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Zusammenfassung

Die Losung des Eigenschwingungsproblems linear-elastischer Kontinua fihrt
zu einer unendlichen Folge von Eigenwerten mit zugeordneten Eigenschwin-
gungszustdnden. Die effektivste Methode zur Berechnung von Eigenwerten
ist das klassische Rayleigh-Ritz Verfahren bzw. die hiervon ausgehenden
geometrisch~kompatiblen finiten Verfahren, die obere Schranken fir die
exakten Eigenwerte liefern. Wie in der vorliegenden Arbeit gezeigt wird,
lassen sich gleichzeitig untere Eigenwertschranken mit Hilfe oberer
Schranken fir die Invarianten des Greenschen Integraloperators berech-
nen, womit man eine befriedigende Aussage Gber die Qualitdt der Eigen-

wertapproximation erhé&lt.

Die geometrisch-kompatiblen Veffahren liefern den Eigenwerten zugeordnete
N&herungen fir die entsprechendeh Eigenzustédnde. Hierfilir werden pauscha-
le Fehlerschranken mit Hilfe oberer und unterer Eigenwertschranken be-~
rechnet. Dariberhinaus wird gezeigt, daB man mit Hilfe entsprechender
Greenscher 2Zustdnde punktweise Schranken fir beliebige FeldgréBen eines
Eigenzustandes erhalten kann. SchlieBlich wird die numerische Realisie-

rung der angegebenen Verfahren fiir orthotrope Platten untersucht.

Summary

The solution of the eigenvibration problem of linear-elastic continua
leads to an infinite series of eigenvalues with associated eigenstates.
The moste efficient method for the calculation of eigenvalues is the
classical Rayleigh-Ritz method or equivalent geometrical-compatible
finite procedures, which yield upper bounds for the exact eigenvalues.
It is shown in this paper that lower eigenvalue bounds can be obtained
by calculating upper bounds for the invariants of Green's integral
operator, leading to a satisfying statement about the quality of the

eigenvalue approximation.

Together with the eigenvalues the geometrical-compatible procedures yield
approximations to-the eigenstates, for which global error estimates are
obtained by using upper and lower eigenvalue bounds. Furthermore it is
shown that with appropriate Green's states also pointwise error bounds
can be derived for arbitrary field quantities of the eigenstates. Final-
ly the numerical application of the given methocds is considered for

orthotropic plate problems.
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1. INTRODUCTION

The free vibrations of linear-elastic systems can be described by a
classical eigenvalue problem with a symmetric linear differential opera-
tor A. The most common method of approximating the fundamental frequen-
cies of the elastic system and eigenvalues of A, respectively, is the
classical Rayleigh-Ritz method, which allows a discrete representation
and finite approximation procedure for continuous structural systems.
Computing the eigenvalues as minima of the Ra?leigh quotient in a vector
space, the reduction of the eigenvalue problem on a space of large orx
infinite number of dimensions to an eigenvalue problem on a space of re-
latively few dimensions leads to an upper bound approximation. In spite
of an easy application and a minimal amount of computational effort the
Rayleigh-Ritz upper bounds need the complement of an adequate lower

bound approximation to calculate the maximum possible error.

For the lower bound a number of approaches has been proposed in the
literature, but missing a satisfying efficiency they have not gained a
popularity in engineering comparable to the Rayleigh-Ritz procedﬁre.
Courant [1920] first remarked that a weakening of prescribed conditions
leads to lower bounds for the exact eigenvalues. Weinstein, as summa-
rized by Gould [1957] or Weinstein and Stenger [1972], introduced the
method of "intermediate problems", which has been extended by Aronszajn
[1943] [1951]. The theory consists in constructing a "base problem" with
relaxed boundary conditions, for which an exact solution is available,
followed by a sequence of "intermediate problems" yielding a lower bound
approximation for the eigenvalues.Bazley [1961] and Bazley and Fox [1961]
[1962 al presented a procedure related to that of Weinstein and Aronszajn
using the decomposition of the strain energy into a first part, corres-
ponding to an exactly resolvable eigenvalue problem, and a second posi-
tive part. The lower bounds are obtained from the roots of finite de-
terminental equations. Starting with rough lower bounds obtained by
solving a base problem, Chang and Craig [1973] considered the improve-
ment of such lower bounds by applying an operator decomposition sugge-

sted by Kato [1953].

As pointed out by Trefftz [1933] lower bounds can be calculated by
using Rayleigh-Ritz upper bounds, if the first invariant of the analo-
gous Green's integral operator is known. Fichera [1966] generalized this

method by introducing the orthogonal invariants of a completely conti-



nuous operator. The crucial point lies in the fact that orthogonal inva-
riants cannot be computed in general, because the kernel of the Green's
integral operator is known only for special problems. This difficulty
can be overcome by computing upper bounds for appropriate invariants,
which had been considered by Fichera for homogeneous geometric boundary
conditions and by Stumpf [19701[1972 al and Rieder [1972] for arbitrary

homogeneous boundary conditions.

In contrary to a vast literature on eigenvalue bounding methods error
estimates for eigenvectors are subject only of a relatively few number
of papers, among which are mentioned here the papers of Weinberger [1960],
Bazley and Fox [1962], Bramble and Payne [1963], Moler and Payne [1968]
and Stumpf [19701[1972 a,bl. Using Rayleigh-Ritz approximations global
error bounds are given by Weinberger [1960] for the eigenvectors of a
symmetric linear operator and also pointwise error bounds for the case
of a special second order operator in two dimensions. Bazley and Fox
[1962]) estimate the difference in norm between an eigenfunction and a
given vector in the domain of existence of the operator 4, while Bramble
and Payne [1963] consider bounds applicable in forced vibration problems
of Dirichlet type. Moler and Payne [1968] derive mean square bounds for
the eigenfunctions of self-adjoint elliptic differential operators and
pointwise error bounds for the special case of a second order partial

differential operator with homogeneous geometric bouﬁdary conditions.

The solution of the eigenvalue problem for continuous systems leads
to an infinite series of eigenvalues with corresponding elastic eigen-
states. It is shown by Rieder [1968][1972] and Stumpf [1970]1[1972 a,b,c]
that pointwise error bounds for arbitrary field quantities of an ela-
stic eigenstate can be obtained by using appropriate Green's states,

if upper and lower bounds of the corresponding eigenvalues are known.

In this paper error estimates in eigenvalue problems of continuum
mechanics and the numerical application to eigenvibrations of orthotro-
pic plates are considered. Upper and lower bounds for the first ten
eigenfrequencies, global error estimates for the first elastic eigen-
state and pointwise bounds for the corresponding displacement field
and also for the corresponding stress couples are given. It should be
mentioned here that eigenvalue bounds for the natural frequencies of

clamped rectangular orthotropic plates had been computed recently by



Marangoni, Cook and Basavanhally [1978], who used the Rayleigh-Ritz and
Bazley-Fox techniques.

2. EIGENVALUE PROBLEM OF LINEAR CONTINUUM MECHANICS

Let @ be the domain of a linear elastic body with volume V and sur-
face S consisting of a part S1 with given geometric boundary conditions

and a part S, with given static boundary conditions. If geometric and

static quantities are prescribed on the same part S1 n 82 of the surface,
they must be mutually complementary to each other. Introducing a rectan-
gular Cartesian coordinate system the dgformétion of the elastic body
can be described by a displacement vector u with components ui(i==1,2,3)
joining the position & of a material point in the reference configuration

to its position in the deformed configuration.

The governing equations of the boundary value problem of linear ela-

sticity can be given in the following form:

strain tensor €,. = l-(u. L tu, )
ij 2 1i,) Jed
constitutive equations Oij = cijklekl
o g (2.1)
ij = Sijx1fx1
equilibrium equations g.. . +pb, =0
“ qu . 1].] e i J
geometric boundary conditions  u, () = u; (x) Vx € S,
L (2.2)
static boundary conditions oijnj(x) = pz(x) Vx € 82
In Egs. (2.1) cijkl is the fourth-order tensor of elastic moduli and
Sijkl the tensor of elastic constants. They are inverse to each other

and satisfy the well-known symmetry conditions. With p we denote the
mass density, with bi the vector of body forces and with P, the vector
of boundary forces. Asterisks indicate given values on the boundary.

Here and henceforth the usual summation convention will be used.

From Egs. {(2.1) (2.2) follow the relations defining the free vibrations
of a linear elastic system,if in Eq. (2.1)4 the body forces are replaced

by inertia forces due to harmonic motions



o] + pwzui =0, ’ (2.3)

ij, 3
and if the boundary conditions (2.2) are assumed to be homogeneous:

ui(x) =0 Vx € s1
(2.4)

n.(x) =0 Yx € 82

913"

In Eq. (2.3) w is the circular natural frequency.

Introducing Egs. (2.1)1 (2.1.)2 into Egs. (2.3) (2.4) the eigenvibra-

tions of continuous elastic systems are given by:

Au - Au =0
2 (2.5)
u € DA c L7@)
with the differential operator
Au = _(Cijklekl(u)),jei ' (2.6)

where ei is the unit vector in the direction of xi.

The displacement vectors u are considered as elements of the vector
space LZ(Q) of square integrable functions provided with a scalar pro-

duct <.,.> and a norm || .|[ ,
L

2 1/2
Yu,v € L7(Q) —> <u,»> = Juividv ; Ilul|L2= [[uiuiav] /2 .

Q 1Y)

The operator A is defined in the domain of existence QA c LZ(Q) with
elements u € D 4 sufficiently regular and satisfying the homegeneous boun-

dary conditions (2.4). It can be shown easily that 4 is symmetric and

positive:
<Au,v> = -J(cijklekl(u)),jvidv = Jeij(u)cijklekl(v)dv = <Y, Av> (2.8)
Q Q
= >
<Au,u> eij(u)cijklekl(u)dv =20 . (2.9)

D



Furthermore 4 is positive definite in QA with well-chosen homogeneous .

boundary conditions (2.4).

Defining a new scalar product on D ', for all u,v €0 ) by setting

<Au,v> = {u,v} (2.10)
with the norm:
ul| = V<du u> , (2.11)

it becomes a Hilbert space H by completion, where the elements u € #

have to satisfy the geometric boundary conditions.

The solution of the eigenvalue problem (2.5) is characterized by an

infinite series of eigenvalues An with corresponding eigenfunctions un

A, SA, S ..o 2 S L U, i u

1 2 n 1 P UG eee g (2.;2)

where each eigenvalue is repeated as many times as its multiplicity. We

may assume that the eigenfunctions are an orthonormal system:
U U > =6 <Au_,u_> = r_ 6 . _ (2.13)
n’ m nm n’"m n

The eigenvalues An can be obtained by minimizing the Rayleigh-quo-

tient

An = min EZ'Zl
u€EH !

for <u,um> =0 ; m=1,2,..., (n-1) , (2.14)

which is equivalent to the well-known minimax principle:

. {u,ul}
A= max [  min —_=1 , (2.15)
noy cH u€eH-V <u,u>
n-1 n-1

where Vn— c H is a linear variety spanned by n - 1 vectors vl”"'

1

vn-l(n > 1) of the Hilbert space f.



3. RAYLEIGH-RITZ UPPER BOUNDS FOR EIGENFREQUENCIES

According to the Rayleigh-Ritz approximation we have to choose a set
of v linearly independent elements wl H qb 7 oeee § ¢5 complete in f.
They span a v-dimensional subspace Vv c H such that every vector u € Vn

can be represented in the form
v

] =Za8w8 , (3».1)

B=1

With Eq. (3.1) the minimizing process of Eq. (2.14) and Eq. (2.15),
respectively, on a space of infinite dimensions H can be reduced on a
space of finite dimensions Uv’ The roots of the determinantal equation

(v)

det [{(Parlps} - L <(Da:tDB>] =0 (¢,B =1,...,Vv) (3.2)

yield a sequence of eigenvalue approximations

(v) (v)
L1 < L2 ... <% Lv B (3.3)

which are upper bounds to the exact eigenvalues An:

A <O <O a1 oy (3.4)

n- n n n n
V-0

Associated with‘the Rayleigh-Ritz eigenvalues (3.3) are eigenvectors

v) _ (v) ‘
vn = a8 qh ’ (3.5)
g=1

which are approximations of the exact eigenvectors u - The coefficients

aév) of Eq. (3.5) are defined by

L)
n

(v) - -
ag [{cpa.ws} - <cpa.tp8>] =0 (@ =1,...,V)
B=1

(3.6)
AY)

v
> <guepaal™ =1 .
a,B=1



Then
v) (v _ . (v) _(v), _ . (V) o :
<w > = snm ; {vn v } = Ln 6nm (nm=1,...,v) . (3.7)

4. ESTIMATES FOR EIGENVECTORS

To determine the degree of approximation of the Rayleigh-Ritz eigen-
vectors vn to the exact eigenvectors un, an upper bound of the difference
in norm <vn - un, vn - u> must be known. Such error bounds have been
considered by Weinberger [1960], Bazley and Fox [1962 b], Rieder [1968]
and Stumpf [1970][1972 b]. For the numerical computation of orthotropic

plate problems a formula of Weinberger will be used in this paper.

It is assumed that the eigenvalues are seperated A <A <A
n-1 n n+l

and that sufficiently good upper bounds Ln-l' Ln and lower bounds ln'

1 are known such that
n+1
Ln_1 < 1n < Ln < 1n+1 . (4.1)
To calculate an upper bound for
W ~u, v =us>=2(1-a) (4.2)
n n’ “n n n )

or a lower bound for ag the following theorem is proposed by Weinberger
[1960].

THEOREM:

Let L1 £...%5 Lv be the Rayleigh-Ritz upper bounds for the first v of
the eigenvalues Al <12 < ... of a symmetric linear operator A. Let .

1, < ... < lv be lower bounds for the first v eigenvalues of 4 such that

1
relation (4.1) is valid.

Define the numbers

i, <1i, ... < iN+1 ; 81 < 82 oo <BN by

i = + i = ] - = < H
i 1; i, = min {1|li>L1} i B, = max {B|LB < 112} ;

<1;}; B, = max {gln, <1, 1} .

-
]

L+ min {i 3 B 3 liu < LB

Then if Y, is the normalized Rayleigh-Ritz eigenvector corresponding to



the bound Ln and un is the normalized eigenvector of A corresponding to

the eigenvalue An

In addition we report a similar result given by Bazley, Fox [1962 bl.

Define the numbers Y by
l, -<4v ,v > , <4v ,v > <1,
i n n n n .1
Y. =4{0 r 1,2 <4Av_,v ><L, (4.4)
i n’’n i

<Av ,v > - L, , <AV _,v >>L,
n n 1 n n 1

Then
N
1 - - -
(an) 2 et <Avn,vn> ) <Avn,Avn> <Avn,vn>2 E 1N+1 1i
= - - _ 2+v2
n 1N+1 1n lN_'_1 ln = <Avn,Avn> <Avn,vn> +v2
i#n

(4.5)

Compared with Eq. (4.3) the formula of Bazley and Fox requires the com-
putation of the scalar product<<Avn,Avn>. Therefore the global bounds of
Eq. (4.3) for eigenvectors will be used in section 7 to obtain pointwise

error bounds for arbitrary field quantities of elastic eigenstates.

5. LOWER BOUNDS FOR THE EIGENVALUES An

The eigenvalues An of the differential eigenvalue problem (2.5) are

reciprocal to the eigenvalues [ of the integral eigenvalue problem

Gu - fu =0 n = %- u € L2(Q) ' (5.1)

where G is a completely continuous integral operator defined for all

u € L%(Q) by

Gu = [G(x,y)u(y)dvy . (5.2)
2



The kernel G(x,y) is Green's function, for which

”]G(ac.y) ldedey < (5.3)
919)

is assumed here.

The solution of the eigenvalue problem (5.1) is an infinite series of

eigenvalues

My > oy 2 ... 2 Mo 2 ... (5.4)

with associated eigenvectors

Up i Uy d eee § U T e ' (5.5)
corresponding to
Gun LN o . | (5.6)

The operator G of Eq. (5.1) can be generalized by using iterated kernels

" (z,y)
Gu = JGm(:c,y)u(y)dVy (5.7)
Q
leading to the eigenvalue equation
G -1"u =0 : (5.8)
The first invariant of the iterated kernel is given as

Il(Gm) = JGm(x,x)de ,  (5.9)
.

which is for m = 1 the trace of Green's function G(x,y).

As it is shown by Trefftz [1933] lower bounds for the eigenvalues Am

and upper bounds for Moo= *l-, respectively, '

A
n

1 <2 PR V- . | (5.10)

A £ L m <y ’ (5.11)



if the first invariant of Green's function G(x,y) or of an iterated

kernel Gm(x,y) is known.

Assuming the existence of Il(G) we have

Il(G) = JG(x,m)de = E uB (5.12)
Q B=1

yielding the inequality

\Y

(n)
I, (G) - E uB 2 L ' : (5.13)
B=1

(n)
where‘:E: means that the term corresponding to the index n is sup-
pressed from the summation. Replacing in the sum of Eq. (5.13) the

eigenvalues uB by Rayleigh-Ritz bounds m_, upper eigenvalue bounds

B
v
(n)
(v) _ _ :E : wv)
Mn = Il(G) mB 2 un
B=1
with (5.14)
M(\)) > M(v+1) lim M(v) =y
n n n n
V>0

are obtained.

This result was generalized by Fichera [1966], who derived eigenvalue
bounds of the form (5.14) by introducing the orthogonal invariants of

positive compact operators.

The crucial point in formula (5.14) is that an invariant of the
completely continuous operator G or of an iterated operator G is not
known in general, because the calculation of Green's function G(x,y)
is equivalent to the solution of the analogous boundary value problem.
Therefore we have to contruct a decreasing sequence of upper invariant

bounds

Il(Gp) 2 Il(Gp+1) 2 ... 2 I1(G) ;iz Il(Gp) = Il(G) ' (5.15)

which can be used to derive a converging sequence of upper eigenvalue

bounds
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v

(n)

(v,p) _ _ (v)

Mn = Il(Gp) E m 8 2 Mo
B=1

M(\’]_lpl) > M(VZIDZ) (v, €v . < 0 ) (5 16)

n = n 1 27 P1 =P )
1im M(\hp) = .

n

Vo
P+

Estimates of the type (5.15) will be considered in the following section.

6. UPPER BOUNDS FOR THE INVARIANTS OF GREEN'S FUNCTION

Let us consider the elastic states of a linear elastic body as elements
of a Hilbert space H. The scalar product of two elements f,g € H is de-

fined by the interaction energy of the elastic states f and g:

{f,g} = Jeij(fjcijklekl(g)dv = Joij(f)sijklokl(g)dv ’ (6.1)
Q 1Y) :
where Sijkl is the tensor of elastic coefficients, which is inverse to
cijkl' From Eq. (6.1) follows the norm

[ 7] =‘/ Jeijcijklekldv (6.2)

Y
representing the double elastic energy of the state f.

The Hilbert space H can be decomposed into two orthogonal subspaces
H' and H"

H - Hl @ Hn HI _I-Hu . (6-3)

In (6.3) H' is the subspace of loadstress states f' € H', which can be
derived from a displacement field satisfying homogeneous geometric

boundary conditions on S,, whereas H" is the subspace of self-stress

1
states f“ € H" satisfying the homogeneous equilibrium equation in £ and

homogeneous static boundary conditions on Sz. With these definitions

f=r+m; {f =0 _ (6.4)

is valid, from which (6.3) follows.
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Let f™~ be a geometrically admissible approximation of f satisfying
all geometrical conditions of f such that (f~ - f)' € H' and let f~ be
a statically admissible approximation of f such that (& - f)" € H".
Then the orthogonality condition (6.3)2 leads to the following estimates:

lF=-F~ll<|f~-7
lFf=r=ll<|lf~-r=

1 1
-5 ¢~+all=5llr~ -7l . (6.5)

To derive upper bounds for the invariants of a Green's function
G(r,y) we introduce elastic Green's states J%(y) € H, which are charac-
terized by a unit geometrical or statical singularity at the point y € Q
satisfying for x # y homogeneous equilibrium and compatibility equations

and on the boundary S, homogeneous geometric and on the boundary 52

1
homogeneous static conditions. At this moment it is assumed that -

||f<y>||< © .

The Green's function G(x,y) can be interpreted physically as %he
displacement field at a point x € { of an elastlc Green's state f(y)
produced by a unit force at y € Q. Therefore f (y) is a loadstress state

f '(y) € H'. . )
Using two Green's states f(x) and f(y) with unit forces at x and y,

respectively, we have:

0 0 0 2 :
Gx,y) = {fx) , F} G,x) = ||Ff@) ||° . (6.6)

In general the stress, strain or dlsplacement field of a Green's

state f (x) is unknown. So we choose a stat:x.cally admissible approxima-

tion f"’(x)

0 0 0 0 .
Pl = @ + T - £ @) 6.7)

0
yielding upper bounds for ” fe) “ .
0 2 0 2
@) = ||ff@)) 2 || Ff@ ] © = e, . (6.8)

0
In order to obtain a decreasing sequence of upper bounds H ) ||

we use a first approximation fg‘(x) and superpose a complete system of
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p linearly independent selfstress states by using stress functions with
unknown coefficients, which can be computed by a minimizing process.

This leads to

(@,€) 2 ... 2.G(x,x) . lim G (x,x) = Gx,x). (6.9)

G (c,x) =2 G
p p+oo

p+1

With relation (6.9) and Eq. (5.12) a decreasing sequence of upper

invariant bounds (5.15) can be calculated.

7. POINTWISE ERROR BOUNDS FOR ARBITRARY FIELD QUANTITIES OF

EIGENSTATES

In section 5 the eigenvibiation problem of linear elastic bodies had
been characterizedkanfeen's integral operator G defined by Eq. (5.2) on
the space of square-integrable displacement functions u € Lz(ﬂ). Ana-
logously a completely continuous operator B on the Hilbert-space H' of
loadstress states f' is constructed by the statement that for all f € H'
the elastic states Bf are defined by body forces b proportional to the
displacement u of f and homogeneous geometric and static boundary condi-

tions:

s ulx) vz € Q
(7.1)

-

bx) = Cu(x) Yz €EQ ,

f = Bf

where C is the mass density devided by the square of a time coefficient.

It can be shown easily that the operator B is symmetric:

Pﬁ
= b(l)ugz)dv = JCu(l)ufz)dV
Ji i i i
Q Q
= {fl'sz} . (7.2)

' With the symmetric operator B the eigenvibration problem is defined by

Bf - uf = 0 feEH (7.3)
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which corresponds to the eigenvalue problem (5.1). The solution of (7.3)

consists of an infinite series of eigenvalues un

.

ulzuzz...ZunZ...*O (7.4)

’ <n>
with associated eigenstates f satisfying

<n> <n> <n> <m>

Bf -u f =0 {f,f}=6m'n.-- (7.5)

n

The eigenvalues u_ are the stationary values of the Rayleigh-quotient

u{f} for all f' € H':

_ B _ g
wif} = 77 F.F
J i3 (u)c 1€kl (u)av JCu u,. av
gL =8 . (7.6)
Jelj (u)c, i9k1 €1 (u)av Jelj (u)c i3kl kl (u)yav
Q Q

where ﬁ{f'} is reciprocal to the Rayleigh-quotient A of the differential
operator A according to Eq. (2.14).

Repeated application of the operator B yields the eigenvalue equation
(7.5)1 in the form
<n> <n>

B'f-w f =0, (7.7)

where B” is the m~th iterated operator.

<n>
The eigenstates f can be represented by their displacement field

u or by the associated stress or strain fields. In <<erer to calculate
po:.ntw:.se bounds for an arbitrary field quantity of ?') we use Green's
states _?‘(x) with an appropriate geometric or static singularity at a
point x €Q. Besides the singularity the Green's states are characterized
by vanishing body forces and selfstress sources, whereas the geometric
and static boundary conditions are homogeneous. The s:.ngularlty of f(.'z:)

has to be chosen such that the scalar product { f ,f'(x)} yields the
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<n> <n>
field quantity F (x) for the n-the eigenstate f at a point x € Q:

<n> 0

<n>
F @) ={7Ff.f®} . (7.8)

<n>
In general the eigenstates f and the Green's states f(x) are unknown.

Therefore we derive a formula to calculate pointwise bounds for the field

quantity sought.

0
If the Green's state f(xr) has no finite energy, we usethem-th itera-
‘ 0
ted operator B™ with positive integers m such that || Bmf (@) || <o, Corres-

ponding to (7.8) we obtain

1 <n> m0
F @ =—=1{7Ff.,Bf@} m positive integer. (7.9)
U

To estimate the scalar product of the right side of (7.8) and (7.9),
<n>
respectively, the eigenstates f can be approximated by Rayleigh-Ritz

n n
eigenstates f € H', which are assumed to be normalized with || f|| = 1.

Then Schwarz' inequality yields:

0 0 <n> 0
1(F 8% @) - (7.8% @3 < || F-7Il |8 @]l . (7.10)

<n>
With (7.10) the field quantity F (z) according to (7.9) can be esti-

mated and we obtain the following result:

<n> n 0 <n>n 0

| F @ - = (587 @d <3 || r-fll |8 ]| . (7.11)
u u
n n

<n>
The application of formula (7.11) for pointwise bounding of F (x) con-

sists now of four parts:

the computation of upper and lower bounds for the eigenvalues U, which
had been considered in section 3 and 5; the derivation of an upper
lzg;md for ”<ff1‘>—3r‘l‘” expressing the difference in norm of the eigenstate
f and its Rayleigh-Ritz approximation, given in section 4; an esti-
mation of the norm H Bmf (x) || and the calculation of bounds for the
scalar product {?‘,Bmf (x)}, which will be considered in this section,
separately for the cases m = 0 : || ]9'(30) [<®,m=1: I BJQ‘(m) || < =,

. . . 9
:m arbitrary positive integer with: || Bmf(.'x:) || < o.
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0
aym=0: ||[f@)| <=

We approximate the unknown Green's.state fo' (x) by -;— (JQ‘V (x) + ng (x)).
With fp%x) we denote a geometrically admissible approximation of }cr)
satisfying all geometrical conditions of }(x), the compatibility condi-
tion and the geometric boundary conditions. Analogously let %z(x) be a
statically admissible approximation of %(x) satisfying all statical con-
ditions of‘%cr), the equilibrium equation and the static boundary con-

ditions. Then the orthogonality condition (6.5) leads to the estimation:

lf@l < s If@+7f@ll+5|[Ff@-7f@l. (7.12)

n
If f is a Rayleigh-Ritz approximation satisfying the geometric boun-
<n>

dary conditions of f , the scalar product

no n
{fif@)} = Fx) (7.13)

n n
yields the known field quantity F(x) of f+ which can be used in (7.11)
<n>
as approximation for the unknown exact field quantity F (x) of the

<n>
n-th eigenstate f .

0
b) m=1: ||Bf(:c)”<oo

0 .
For f(x) € H' we can put:

0 0 0~
f@) = f @ +g @ g @ et . (7.14)

By application of B we obtain

0 (V'
Bf (@) = Bf (x) + Bgo(x) . (7.15)

The last term on the right side of Eq. (7.15) can be estimated as

follows:

. Ong O~y 0, O~
1Bg @ [l 1Bl llg @l <ullf@-Ffall<ulf@-Ffwl,
(7.16)
where Hy is the largest eigenvalue of the operator B and M1 2 M, an
upper bound for M-
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O~ ,
The elastic state Bf (x) is defined by a body force density proportio-
nal to th% known displacement field of the geometrically admissible appro-
ximation f‘v (x) . Hence we use the following approximation:
Bf () = Bf (xN” + g, (&) (Bf () g, @) €H, (7.17)
where an upper bound for 91 () can be obtained:

0 0 -~
g, @ [ < |IBf @)™ - BF@n™|| . (7.18)

With the inequalities (7.16) and (7.18) we derive an upper bound for

0
the norm of Bf(x):
0 0 ~ 0 ~ 0 ~
1B [ < B~ @™+ || (Bf @™ - BF @n™|
ON ON
+ullf @ - @] . (7.19)
n_ 0
Furthermore we have to estimate the scalar product {f,Bf(x)} in formu-
la (7.11). We approximate the unknown state Bf(x) by (Bf~(x))~ and obtain
with (7.15) and (7.17):
0 0 ~
Bf(z) = (Bf (x)) +g, @ +By_@ (7.20)

which enables the calculation of global bounds yielding with (7.16) and
(7.18) :

0 0 0 0,
|{F.BF @)} - {F BF @)™} = |[{F.BF@) - Bf @)™}
n 0 0
<)l 7l 1 Bf @)y - BfF @)™ |

0. 0 S0 0
<l BF@)®- BF @)+ m | @ - @ |,

n n
where normalized Rayleigh-Ritz approximations f with || f || = 1 are used.
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0
c) m positive interger such that || B™f(x) || <=

Now we consider the general case with m a positive integer such
that the norm of Bmex) is finite. According to Stumpf [1970] and [1972c]

we proceed as follows:

0 0
m=0: fix) = f (@ + g, (@)

=@ &) +g_ ) (7.22)

0 0, 0
lr@ s [lo @]+ | F @ - Fw (7.23)

0
m=1:Bf(x) B(po(ac) +Bgo(ac)

Bo_ @)™ + g, (=) + Bg_ ()

@, @) +g, @) + go(ac) (7.24)

0 "~y
IBf@ || < |l o, @ ||+ ] Bo @)™ - Bo_ @n™|

Ors 0.,
+ M1||f @ - f @ || (7.25)
20 2
m=2:Bf(x) =By, (x) + By (x) +B g, @)

(Bq)1 @)™+ g, + 891(x) + Bzgo(x)

2
@, @) + g, @) + Bgl(m) +B g, @) (7.26)

I Br@ (< [l oy |+ [[Bo, @)™ - Bo, @)™l

+

M, || (Bo, @™ - B @)™l

+

) Oy On
ui | £ @) - £ || (7.27)

0 2
m>2:8"f (@) =By _ @) +By_ _, @) +Bg (@) +...+B"g_@)

(B,_, @)~ +g @) +Bg (@) + ...+Bg (@)

311}
@ (@) +g @) + Bgm_l(a:) + ... + Big_ (@) (7.28)
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0
I 8% @ < e @l + || Bo,_, @)™ - Bo _, @)™
| Bo, @)™ - B _, @)l

Ons Ons
fo+Mlf @ -F @l - (7.29)

0
Analogously we estimate the scalar product {?,B?fcr)} in formula

(7.11) for arbitrary positive integer m:
0 n 0
l{?‘lef x }‘{?‘r@m(x)}l = I{ferf(x) '(pm(m)}l

n 0
< FIHIBRf ) - @ @) ||
(] ~
< B _ @)™ - Bo _, @)+
M || Bo_,@n- By @)l +
N .
+... +MT|| fo@ - fo@ |l (7.30)

<n> n
With the estimates (7.29) and (7.30), with given upper bounds || f - f|

and upper and lower bounds for the eigenvalues un, two-sided pointwise
error bounds for arbitrary field quantities of an arbitrary eigenstate
<?? can be calculated by application of formula (7.11). In order to
improve the numerical results we choose zero-approximations (B¢%(x)):
and (Bq, (x) )? and superpose a complete system of linearly independent
loadstress states and selfstress states with unknown coefficients, which

can be determined by minimizing processes.

8. APPLICATION TO CLAMPED RECTANGULAR ORTHOTROPIC PLATES

To describe the eigenvibrations of a clamped rectangular orthotropic
plate, we use a Cartesian coordinate system (X,y,z), where the X,y-plane
coincide with the undeformed plate middle surface. The equation of motion

can be given in the form

= ltw = 4w = %w - 3%w _
DXB}_{“+2HW+DYQ- +ph-an~—O (8.1)

with the boundary conditions:



X1
1
O

»

w=w= =0 for

(8.2)
w o, ;

for y = 0,b ,

where w is the diplacement of the middle surface, p the mass density and

h the plate thickness.

The rigidities are defined by

[EJ] [ET] .
5 e X L5 oo ¥ 5 ol 55
Dy 1—vxvy ’ Dy l-vxvy ! ny 2 (1 vx"y) Dny . (8.3)

In the formulas (8.3) E is Young's modulus, J the moment of inertia and

v Poisson's ratio. Also the definitions are introduced:

= 1 = = = - . _
D, = 3 (bv +Dv) ; H=D + 2ny s U=

xVy v x 1 . _(8.4)

For the special case of isotropic plates we have

— _.-_"’._;_Eha e D = e P = e
vx = vy =V ; Dx = Dy = N'- 12 (1) ° D1 = W ; ny == N . (8.5)

In the following formulas normed coefficients D = B/N, H = H/N and

normed coordinates x=Xx/a, y = y/b will be used.
The solution of (8.1) is assumed in the following form
w(x,y,t) = u(x,y) cos (wt + a) (8.6)
yielding the eigenvalue problem

PR 2 o'y

a a. 4 3% B
Dy axB * 2H(G) 5amagz * D (p) gk - A =0
(8.7)
u = u 0 for x = 0‘1 ;o u= du = 0 for = 0,1
ox ot T 9y ¥ !

with the eigenvalues

A= pha4m2/N . : (8.8)
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. a%u a2 3% a.4 3%u
Au—Dx'é;-E'+ 2H(b) W-I-Dy(b) a—yj:;' (8.9)

is symmetric and positive definite for all u satisfying (8.7)2. Therefore
the methods described in this paper can be applied to obtain approximate
solutions.

The scalar products (2.7)1 and (2.10) yield with (8.9)
11

<u,v> = Jjuvdxdy (8.10)
00

11
_ a4 a,2
_JJ[Dxu,xxV,xx * Dy(b) u,yyv,yy * Dl(b) (u,xxv,YY ¥ u,yyv,xx)
00

a .
+40 (F)u v o laxdy , (8.11)

where {u,v} is the interaction energy of two elastic states represented

by their displacement fields u and v.

With the constitutive relations

_ = 32u . = 32%u
Mex = P1 3%z * Dy 332
_ = .azu = 3%u
Myy = Dx -3-'2-(_2.+ D1 —52— (8.12)

— o 3%u
My = Pyy %07

12 .
the interaction energy {f,f} can also be expressed by

11
1 2} al* /N2 [ 1 2 1 2 1 2 1 2
{£,£f} = 5;5;35?- DxMxxMxx + DyMyyMyy - DI(MxxMyy + Mynyx)
00
DD -DF | »
5 Mxnyy] dxdy . (8.13)

To calculate Raleigh-Ritz upper eigenvalue bounds we approximate the

displacement field by a function
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= Z :aa(pa - (8.14)

with coordinate functions wﬁ of the form
21-0%20 -3 1,5 integers. (8.15)

The minimizing procedure described in section 3 yields upper eigen-
value bounds Lév) (table 1) and associated Rayleigh-Ritz approximations

of the eigenfunctions.

To derive lower eigenvalue bounds and pointwise erxor bounds for the
eigenvectors we use the Green's function g(xo,yo) of a singular force
: 0

acting at a point (xo,yo) of the plate. Usually the Green's function u

is splitted into a fundamental part @i and a regular part g:

0 _ ® Vv
u(xo,yo) = u(xo,yo) + u(xo,yo) P (8.16)

where the fundamental part for p = H/VDxDy is given by Stein [1959]:

- - b s oy
X = (% -%)/ Vb Y= -3/ B
=0
2.9 2. Jowrran?
2.y = 41 2 0 AF T + 2xy 4/ +/2xy+y
8“.5232; /2 x2—Voxy+y?
2 2
+._l.{x2 arctan &§~+ y2 arctan if }H
/7 y X
O<ux<1
. 2,42 -
By = e B 1 AT 2RI

T . )
8n/beY V2 (1+p)

Xy o[22 Ry ry?

+ 2 -
/1-uZ X2-/2(1-1) xy+y?
1 2 /1—11z x2 2 /1-112 x2
+ —————— {X“ arctan + y° arctan XZ iy 1]

V=L Yerux
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x? + yz) {1+1n /x2+y2}

l<yuy<e

2,2
Gx,y) = ,,1 [, YX® + 2uxcys + y*
an.VDny' Y2 (1+p)"

2 ——EZ—-arctan _gé%;%ﬁéﬂ' +

+
/u2—1
2_1 2 2I
+ 1 {lens/(uh/p 1) x2+y
V2 (u-1)’ (= Yu2-1") x2 + y2
. 2 2_l 2l
+y21n‘/" *lur i1 y? oy (8.17)
x2 +(u-—¢u2—1) y2

With (8.16) we approximate the unknown Green's state
0 © v
£x_ry)) = £(x_,y)) + £(x_,¥.) (8.18)

. 0
by a geometrically admissible approximation f”(xo,yo)

0 . 0 © v
f'"(xo:yo) : u'"(xo,yo) = U(xoyyo) + u'"(xolyo) ’ (8.19)

where &"(xo,yo) has to satisfy the geometrical boundary conditions of
the regular part X(xo,yo). For the numerical computations of &”(xo, yo)

a complete system of coordinate functions is used.

0
Representing the Green's state f(xo,yo) by the stress couple tensor

0 0 .
0 Mxx(xo'yo) Mxy(xo’yo)'
= 8.20
M(xo,yo) 6 o ( )
Myx(xo'yo) Myy(xo,yo),

we have equivalent to (8.16):
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0 o Vv
M(xo,yo) = M(xo,yo) + M(xoryo) ’ (8.21)

- )
where the fundamental partoM follows from (8.17) by (8.12). With (8.21)
the unknown Green's state f(xo,yb) can be approximated also by a stati-

cally admissible approximation

0 0 © \ :
f“(xolyo) : W(xo.yo) =M(xo,y°)+W(xo,yo) ' (8.22)

where M(x +y,) follows from (8.17) by (8.12), and MN has to satlsfy the
homogeneous equilibrium equatlons and the statical conditions of M It

is convenient to derive M§ from stress functions ¢,Y¥:

Vo _ 30 v e _ L Y, 30
M By oy P M= Gy (8.23)

Representing the stress functions ¢,Y by a complete system of coordi-

nate functions

3 = Z aij (x-xo)l(y-yo)j

i,j
(8.24)
= —x )Yy -y )3
Ebij(x xo) (¥ yo)
i,
the coefficients aij' bij can be computed by minimizing
11
0 2 0 0 0.0
| £,y 0|12 = =2 ||io M2 +p M2 - 2o MM +
o' "o Dny-D1 X XX Y vy 1 xx'yy
0
DD-D20
X 1 2 0 2
+ 5, M Jaxay = llf(xo,y°)|| e (8.25)

which is an estimate of the form (6.8) and which enables the calculation

of lower eigenvalue bounds.

According to the formulas given in section 7 the approximations
(8.19) and (8.22) will also be used to derive pointwise error bounds
for the first eigenfunction <é> and for the stress couples of the first

. <1l>
eigenstate £ .
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9. NUMERICAL RESULTS

The computations are carried out for a/b = 1 and

= 0,218161 ; D, =0,0457317 ; u=1 .

Dx = 1,52439 ; Dy = 0,152439 ; ny 1
(9.1)

Using 144 coordinate functions for the Rayleigh-Ritz approximation
and 98 coordinate functions for the estimation of the first invariant

(5.12) the following results are obtained:

1 —
m, = 7~ = 0,002909 ; I, (Gyg) = 0,0029125 . (9.2)

Upper Rayleigh-Ritz bounds and lower bounds according to the methods

described in section 5 are given in table 1 for the first 10 eigenvalues:

n ln Ln n 1n Ln
977,07 979,84 6 8710,80 8936,55
1865,05 1875,19 7 11941,72 12370,11
4098, 36 4147,66 8 17024,17 17908, 31
6276,87 6393, 25 9 18497,97 19546,52
8163,27 8361, 20 10 22089, 68 23601,60
Table 1

With these eigenvalue bounds formula (4.3) yields a global bound

for the first eigenstate

| - }|| < o,015483 . (9.3)

<1>
Let u be the first eigenfunction and & a corresponding Rayleigh-Ritz

approximation. With A& we denote an upper bound for the difference

<l> 1 1
[” ey ) - ux ,y )| S Bulxiy) o (9.4)



. <l>
the following pointwise error bounds for the first eigenfunction 11(x°,y°)

have been obtained (for reason of symmetry the results are given for one

~ quarter of the plate):

-2 -

X Yo 111 Hg“(xo,yo) ” A111 A1.11/\£
0,5 0,5 0,0779 0,09143 0,001416 1,82 %
0,5 0,6 0,0723 0,09221 0,001428 | 1,97 %
0,5 0,7 0,0566 0,08687 0,001345 2,38 %
0,5 0,8 0,0343 0,07101 0,001099 3,21 &
0,5 0,9 0,0107 0,04327 0,000670 6,26 %
0,6 0,5 00,0716 - 0,08914 0,001380 1,93 %
0,7 0,5 0,0543 0,07528 0,001166 2,15
0,8 0,5 | 0,0310 0,06078 0,000941 3,04 %
0,9 0,5 0,0089 0,03923 0,000607 6,82 %
0,6 0,6 0,0664 0,08820 0,001366 2,06 %
0,7 0,7 0,0393 0,07202 0,001115 2,84 %
0,8 0,8 0,0134 0,06545 0,001013 7,56 %
0,9 0,9 0,06018 - 0,003028 0,000047 | 26,05 %

Table 2
Furthermore pointwise error bounds for the stress couple <&;x of the
first eigenstate <%>
<i> 1 1
[ M (x_,¥) - Mo ¥ )| S MM (% ,y.) (9.5)

have been calculated and the results are given in table 3:
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xO yO élXX N&xx AMXX/MXX
0,5 | 0,5 0;4255, 0,04482 1Q,4é
0,5 { 0,6 0,4542 0,04716 10,38
0,5 | 0,7 0,5264 0,03746 7,11
0,5 | o,8 0,6268 0,03259 5,20
0,5 | 0,9 0,7237 0,09879 13,65
0,6 | 0,5 0,4306 0,04360 10,13
0,7 | 0,5 0,4400 0,03028 6,88
0,8 | o,5 0,4534 0,08555 18,87
0,9 | o,5 0,4725 0,1919 40,62
0,6 | 0,6 0,4578 0,04403 9,62
0,7 | 0,7 0,5358 0,04819 8,99
0,8 | o,8 0,6425 0,10212 15,89
0,9 | 0,9 0,7573 0,24187 31,94

Table 3
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