pwg8+cp2+o(n6) _
2 (7.2.4)
¢ + 0(nd")

~

1]
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where ¢ is the linearized rotation vector defined in (2.1.9). Thus under
small rotations both vectors g and ¢ coincide with accuracy to an error '

indicated in (7.2.4).

It follows from (2.2.4), (2.2.14), (6.5.4), (6.5.5) and (7.2.2) that
under small roations the strain-displacement relations become linear in

terms of displacements and take the form

2
Y =6 + 0(]’]6 ) =
= " (7.2.5)
1 2
=3 (uq|8+u6|u) - ban + 0(nég")
KGB = 24‘90[8 + (Psla + b(!(elB w)\B) +b8(9)‘a m)\a)] -1.0(__A ) =
= ~w| g +b b, v ByUy | g gy o ~ Py gty *O(R)  (7-2:6)

When the relations (7.2.4) to (7.2.6) are used in the Lagrangean

virtual work principle (5.5.14), for the variations we obtain

1

GYaB = 5-(6u“|8-+6u8|a) - baBGW

_ A _ A _ A _ A
Sk g = Gy[us-hbabkséw baéuAIB bBGukla ba|86uk

o B (7.2.7)

th = 62 - (GYQB\J t )2

- o 1
qz = € (wags + > Gweug)

Proceeding in exactly the same way as with the Eulerian virtual work
principle in § 5.2, for the theory of small rotations we obtain the

following equiltbrium equations

(NGB _ baMKB)I _ baMKB{ +p% =0
) . < B (7.2.8)
afB aB a kB _ T
M Ias +b (N - b M) +p=0

to be satisfied within the internal region of M, the natural boundary

conditions
va = (NaB - b:MKB)vavB + TtMtV = Fv + Tk S Rv
p,, = *F - b Pre v, oM =P - ox =R (7.2.9)
Pav = MaBIavB - é%'Mtv =Fy- é% Ke = Ry
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to be satisfied at smooth parts of C, together with conecentrated force

{[Mtv(si+0)2 - K (s, + 0] - [Mtv(si_O) - Kt(si-o)]}g(si) (7.2.10)

to be applied at each corner s, of the contour C.

For the modified tensor of change of curvature pa 8 we would obtain the

relation

o =-Lio +o, +bte . +b'e ) + o(n82, (7.2.11)
aB 2 Yal|B UBla Ta Br T TgYaA } <.

If (7.2.5) and (7.2.11) were used in the Lagrangean virtual.work principle
(5.5.14) we would obtain the modified equilibriwm equations
ag .1 B ak _.a kB _.6 KB o _
[ +5 (b -bm )]|B'b’<m |B+p =0

2 K

aB (7.2.12)
m |a8+bc8n + p=0

to be satisfied within the- internal region of M, and in natural boundary

conditions the components of effective internal force would take the form

_r.aB,1 B ak _.a kB
P\N = [n +5 (me me )]vav8+rtmtv
= g 1 ,Bak . a kB _ .
Py (n +3 (me b m )]tavs O m. (7.2.13)
of d
an = o IuvB as ey

Thus under small rotétions the geometrically non-linear theory of shells
reduces to the classical linear theory of shells. Various probiems of the
linear theory of shells have been discu.ssedv in detail' in many papers. and
books, for example [2,3,4,32]. . .

7.3. Moderate rotation shell theory

When all the rotations are assumed to be moderate, then

gl =0 , g-a, =006 +8.p=o00) ' o (7.3.1)
. ' '

From (6.5.8) and (2.2.4) we obtain the following estimates of the
linearized quantities
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®=0(0) , @ =00 , 8 = 0(8%) (7.3.2)

It follows from (6.5.4) and (6.5.5) that now

_ 1 2 2
n—l-fw%+0m9)
(7.3.3)
nA-'-'-(pA -Eukcpucp+0(ne)
and for the basic vectors we obtain
a =(a -w aA+Wn)[1+O(02)]
~ ~QL Ao~ o~
'A 2 (7.3.4)
A = (va +nll +0(e7]

The finite rotation vector follows from the appropriate reduction of

(6.5.8) to give

Bnp)38 + ¢n + 0(nd)

Ba 1
(7.3.5)
- 1 8 '
= ¢ + 2 ¢

"~

(DSB + 0(nb)

It is seen now that within moderate rotations the vector @ differs

from ¢ by one term quadratic in displacement gradients.

It follows now from (2.2.4), (2.2.14), (2.2.12), (2.2.17) and (7.3.3)
that the strain-displacement relations can be approximated by
A A 1 2

= -1 L
Yag = % = 7 o€ip* Gaf@)® + 5 2,50 *

1 2 (7.3.6)
+ 'i'lDalDB + 0(n6")

1 A A
- 3 {(palB +Pgpq * By (Byg ~ Uyg) + Bgl8 - f"xa)" -

b
[}

aB

A 1 A
T byg? ) T F 00 G * G 7.3.7)

A .
- q’_[(exa T Uyg) IB * (8yg muyg! !a " Py —bABma]+

nA ' no?
+ € wﬂw(wlale . mABla)} + 0(-)‘——)
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The formula (7,3.7) may still be simplified. When we use (2.1.7),

(1,3.16), (2,1.6) and (1,3.25) the term w can be transformed as

Aa|B
follows
“%l8 T2 Yalrg T "r]aB
=L +R _ u -u , -R, u) =
2 alBA caAB Kk A|Ba +AaB k
=Ll tuy )]y =(uy 4 y| o+ (RS, +RS RS, yu l=
2 "% T8l A TR e T A TR eang T AaB Tk
= - 1 .k K
= (eaB-kban)lx (OAB-+bABw)|a-+ 5 (byby =B by +
K K K K _
+ Byb g=beb ) ~bib, o +beby Ju =

A
‘ K K -
= ea8|7\ -eAB|a+baB(wI')\+b)\uK) -bAB(wla+bauK) =

B eaBIA 'exela'*baswx"bxswh | (7.3.8)

The result (7.3.8) allow us to omit also the last two terms in (7.3.7).
Six terms enclosed within square brackets in (7.3.7) with the help of (7.3.8)

can be transformed to

1 2 A _ _ :
+5 0 [...)]=¢ (exals + ekela °aslx basqa) (7.3.9)

and the final expression for KB takes the form

=-1 +o A - ‘o, - -
Keg = = 3 [¢h|8.+wﬁia'+bh(el8. wyg) +Dg (6, wka)l

1 A 1 A |
- .z_baﬂcp ® *+37 “’“’A“"als“"sla) + (7.3.10)

A - ne?
* O O1e gl T Caga!) YO

This relation for KGB differs from that derived by KOITER [6] by the
underl%?ed term. According to our order-of-magnitude estimates this term

is 0(%r0 and should be retained within an error 0(%?—).

Thus within the consistently formulated geometrically non-linear shell
theory, in which moderate rotations are allowed to occur, the strain tensor
Yop 18 quadratic in displacements and their gradients, while the tensor
of change of curvature Kop is a third-order polynomial in displacements and
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their gradients.

In most of the engineering shell literature the formulae for the

strain measures are approximated to within the greater error

_ L, 2.1
=0 + 5 aaB(p + 5 "paq’e + 0(nb) . (7.3.11)

YaB aB

) +b (6 - w002y (7.3.12)

1 A
aB 2 [wa|8+w8|a+ba(eAB—NAB B Aa A

K

The linear approximatlon (7.3.12) for Kae can be justified keeping in
mind the error already 1ntroduced into the approximate strain energy
(6.3.16), since terms O(X—Q in Kap cannot affect the accuracy of the
strain energy expression (6.3.16). The approximation (7.3.11) introduces
into (6.3.16) an .error O(Ehnze) and occasionally may cause some small

loss in accuracy of the solution.

When (7.3.11) and (7.3.12) is used in the Lagrangean virtual work
principle (5.5.14) it can easily be transformed with the help of Stockes

theorem as follows:

= aB _ 1
IVW = IJ{N lsudlB baséw-faaecpz € Guu_lA +qL(6w| -PbBGuA)] +

M

aB A A A -
+ M -8w| o 2b,8uy | g ba|66ux+bab>‘BGW]_}dA

_ aB ] su b N ( L B -
-“[(N Gu)IB N® |6u bBN §W+( 5 € ¢N, du )IB
M
- ( Ba A)I Gu + (1 Naeéw)l - (@ N* )| 6w4-(b PN AB)Gu -
a BTA (0]
- (@B op o, AB @ AB 1 -
M Gwlu)IB+M |Baw| 2(bM Gu)l gt 2y ) jgbu - (7.3.13)
- (baM)‘B)[BGu +b M)‘B| du +b)‘bmn BGw]dA =

=—”[(N°‘B-b;‘r4"'3+ 3 et | su b0 ?)] + oy

M

af _ u AB

+ (Maﬁla +(paN°'B) |86w+baB(N )éw) dA +

aB _.a AB Ba A aB af aB.
+J[(N b.M " + WA)‘S“a+(M |a+(paN )ow +M cha]vsds

A
c
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It follows from (4.3.3) and (5.2.14) that at the boundary C

- - a
By = (B-m -3 v [1+0(m] =-¢v +0(ne)
68, = -thv (7.3.14)
A a_ 4 _
Ggpt = (¢Sw,(Jl + baéuk)t = I3 (Sw) +ot6ut Ttduv

and the last term in the line integral of (7.3.13) can be integrated by

parts to obtain

aB _ _ _ _
I(-M &pa)\’s ds = I( Mtv&pt Mwénpv) ds

C C
thv
= - J(TtMtvﬁuv—otMtvSut + wrre Sw + MvaBv)ds + (7.3.15)

c

N
+ E:l [M, (s, +0) = M (s;-0)]8u(s,)

According to the Lagrangean formulation (5.5.5) we can introduce the

vector
B _ aB _ A AB 1 _Ba A
GN" = (N b)\M +2E (DN}\)SH-G-
(7.3.16)
af af
+ (M Ia + QN n
in terms of which IVW becomes
VW = - (GNB)[ da+ [{[GNB\) + L M, n)]-su+m 88 )ds+
~ ~ B J ~ ~ B ds tv~ ~ vV v
M ¢ .
(7.3.17)

N
+ El[Mtv(si-i-O) - Mtv(si—o)]éw(si)

In the expression for EVW according to (5.5.5) we need to transform
only the last line integral. Within the accuracy assumed already by
taking only the linear terms in (7.3.12), we should take only the linear

terms in (7.3.5) as well. Then after transformations we obtain



- 139 -

d
EVW = IIE.‘S"‘I‘dA-‘. I{[E-l- I (Kbg)] . 55+K\)6ﬁ\)} ds

M C
(7.3.18)

N
+ §1[Kt(si+0) - K (s, =0 ]8w(s)

It follows from the variational problem TVW = EVW that the oquil7irium

equations in vector form

B+E=O (7.3.19)

~

or in component form

aB e AB 1 Ba A, a AB A a
(NP -by M+ S € wNA){E by (M |A + QN B4 p% =0
(7.3.20)
aB aB aB o AB _
M|+ N )|B+baB(N bi"") + p =0

should be satisfied within the internal region of !{, the natural boundary

conditions

(7.3.21)
should be satisfied at smooth parts of C, and the effective concentrated
force

{IM, (s, +0) - K (s; +0)] = [M_ (S, -0) - K (s, -O)]}n(s;) (7.3.22)

should be applied at each corner s, of the boundary C.

In exactly the same way we could obtain all shell relations using the
strain-displacement formula (7.3.6) in place of that (7.3.11). The resulting
equilibrium equations and boundary conditions become then only a little

more complicated but we shall not discuss them here.

A different type of simplification may be achieved if the rotations
around the normal are supposed to be small, while the rotations around

tangent to the surface are still moderate. Thus when

g-p=00% , f-a =0 (7.3.23)
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the estimates of linearized quantities become

_ 2 _ _ 2
p=0(0") , VL = 0(8) , eas = 0(6) (7.3.24)

Under (7.3.24) the surface strain tensor (7.3.6) can be aprroximated
by

Yop = BaB + %’@hws + O(n62) (7.3.25)
within the same error as in (7.3.6), while within an error O(D%id there is
no reduction of (7.3.7). Again, if the error 0(1¥1) is justified in (7.3.7)
on the basis of an approximate strain energy function (6.3.16), the formula
for KGB can be taken as in (7.3.12). When (7.3.25) and (7.3.12) are used

in the Lagrangean virtual work principle, we obtain the equilibrium
equations and boundary conditions discussed in (7.3.19) to (7.3.22) and
(7.3.16), only underlined terms containing ¢ in (7.3.20) and (7.3.16)

should be omitted.

Let us note,that under (7.3.23) four last linear terms in (7.3.12) are
also O(%?— . If we seek the accuracy within the small and moderate rota-
tion range, the omission of these terms might affect the accuracy of the
solution within the small rotation range, since in this case the relative
error would be only 0(8). However, if we are interested only withir the
moderate rotation range, the omission of these terms introduces relative
error 0(62) and is permissible. Then using (7.3.25) and

()

1 né
ab > @1 * Pglg) * O (7.3.26)

8|

from the Lagrangean virtual work principle we obtain the reduced equili-

brium equations

of a AB: AB a _
N ]B—bB(M [y +@N ) +p =0
(7.3.27)
aB af aB _
(M [a-!-(paN )!B-i-baBN +p=0
and natural boundary conditions (7.3.21) where
. B a8 R
GN" =N 2, * > (a + cpaNuB)'g (7.3.28)

The equations (7.3.27) are simple enough to be used in most engineering

applications,
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The classical non—-linear theory of shallow shells represents the
simplest possible version of the theory for moderate rotations. In this
case usually the following simultaneous restrictions are suppesed to

be satisfied

Q-a =0(0) , Q-n=0(6% (7.3.29)

o 82

(K, < O(v) ‘ (7.3.30)
2

u < 0(8°) (7.3.31)

a

The restrictions (7.3.29) allow only for moderate out-of-surface
rotations. The condition (7.3.30) expresses the shallowness of the
shell with respect to deformation patterns and allows to interchange the
sequence of covariant differentiation. The conditions (7.3.31) allow for
only small tangent displacements. Under the restrictions (7.3.29) to

(7.3.31) the strain-displacement relations become extremely simple

=L - 1 2
Yag ~ 2 (ua{B * uBIa) Pag” ¥ 2 W, q%,p TONED) (7.3.32)
« =—w| o +o(2% (7.3.33)
af aB A T

and the equilibrium equations take the form

B - .
Na|6+pu-—0 (7.3.34)

B

a

Qa

Bia O _ .5 .
Mu'B + (bg‘Fw;B)N +p-w P (7.3.35)

Under the restriction (7.3.30) the relation (7.3.33) already satisfies
the compatibility conditions (6.6.5). The general solution of (7.3.34)

may be given in terms of an Airy stress function

e ePpi? & BB | (7.3.36)
a oA u a
where here v
B _ ]
Pals +p, =0 (7.3.37)

In the remaining equilibrium equation (7.3.35) we use (f:.4.1), (7.3.33)
and (7.3.36), and in the remaining compatibility condition (6.6.6) we
use (6.4.4), (7.3.33), (7.3.34) and (7.3.36). As a result we obtain two

solving equations of the geometrically non-linear theory of shallow shells
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B Bu,, o o, 1A _ 0 I a _
leaB €al€ (bB + w!B)Flu (bB + W‘B)Pa p + w'ap 0
(7.3.38)
0B Bu,a 1 a 1A af a:f
AF|,a + €a>‘€ (bB + 35 W'B)wlu + A[Pale (1_-:_\))1:6:“] =0

For many shell problems the small tangent displacements occur only

under small tangent surface load such that

no?
< — 19
p, S O(Eh X ) (7.3.39)

This allow us to omit also the underlined terms in (7.3.34) to (7.3.38),
[6]. Such classical equations of the non-linear theory of shallow shells
have served many years as the basis in numerical solutions of various

engineering shell problems.

7.4. Strain measures in the large rotation shell theory

If all the rotations are allowed to be large, then

lg] =ot/® , 23 =008 ,g-n=00% (7.4.1)

~

From (6.5.8) and (2.2.4) we obtain the estimates for linearized

quantities
¢, = o(¥®) , @ =08 (7.4.2)
= -1 2 _ )
eaB = > (aasw + waws) + 0(n) = 0(6) (7.4.3)

Within an error O(nez) the surface strain tensor YuB given by (2.2.4)

ecannot be simplified.

Introducing (6.5.6) into (6.5.4) under (7.4.2) we obtain

_ ., _1 A 1 A2  Auw ok A 2 2 "
n=1 > () wi + > (GA) GNGA YK(BA-fw ) +0(n6") (7.4.4)
= M +ez) + couw“ - ") + ot/® | (7.4.5)

For the basic vectors we obtain

A
=2yt 0, T2 YO

e

(7.4.6)
= [ K A _ M _1 A 2
B=A{l-071+0) +¢ (67" -w ) ]a, + (1 -50°0,)n}1+0(6%]

while the finite rotation vector remains as in (6.5.8).
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When (2.2.17), (2.2.18), (7.4.4) and (7.4.5) are used in (2.2.14),
the tensor of change of curvature can be reduced with an error O(%?-) to

the relation

_ 1 A _ A _ _
“af = T 2% *%8ja *Parp ") e Cha T
1 A 1 2 A A
-3 baB(p @+ 7 ww}\(‘paéﬁﬂpsiu_bamks —bﬂmla) + (7.4.7)

A MA | A K _ o HA _ né
(p +Lpuw + BK cpue "exaie”mia eaBll) + O ) )

The formula may still be simplified by using the estimate (7.4.3) to

transform two terms in the last row of (7.4.7) as follows

A K wx _ 1 A 2
weK “’ue =-3900 + 0(n) (7.4.8)

If some small loss in accuracy of strain energy function is taken

into account, we may admit even greater simplification

1 1 A A A
Keg = " 2 (- 399) (ma|8+m85a) +ba(6)\3-w)‘8) +b8(e)\a-w)\a)] -
Ly do v @ re o) e +0. | -6 . )+o(9-'—@) (7.4.9)
2 TaBT A u AelB T UABie TaBjA A s

Both expressions (7.4.7) and (7.4.9) for KaB contain displacements

and their gradients up to third power.

In many engineering shell structures rotations around normal may be

allowed to be small or moderate at most. Thus if

a3 =008 ,2-n=0() (7.4.10)
then
®=o0() , @ = 0(/0)
(7.4.11)
8,8 = = 7 $¥g * On) = 0(8)

The formula (2.2.4) for the strain tensor YQB is still not affected hy

(7.4.11), while the tensor of change of curvature reduces under (7.4.11) to
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1 1A A R ) )
Kog =~ 3 L= F0@) @15 +@g1 ) +b (8, =y ) +b, (8, —w, )]
(7.4.12)
1 A A HA _ né
R B AR T G Y P M Y PO A ut

Note that (7.4.12) and (7.4.9) have exactly the same rorms, althoual the

accuracies of both formulae are different.

Again, if some small loss in accuracy is taken into barqgain, (7.4.12)

may be reduced to

1 1 A A A
Ko = 7 F LU = T 00015401 ) +D 8y —wy ) + b (0, —uy )] -
(7.4.13)
1 A A . n/g'
=228 At Oyt Ogla " Oapa) YOI

Exactly the same relation would follow from (7.4.9) when assumption ahout

moderate rotations around normal were taken into account.

The exact formula (2.2.4) for YuB and any of the approximate relations
(7.4.7), (7.4.9), (7.4.12) or (7.4.13) for KaB
virtual work principle (5.5.14) to obtain equilibrium ecuations and
natural boundary conditions compatible with the assumption of large

rotations.

7.5. Some relations of the non-linear theory of plates

The geometrically non-linear theory of plates may be considered as
a particular case of the shell theory with specific reference (unleformerl)
configuration, in which the curvature tensor of the shell middle surface

vanishes identically, b = 0. Under this condition many shell relaticnrs

af
become much simpler. We found it worthwhile to sketch the reduction proce-
dure and to discuss here at least some of the relations of the non-linear

theory of thin elastic plates.

For the plate theory the linearized quantities discussed in § 2.1,

reduce to

laB = aaﬁ + whﬁ = aaB * eaB - waﬁ
Yag = ValB %@ Ya
1 (7.5.1)
%8 =2 WMalg * Ygjo’
_1 _ _
Yag =2 Ugla 7 Uu|p €ag®

may be used in the Lagrangean
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The exact formulae for the plate strain measures follow from (2.2.4)

and (2.2.14) to be

1 A
Yog = 2 (uaiﬁ * Ygla Tuilgae T w,aw,d) (7.5.2)
K = - (nd__ + dA ) | : (7.5.3)
aB ag " "A".ap’ U
where
da ., = w| @ = (7.5.4)
ag ~ e’ caB ~ "\ jaR e
a H H
- 42 (- - 7.5.
) 3 vy rw s et | (7:5:3)
_ a A 1 A 2 ___!_ A H 9 ¢
n-J.a_ (1 +u iy +7u |)\u IU 7 U qu |>‘) (7.5.6)

Under small strains we obtain

H: u [«
n [-w'x(l +uf) 4w ou IA][1 + 0(n)) (7.5.7)

A

A 1 A
[1 +u IA +5u |Auu!u -

wMaM I+ o] (7.5.8)
] A

1
n 2

and K8 b ecomes polynomial of the third order in terms of displacement

gradients

A 1 A 2 1 A u
| = -
h * 3 (u IA) Fu | u lA] +

K, = {—wlaB[l +u "

aB
(7.5.9)

U u A
+WA“+“IJ'ﬂflﬂ“u§“+°m”

The finite rotation vector £ for a plate can be obtained as follows

afB

1 - -
R=3(a, *3a +anxnll+oml-=
1, Ba A A .
= 5—{6 [(2+u il)w,a - W, %algﬁ + 2en}[1 + o) ]= (7.%.10)
_ B 1 A A 1
=€ {[w'a tg (wou ‘A W \u Ia)lge + 3 uafaﬁ}[l + o(m]

In plate theory the small parameter 0 may also be defined by (6.3.4)
and the parameter A by (6.5.3), but R in this case is the linear dimension

of the plate.
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Restricting the magnitude ofEZgiven by (7.5.10) we may discuss
various variants of plate equations under the small, moderate, larce

or finite rotations.

Under the emaqll rotations

2 - P
a =a [1 +0(89) , n=nl1 + 0]
f\'a l\u ~o ~ - .
(7.5.11)
_ Ba 1 2
Q=€ [w' a, + 5 ua;ﬂgl[l + 00 Y]

and for the strain measures we have

(u + uﬁla) + 0(n02) (7.5.12)

1
Yag = 2 Moy

= = ! 2
Ko = = Yigg + 0(nd™) (7.5.13)

The equilibrium equations (7.2.8) reduce here to a set of two uncoupled

linear equations

N g +p =0 (7.5.14)

(7.5.15)

w
+
jge]
1]
O

The equation (7.5.14) of in-plane equilibrium may be solved with the
help of an Airy stress function (7.3.36) which, introduced into the
compatibility condition, gives us the well-known biharmonic equation of
the plane elastictity

aB a3 0.|B
+ - =( 7.5.1¢
FluB [Pyig = (1+vIP ] ) (7.5.1€)
The equation (7.5.15) of out-of-plane equilibrium is solved directly
by using the constitutive equations (6.4.1) and the relation (7.5.13)

to obtain

af _
D"’!as p=o0 (7.5.17)

which is the well known biharmonic equation of the classical linear theory

of plates.

Under the moderate rotations the estimates (7.3.2) are still valid, and
from (7.3.3) and (7.3.4) we obtain
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- - 1 Wy M
m=-w, t5w lA uy 17+ 0(nd)
(7.5.18)
n =1+ 0(n)
- 1 A A o
2, = [a, +5 (u |a - u,| )g, + w’ugl[l +om] - (7.5.19)
= (-w,a" + pl1 + ()]
’
The finite rotation vector is reduced to
g=[€P% + 1 W{Beku )8 * 7 nll1+0(n)] (7.5.20)
~ Q 4 IA I

It follows from (7.3.6) that in terms of displacement gradients the

strain tensor YaB takes the form

1 Au

1
Yo = 3 LU gl + = a  (u —u (W, mug ) W W ]1-
aB alg ¥ YBja T d Al Ta!Xulg T piu 0 B g o 21)
——1— u ] - : - ]
B [(ulﬁa.+ua|l)(uu18 uB!& +(ullu g i )(u IB Bi )]'*0(ﬂ9 )
or with a greater error compatible with (7.3.11)

Y = l{u +u, +-1~-aA (u ) (u u )-+w w ]-+O(n6) (7.5.22)
aB 2" alg’ Bla 4 Yl Mule T ,a -2

The appropriate relation for the tensor of change of curvature follows

from (7.3.12) and (7.5.1) to be

- - né
Kyp = w| ag t O (7.5.23)
Introducing (7.5.22) and (7.5.23) into the Lagrangean virtual work

principle (5.5.14) we obtain the equilibriwn eugations

aB Bia, A a
[N 4 (u l +u | )N)‘]IB +p =0
(7.5.24)
aB: of =
M|, +w N )IB+p—O
to be satisfied within the internal region of M, the natural boundary
conditions
B8 d d
sffvg * Rt “EtR A K
(7.5.25)
M = K
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where

B (.08 1

_ 1 alB_ Bla, A aB
'(";"I:I' =[N +4 (u b u | )N)‘]E.a+(M

8)2 (7.5.26)

i +w Na
o Q
to be satisfied at smooth parts of the plate boundary C, and the effective

eoncentrated force
{[M_ (s; +0) -K (s, +0)] - [M_ (s, -0)- K (s; -0]}n (7.5.24)
to be applied at each cormer s, of the boundary C.

The equations (7.5.24) can be solved only in terms of displacements.
The appropriate solving equations can easily be obtained by introducing
the constitutive equations (6.4.1) and the strain displacement relations

(7.5.22) and (7.5.23) into (7.5.24) to (7.5.27).

When the rotations around normal are supposed to be small while the
rotations around tangent are still moderate, the estimates (7.3.24) allow

to reduce further the strain tensor YaB to the form

1

Yo = 7 (g|p*¥

Bla-l-w'aw's) + 0(nd) | (7.5.28)

while k _, remains as in (7.5.23). In this case the appropriate equilibrium

1]
equations are

NaBiB + pu =0
(7.5.29)
aB aB, _
M |a+w'aN )|B+p—0
and in the natural boundary conditions (7.5.25) we should use
ent = Wy 4 |+ nFp (7.5.30)

The first of (7.5.29) can be satisfied with the help of an Airy stress
function (7.3.36), and the compatibility conditions (6.6.5) are already
satisfied by (7.5.23) because of the Euclidean geometry of the reference
plate configuration. The remaining compatibility condition (6.7.4) and
the equilibrium equation (7.5.29)2 lead to the following set of two

equations

aB

als
A

DwI:g - GGAGBuw|;F|u -w|;P2 -p + w'apa =0

aB 1 Bu & A arBy _
AFlaB + 5 €€ w'Bwlu +alp |l -1 +v)p8|u] =0

(7.5.31)
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. . a
which have been given without p forces by KARMAN [45]. These classical
equations of the non-linear theory of plates have served many vears as

a basis for numerical solutions of engineerinag plate problems.

Consider next the large rotations. It is resonable to assume here
that only out-of-plate rotations are allowed to be large, while in-piate
rotations are at most moderate. For this case we have estimates (7.4.11),
under which the exact expression (7.5.2) for Y, cannot be reduced.

B
Under (7.4.11) we obtain

K ' A e
n, = —wlu(l +ut] ) +wiiu iu + 0(nvB) (7.5.32)
_ K 1 A 2 1 A [ A ue Ay
n=1+u |K +t3 (u =k) 5 (u iy + a ) (u , tu !u) +
(7.5.33)
1 A _ A fH My
+7 Iu EHIRALY u i) + o)
=1 ! =
8,5~ "3 wfmmB + 0(n) = 0(8) (7.5.34)
It follows from (7.4.7) that
. - _—
K == (1+u|dwl ,+ (1 +u | )w u| -
aB K aB k' 'u TaB (7.5.35)
IR Y n8
wi,u }Au lap * o( X )
But from (7.5.34) we can obtain the estimates
K - xy _ _ 1 1«
6, Zu | = - 5w w|, + 0(6) (7.5.36)
Dat = Dajr ¥ gl T %ar|r
(7.5.37)

=—w| I
=-wjwl g + 0(50)

with help of which the formula (7.5.35) may be put in an alternative

form
1 K 1 K 2
K ,=-w| [1+=wlw +=(w w)-
aB afB 2 K 2 K (7.5.38)

- wIKuKEAwlA] + 0(%?1
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The formulae (7.5.35) and (7.5.38) for plates have their counterpart
in shell theory in formula (7.4.7) from which they may be obtained by

putting ba o.

8 =

If some small loss in accuracy is taken into bargain (7.5.35) and

(7.5.38) may be replaced by

—
- _ K| ! ! 1M u -
KuB (1 +u ‘K)w‘aB W|uw, w'aﬂ + 0( \ )
(7.5.39)
_ l Ko ' nv/e_'
= - (1 + 5 Wj wIK )W;GB + 0('—‘A )

It is interesting to note, that within the error indicated in (7.5.39)
Kag becomes polynomial of third order in the normal displacement gradients
only.

The exact formula (7.5.2) for v,g together with any of derived
relations (7.5.35), (7.5.38) or (7.5.39) for KGB may be used in the
Lagrangean virtual work principle (5.5.14) to oktain equilibrium equations
and natural boundary conditions, compatible with the assumption of large

out-of-plane and moderate in-plane rotations of plate material elements.
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