
Heft Nr. 144

Mitteilungen aus dem Institut für Mechanik

RUHR-UNIVERSITÄT BOCHUM
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Zusammenfassung

Diese Arbeit zeigt verschiedene Aspekte der kontinuumsmechanischen Model-
lierung von Phasentransformationen auf. Basierend auf den kontinuumsmecha-
nische Grundlagen werden, abhängig von der zu beantwortenden Fragestellung,
zwei Beschreibungen erarbeitet.

Der erste entwickelte Ansatz basiert auf einer expliziten Nachverfolgung des
Bewegung der Phasengrenze und ermöglicht daher eine sehr genaue Betrach-
tung lokaler Phänomene in einem Einkristall. Er kann z.B. im Rahmen eines
Werkstoffdesigns verwendet werden. Zur Beschreibung der Einzelphasen wird
die Randelementemethode verwendet; die numerische Beschreibung der Bewe-
gung der Phasengrenze verwendet die selbe Diskretisierung.

Die zweite Beschreibung setzt auf einer anderen Beschreibungsebene an. Hier
steht die Verwendbarkeit der entwickelten Größen in einem Stoffgesetz zur
Beschreibung ausgedehnter Strukturen im Vordergrund. Daher wird eine ge-
eignete Homogenisierung der mikromechanisch hergeleiteten Größen durchge-
führt und korrespondierende makroskopische Größen erarbeitet. Der Zusam-
menhang zwischen klassischen Beschreibungen und diesen Größen werden auf-
gezeigt.

Summary

This Thesis covers diffrent aspect of the continuum-mechanical modeling of
phase transformations. Based on the principles of continuum mechanics, two
descriptions are developed based on the problem statement to be answered.

The first approach is based on the explicit tracking of the movement of the
phase boundary. Therefore, it allows to examine local phenomena within the
grain with high accuracy and may be used in a material design process. The
boundary element method is employed to describe the bulk material; the same
discretization is used to track the movement of the phase boundary.

The second described approach is focused on another length scale. The use of
the description within a material law to describe large structures is the main
focus. Thus, an appropriate homogenization scheme is employed in order to
bridge the micro-mechanically developed measures to the macroscopic scale.
The relations between classical descriptions an the newly developed measures
are shown.
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1

1 Introduction

When a mathematical description of the behavior of a material is to be de-
veloped, different views regarding the material at different length scales might
be considered. This choice may depend on the material considered, the task
the material law is designed for, and the educational background of the de-
veloper of the material law. Classically, the following definitions are common,
the denotations might be used differently:

• The macroscopic scale which is observable with unarmed eye. On this
scale, the material is treated as a continuum. Models developed solely
following a descriptive design on this scale are often termed phenomeno-
logical, as they do not incorporate the underlying scales. This leads
sometimes to the problem, that only the phenomena observed during
the modeling process can be described appropriately but fail when other
situations are present. However, as these models are derived on the
macroscale, they allow to be incorporated into finite element codes to
model structures at a larger scale.

• The mesoscopic scale is the scale underlying the macroscopic scale. Here,
the inhomogeneities due to the fact that a polycrystal consist of differ-
ently oriented single crystals is taken into account. Models derived on
this scale often incorporate the behavior of the single crystal and use a
scale transition scheme to reach the macroscopic scale. Due to the mod-
eling scale and the scale transition, the numerical effort may be too large
on the macroscopic scale for some applications.

• The microscale explicitly incorporates defects in the arrangement of the
atoms as dislocations. Furthermore, phase boundaries within grains are
explicitly captured, leading to a relatively exact description of the phe-
nomena on this scale.

• On the atomistic scale, the interaction of the atoms are explicitly taken
into account. Thus, a model developed on this scale may explain the
reorientation and occurrence of certain atomic arrangements. Therefore,
it may serve as a base for a model which predicts the crystallographic
structure.



2 1 Introduction

• Below the atomistic scale, a description based on electrons, neutrons,
positrons or even quarks and leptons is possible and necessary if the
problem to be solved can be most easily described on this scale.

As each modeling scale has an underlying physical scale, heterogeneities are
always present on the modeling scale due to this underlying scale. Thus, since
a start at an infinitesimal material point is physically not possible, an assump-
tion about a representative volume element (RVE), with certain assumptions
about its homogeneity is always necessary. Taking this into account, such thing
as THE right modeling scale which does not need any assumptions related to
an underlying scale does not exist. However, one may ask if all physical phe-
nomena of the underlying scales are important for the questions posed in the
problem to be solved, or is the exact knowledge of the exact position of each
atom of a bridge necessary to predict its behavior when loaded by a train? Thus
a proper choice for the modeling scale highly depends on the question, if the
material response can be correctly predicted for the given problem. If the
material response can not be predicted with the material law developed, the
underlying scale has to be taken into consideration.

An important aim of this monograph is to clarify the motivation for the choice
of the scale of the description. The presented examples are concerned with the
description of shape memory alloys (SMA). However, in chapter 4, a problem
related to the movement of the transition front within a grain is discussed
whereas in chapter 5, a modeling strategy for a macroscopic, phenomenological
description is presented. As the observations on the various length scales are
quite different, a brief introduction to the observed phenomena, relevant to
the problem to be addressed, is given in each section.

The outline of this work is as follows: in chapter 2, the general foundation for
the further derivations and examples presented in chapter 4 and 5 is laid out.
In chapter 3, some constitutive assumptions and derivations for a material
point, or homogeneous material on the length scale considered, are derived.
These chapters are important for the following two chapters in which two
different approaches to the description of shape memory alloy are presented:
in chapter 4, an approach is presented which focuses on the description on the
scale of a single crystal. The evolution of the austenite-martensite interface is
explicitly tracked and a numerical scheme to describe the process is proposed.
In chapter 5, a macroscopic approach is presented which may be used to supply
a macroscopic description used to model structures.
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neutrons, positrons, quarks

macroscale

scale transition

specimen

scale transition

scale transition

scale transition

atomistic scale

atoms

mesoscale

polycrystal

single crystal

microscale

Figure 1.1: Different modeling scales
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2 Thermomechanical frame

The chapter provides the continuum-mechanical foundation necessary to un-
derstand the examples presented in sections 4 and 5. It is not intended as
a replacement for a textbook. It is only included to ensure a degree of self
containment of this monograph and to put special emphasis on the aspects
important for the examples. For a more extensive discussion on the subject,
the reader may refer to textbooks on continuum mechanics, as e.g. Eringen
(1975), Becker & Bürger (1975), Marsden & Hughes (1983), Ogden (1984),
Altenbach & Altenbach (1994), Šilhavý (1997), Wilmanski (1998), or Başar &
Weichert (2000).

After fixing the notation, the kinematics of deformation, balance laws and
thermomechanical aspects for a homogeneous body are discussed. This path
is followed as it allows a natural development from the description of motion,
the introduction of the concept of stress by the balance laws of momentum,
and bridging to thermodynamics via the energy balances. As this monograph
is concerned with the description of phase transformations, the extension to
bodies which include discontinuities is a vital part of this chapter. These
derivations close this chapter as they are the starting point for the consider-
ations in section 4 as well as 5, therein interpreting the same foundation on
different scales.

2.1 General preliminaries

This section provides the definitions and notation related to vectors and tensors
and is only included for reference to achieve a certain degree of self-containment
of this monograph. However, some aspects are treated more in detail as they
are important for the derivations done in this monograph. More extensive
details on this subject can be found in books on tensor calculus as e.g in
Betten (1987) or Altenbach & Altenbach (1994).

2.1.1 Mathematical notation

Throughout this text, an orthonormal coordinate system is used if not other-
wise stated. The scalar product of two base vectors ei and ej of this system



2.1 General preliminaries 5

follow

ei · ej = δij (2.1)

where δij denotes the Kronecker-delta

δij =

{

1 if i = j
0 otherwise.

(2.2)

A first order tensor can be described by

a = ai ei (2.3)

where ai are the tensor components of a in a coordinate system with the or-
thonormal base vectors ei. If not otherwise stated, the summation convention
is implicitly employed. The length of a is denoted by

|a| =
√
ai ai. (2.4)

A second order tensor can be understood as a “dyadic product” of two vectors
such that

A = a⊗ b (2.5)

the dyadic product being

A = a⊗ b = ai bj ei ⊗ ej = Aij ei ⊗ ej . (2.6)

Contraction operators are defined such that a single dot “·” denotes a single
contraction

a · b = ai bi

A ·B = Aij Bjk ei ⊗ ek (2.7)

A · b = Aij bj ei

and a double dot “:” denotes a double contraction

A : B = Aij Bij . (2.8)



6 2 Thermomechanical frame

Some properties of these contractions are

(A ·B)
T

= BT ·AT

(A ·B)
−1

= B−1 ·A−1

A : B = tr
(

A ·BT
)

(2.9)

(A : B)
T

= BT : AT

(A : B)
−1

= B−1 : A−1.

Special second order tensors, some common operators on second order tensors,
and some definitions and properties are

1 = δij ei ⊗ ej

tr (A) = Aii

A′ = A− 1

3
1 tr (A)

(

AT
)

ij
= Aji

A ·A−1 = 1 (2.10)

A−T =
(

A−1
)T

=
(

AT
)−1

sym (A) =
1

2

(

A + AT
)

skew (A) =
1

2

(

A−AT
)

2.1.2 Vector products

The scalar product of two vectors is defined as (cf. Bronstein et al. (1997))

a · b = |a| |b| cosϕ (2.11)

where ϕ with 0 ≤ ϕ ≤ π denotes the angle enclosed by a and b.

The cross product is defined by

a× b = |a| |b|n sinϕ (2.12)

where n · a = 0, n · b = 0, and |n| = 1. (a,b,n) constitute a right hand
system. Thus, the cross product yields a vector of the length of the area
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of the parallelogram spanned by a and b and perpendicular to both vectors.
Combining (2.11) and (2.12) such that

v = (a× b) · c = det(a,b, c) (2.13)

leads to the conclusion that v denotes the signed volume spanned by a, b and
c. The cross product c = ciei of two vectors a = aiei and b = biei can also
be determined by

c = ck ek = a× b = ai bj ǫijk ek (2.14)

where ǫijk denotes the Levi-Civita symbol

ǫijk =







1 if i, j, k are clockwise
−1 if i, j, k are counter-clockwise

0 otherwise.
(2.15)

Employing the symbolic notation ǫ = ǫijk ei ⊗ ej ⊗ ek, equation (2.14) can be
expressed as

c = a× b = (a⊗ b) : ǫ. (2.16)

An important aspect is that the double tensor product of a symmetric second
order tensor and the Levi-Civita tensor yields zero, i.e.

1

2

(

A + AT
)

: ǫ = 0. (2.17)

2.1.3 Tensor invariants

The eigenvalues λA and eigenvectors NA of the second order tensor A satisfy
the equation

A ·NA = λA NA. (2.18)

In general, the length of the eigenvectors is not defined. In what follows |NA| =
1 is chosen. The three eigenvalues λA1 , λA2 , and λA3 can be determined by solving
the characteristic equation

det(A− λA 1) = 0. (2.19)
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This equation is cubic in λA and leads to the three, not necessarily nonequal,
eigenvalues of A. It can be expressed as

λA
3 − IA

1 λA
2

+ IA
2 λ

A − IA
3 = 0 (2.20)

where the invariants of A

IA
1 = tr (A) (2.21)

IA
2 = −1

2

(

tr (A ·A)− tr (A)
2
)

(2.22)

IA
3 =

1

3

(

tr (A ·A ·A)− 3

2
tr (A ·A) tr (A) +

1

2
tr (A)

3

)

(2.23)

are used. These invariants are often called principal invariants whereas tr (A),
tr (A ·A), and tr (A ·A ·A) are termed invariants of A. However, as the
invariants IA

1 , IA
2 , and IA

3 can be expressed as a linear combination of tr (A),
tr (A ·A), and tr (A ·A ·A), these descriptions are equivalent. The invariants
of the deviator of A

A′ = A− 1

3
1 tr (A) (2.24)

read

JA
1 = tr

(

A′
)

= 0 (2.25)

JA
2 = −1

2
tr

(

A′ ·A′
)

= IA
2 −

1

3
IA
1

2
(2.26)

JA
3 =

1

3
tr

(

A′ ·A′ ·A′
)

= IA
3 −

1

3
IA
1 IA

2 +
2

27
IA
1

3
. (2.27)
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The derivatives of the invariants of A and its deviator A′ with respect to A

read

∂IA
1

∂A
= 1 (2.28)

∂IA
2

∂A
= −AT + 1 IA

1 (2.29)

∂IA
3

∂A
= (A ·A)

T −AT IA
1 + IA

2 1 (2.30)

∂JA
2

∂A
= −A′T (2.31)

∂JA
3

∂A
=

(

A′ ·A′
)T

+
2

3
JA

2 1. (2.32)

Furthermore, the identity

∂ det(A)

∂A
= det(A)A−T (2.33)

will be of later use.

For symmetric second order tensors, the eigenvalues are real and the eigenvec-
tors mutually orthogonal. The orthogonality of the eigenvectors can be used
to derive the spectral decomposition1 of A. By using

A =
3

∑

i=1

A ·NA
i ⊗NA

i (2.34)

for NA
1 ⊥ NA

2 ⊥ NA
3 ⊥ NA

1 in conjunction with (2.18) yields the spectral
decomposition of A

A =

3
∑

i=1

λAi NA
i ⊗NA

i . (2.35)

1The form presented here for the spectral decompositions assumes that three indepen-
dent eigenvalues exist in order to keep the presentation as clear as possible. An approach
addressing the situation where this does not hold can be found in Hoger (1986) or Carlson
& Hoger (1986).
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The orthogonality of the eigenvectors can only be assured if no multiple eigen-
values are determined. A geometrical interpretation of the spectral decompo-
sition can be found if the preceding relation is rewritten as

A = QAT · diag(λA1 , λ
A
2 , λ

A
3) ·QA (2.36)

where QA = (NA
1 ,N

A
2 ,N

A
3 )T is an orthogonal rotation matrix, interpreting

the spectral representation as a representation in a rotated configuration.

2.2 Deformation and motion

The following derivations are based on the assumption that the body under
consideration is continuously filled with matter, i.e. the principles of continuum
mechanics are followed. In addition, it is required that all relevant measures
within the examined region R are C0 continuous. Thus, in addition to the first
assumption which rules out the existence of strong discontinuities, i.e. gaps,
the existence of weak discontinuities, i.e. jump of stresses, strains, etc., is ruled
out by the second requirement. However, the region R might be only a part
of the whole domain involved in the problem. In section 2.4 approaches are
presented which deal with the violation of the latter requirement.

2.2.1 Kinematical frame

The basic definitions and derivations presented here are well accepted and in
common use without any objections. Thus, the following section related to
the kinematical frame is added only for, at least partial, self completeness of
this monograph. For further details, refer to the textbooks mentioned at the
beginning of this chapter.

2.2.1.1 Reference configuration and deformation gradient

The description of the deformation of the material is parametrized by the in-
troduction of a referential configuration B0 in addition to the time dependent
actual configuration B which describes the current state of the material. A
material point P in the actual configuration is uniquely identified by its posi-
tion in the referential configuration (cf. figure 2.1). Thus, given a position X
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χ

P

X

P

dx

dX
B0

x

B

Figure 2.1: Reference configuration B0 and actual configuration
B.

of a particle P in a time-independent referential configuration, the position of
the material point can be specified by the mapping χ as

x(X, t) = χ(X, t). (2.37)

The description in material coordinates X is termed Lagrangian description
where as the denotation Eulerian description is used when the spatial coordi-
nates x are employed. Since the comparison of actual and reference configura-
tion does not require the knowledge of intermediate stages of deformation, the
time dependence is dropped for the implicit introduction of the deformation
gradient F by the total derivative of x

dx =
∂x

∂X
· dX = F · dX. (2.38)

Thus, the definition of the deformation gradient F reads

F =
∂χ(X, t)

∂X
= χ(X, t)⊗∇0 = x⊗∇0. (2.39)
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2.2.1.2 Deformation of area and volume elements

Consider an infinitesimal area element da in B such that

da = n da (2.40)

where n describes the normal to the material surface and da its area. Let dx
be an arbitrary material line cutting the edge of da such that dxT · da > 0,
one may calculate the volume dv of an infinitesimal element with the base
area da and the generator dx as

dv = dxT · da. (2.41)

Considering the same area element in the referential configuration, one may
state

dA = N dA (2.42)

where N describes the normal to the material surface and dA its area.
The same arguments applied to the undeformed arbitrary line element
dX = F−1 · dx leads to

dV = dXT · dA. (2.43)

Introduction of a measure for the relative volume change J such that

dv = J dV (2.44)

leads, by using (2.41) and (2.43), to

dxT · da = J dXT · dA. (2.45)

Use of the transpose of equation (2.39) and considering the arbitrariness of X

leads to

FT · da = J dA. (2.46)

Thus, one may relate the infinitesimal area element in the current and the
referential configuration by

da = n da = J F−T ·NdA = J F−T · dA, (2.47)
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a relation often referred to as Nanson’s formula.

Constituting a triplet TX of infinitesimal vectors in the referential configura-
tion TX = ( dX1, dX2, dX3), by the use of equation (2.13), the volume dV
spanned by them can be determined to be

dV = (dX1 × dX2) · dX3 = detTX . (2.48)

The triplet may be chosen such that dV > 0. In the actual configuration,
each vector dxi is deformed according to dxi = F · dXi and the volume dv
spanned by the triplet is

dv = ( dx1 × dx2) · dx3 = [(F · dX1)× (F · dX2)] · (F · dX3). (2.49)

Using the relation det(A ·B) = detA detB, one may express equation (2.49)
as

dv = det(F ·TX) = detFdV (2.50)

and, using (2.44)

J = detF. (2.51)

2.2.2 Material frame indifference

The invariance of the used measures with respect to changes of the position
and orientation of the observer is crucial in a continuum mechanical descrip-
tion. Thus, presuming that the reference configuration is independent of the
observer2, the position vector x must transform according to

x∗(X, t∗) = c(t) + Q(t) · x(X, t), (2.52)

where the vector c describes the movement and Q, a proper orthogonal tensor
with Q · QT = 1 and det(Q) = 1, the rotation of the observer. Measures
which follow this rule are said to be objective or material frame indifferent.

2Refer to Ogden (1984) for a more elaborate discussion on the subject.
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For Lagrangian scalars α0, first order tensors α0, and second order tensors A0

the objectivity requirements may be formulated as

α∗
0 = α0

α∗
0 = α0 (2.53)

A∗
0 = A0.

For Eulerian scalars α, first order tensors α, and second order tensors A the
transformations rules are

α∗ = α

α∗ = Q ·α (2.54)

A∗ = Q ·A ·QT .

Following the idea that a second order tensor can be understood as the dyadic
product of two first order tensors, a second order tensor may not necessarily
solely belong to one configuration as the two vectors constituting the second
order tensor may belong to different configurations. Such a tensor is called
“two-point tensor”. The objectivity requirements can be derived following the
idea mentioned above, i.e by describing a two-point tensor as

Â = α⊗α0 (2.55)

or

Ã = α0 ⊗α. (2.56)

Now, (2.53b) and (2.54b) can be used to yield

Â∗ = Q · Â (2.57)

and

Ã∗ = Ã ·QT . (2.58)

For example, the deformation gradient transforms as

F∗ = Q · F. (2.59)
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U

R V

R

F

Figure 2.2: Polar decomposition of F

As the left component of the dyadic product in the definition of the defor-
mation gradient (2.39) belongs to the actual configuration, the deformation
gradient follows the correct transformation rule confirming the requirement of
objectivity (2.57). For the Jacobian J ,

J∗ = det(Q · F) = det(Q) det(F) = det(F) = J (2.60)

holds, yielding the proper transformation rule for a scalar.

2.2.3 Strain measures

The deformation gradient F can be uniquely decomposed by the polar decom-
position3

F = R ·U = V ·R (2.61)

where R is a proper orthogonal tensor and U and V are both symmetric and
positive definite. Based on these measures, the right Cauchy-Green tensor

C = UT ·U = FT · F (2.62)

3For the two decompositions introduced in (2.61), the rotation tensor generally may be
different. However, it can be shown (Ogden (1984)) that they are identical.
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and left Cauchy-Green tensor

b = V ·VT = F · FT (2.63)

are defined. For b,

b∗ = F∗ · F∗T = Q ·F · FT ·QT = Q · b ·QT , (2.64)

the proper transformation rule for an Eulerian tensor, holds whereas for C,

C∗ = F∗T · F = FT ·QT ·Q · F = FT · F = C (2.65)

the proper transformation rule for a Lagrangian tensor, can be derived. As b

and V are coaxial as well as C and U, V and U are also objective measures
of their respective configurations.

Following Hill (1978), a general class of strain measures can be defined em-
ploying the spectral decomposition of V and U. A scaling function f(λ) is
defined. It may be used to define Eulerian strain measures

e(m) =

3
∑

i=1

f(λVi )NV
i ⊗NV

i (2.66)

or Lagrangian strain measures

E(m) =

3
∑

i=1

f(λUi )NU
i ⊗NU

i . (2.67)

As the resulting strain measure is coaxial either to V or to U, it is an objective
measure within its corresponding configuration. The scaling function is chosen
such that the measures yield zero for rigid body motions and coincide to the
measure for small deformations when F = 1 is approached. These conditions
can be fulfilled if

f(λ) =











1

m
(λm − 1) if m 6= 0

lnλ otherwise

(2.68)
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is chosen. For example, the Green-Lagrange strain tensor E can be derived for
m = 2 such that

E(2) =
1

2

3
∑

i=1

(

λU
i

2 − 1
)

NU
i ⊗NU

i =
1

2
(C− 1) = E, (2.69)

for m = −2, the approach yields the Almansi strain tensor e

e(−2) = −1

2

3
∑

i=1

(

λV
i

−2 − 1
)

NV
i ⊗NV

i =
1

2

(

1− b−1
)

= e. (2.70)

2.2.4 Velocities

The velocity of a material point P is denoted by

v =
d

dt
x. (2.71)

For later use, it is convenient to define the velocity gradient tensor by

L = v ⊗∇ =
∂v

∂x
=

∂v

∂X
· ∂X
∂x

= Ḟ ·F−1. (2.72)

Its symmetric part is denoted by

D =
1

2

(

L + LT
)

, (2.73)

its antimetric part by

W =
1

2

(

L− LT
)

. (2.74)

By applying relation (2.33) to the deformation gradient, post-multiplying by
ḞT and making use of the definition (2.72), one may derive

∂J

∂F
· ḞT = J F−T · ḞT = J LT . (2.75)

As J = J(F), its time derivative can be calculated to be

J̇ =
∂J

∂F
: Ḟ = tr

(

∂J

∂F
· ḞT

)

= tr
(

J LT
)

= J tr (L) . (2.76)
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2.2.5 Objective time derivative

To better understand the motivation behind the concepts introduced in this
section, one may consider the following example. Given an objective Eulerian
second order tensor A, i.e.

A∗ = Q ·A ·QT (2.77)

holds. For a large class of problems, the formulation of the material law in
rate form is useful. This introduces the time derivative of A. The check of the
requirement of material frame indifference for the material time derivative Ȧ

yields

d

dt
A∗ =

d

dt

(

Q ·A ·QT
)

= Q̇ ·A ·QT + Q · Ȧ ·QT + Q ·A · Q̇T

6= Q · Ȧ ·QT (2.78)

as the orientation of the observer might change in time. Thus, the material
time derivative Ȧ of a general second order tensor A may not be objective.
This problem leads to the introduction of a so called objective time derivative
◦

(•) (in contrast to the material time derivative d(•)/dt = ˙(•)). The material
law is now formulated in terms of the objective time derivative instead of the
material time derivative, employing objective measures. The first objective
time derivative was the Zaremba-Jaumann derivative

◦

A= Ȧ−W ·A + A ·W. (2.79)

However, this derivative yields non-physical results in a shear test, thus its use
was discouraged. Other objective derivatives have been proposed in the past,
as e.g. the Green-Naghdi derivative

▽

A= Ȧ−Ω ·A + A ·Ω. (2.80)

with Ω = Ṙ ·RT . The existing objective time derivatives can be categorized in
two classes: the convective and the corotational time derivatives. %indexLie
concept
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Objective rates can be developed based on the assumption that the material
time derivate suffices when applied to a tensor in the referential description.
However, the application of the material time derivative is not limited to the
referential description; any configuration coaxial with the referential configu-
ration qualifies for the application of the concept, the so called Lie concept.

In order to understand the ideas behind the Lie concept, first it is necessary to
introduce the concept of the “pull-back” and the “push-forward” of a tensor.
These operations transfer the components of a tensor from the deformed into
the undeformed base and vice versa. As the resulting push-forward or pull-back
operation is bound to the way the indices are chosen, the concept of the co-
and contravariant description of tensors is given here, as far as it is necessary
to follow the ideas introduced in this section. A more elaborate description
can be found in numerous textbooks, refer for example to Başar & Weichert
(2000).

The assumption that the base vectors of the underlying base system are or-
thonormal is explicitly not used within this section, i.e. the metric does not
collapse to the Kronecker-delta. In addition, two base systems are introduced.
The covariant base system is constituted by gi, where the metric gij is defined
by

gij = gi · gj . (2.81)

Generally gij 6= δij holds. The contravariant base system is constituted by gi,
where the metric gij is defined as

gij = gi · gj . (2.82)

The metrics can be used to yield

gi = gij gj and gi = gij gj . (2.83)

Furthermore, it can be shown that

gi · gj = δi
j (2.84)

holds. An Eulerian second order tensor A may thus be equivalently represented
by a combination of co- or contravariant base vectors

A = Aik gi ⊗ gk = Ai
·k gi ⊗ gk = A·k

i gi ⊗ gk = Aik gi ⊗ gk. (2.85)
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In the referential configuration, the base vectors are denoted by Gi and Gi.
The metric in the referential configuration reads

Gik = Gi ·Gk and Gik = Gi ·Gk (2.86)

with properties equivalent to those defined for gi and gi in (2.83) and (2.84).

The deformation gradient can now be expressed in terms of the base vectors
such that

F = gi ⊗Gi. (2.87)

Its transpose, inverse, and transpose of inverse read

FT = Gi ⊗ gi, F−1 = Gi ⊗ gi, F−T = gi ⊗Gi, (2.88)

respectively. Using (2.87) and (2.88), one may derive

gi = F ·Gi, Gi = F−1 · gi, gi = F−T ·Gi, and Gi = FT · gi. (2.89)

The pull-back φ∗(A) of A can be interpreted as the expression of the Eulerian
tensor A in terms of the referential base system Gi or Gi. For covariant
components, one may derive

A = Aik gi ⊗ gk = Aik F−T ·Gi ⊗Gk ·F−1 (2.90)

and finally

A0 = AikG
i ⊗Gk = FT ·A ·F. (2.91)

The push forward φ∗(A0) of the Lagrangian Tensor A0, i.e. the description
of A0 in terms of the Eulerian base vectors gi or gi, can be derived in the
same manner. Obviously, the choice of the proper push-forward or pull-back
operation depends on the choice of the tensor components, leading to four
different operations, depending on the representation of the tensor. For second
order tensors the resulting operations are summarized in table 2.1.
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components (in B) pull-back push-forward

A = Aik gi ⊗ gk φ∗(A) = FT ·A · F φ∗(A0) = F−T ·A0 · F−1

A = Aik gi ⊗ gk φ∗(A) = F−1 ·A · F−T φ∗(A0) = F ·A0 · FT

A = Ai
·k gi ⊗ gk φ∗(A) = F−1 ·A · F φ∗(A0) = F ·A0 · F−1

A = A·k
i gi ⊗ gk φ∗(A) = FT ·A · F−T φ∗(A0) = F−T ·A0 · FT

Table 2.1: Push/Pull operations for second order tensors

The results of table 2.1 imply a new interpretation of the left and the right
Cauchy-Green tensor: using the proper indices for C, it can be expressed as

C = FT · F = φ∗(1), (2.92)

leading to the interpretation that it is the pull back of the unit tensor into the
referential configuration. For the left Cauchy-Green tensor, one obtains

b = F ·FT = φ∗(1), (2.93)

implying the interpretation that it is the push forward of the unit tensor of
the referential description.

The idea underlying the Lie concept may be described as follows:

• the Eulerian tensor A is pulled back into a configuration in which the
use of the material time derivative is objective,

• the material time derivative is applied, and

• a push-forward is applied to the resulting term.

This procedure yields an objective time derivative of A. Mathematically, the
procedure can be described by

Lν(A) = φ∗

(

d

dt
{φ∗(A)}

)

(2.94)

Using the Lagrangian configuration as the reference configuration described in
the steps above, one may obtain the derivatives as stated in table 2.2.
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components Lie derivative

A = Aik gi ⊗ gk Lν(A) = Ȧ + LT ·A + A · L
A = Aik gi ⊗ gk Lν(A) = Ȧ− L ·A−A · LT

A = Ai
·k gi ⊗ gk Lν(A) = Ȧ− L ·A + A · L

A = A·k
i gi ⊗ gk Lν(A) = Ȧ + LT ·A−A · LT

Table 2.2: Lie derivatives for co-, contra-, and mixed indices.

However, the choice of the configuration used for the pull-back is only bound to
the requirement, that the material time derivative leads to objective measures.
This broadens the applicability of the Lie concept. One example for such a rate,
even though the choice of the referential frame is not explicitly defined within
the frame described by the authors, is the recently introduced logarithmic time
derivative (Xiao, Bruhns & Meyers (1997a; 1997b; 1999; 2000a; 2000b)).

2.3 Thermomechanical frame for homogeneous material

Before developing the thermomechanical frame, some introductory remarks on
the nature of the introduced measures have to be made. One important dis-
tinction in thermodynamics is the question whether a parameter is intensive
or extensive. An intensive parameter has a distinct value depending on the
spatial position, i.e. it may vary from point to point within the body. The
corresponding extensive parameter can be constructed by integrating the in-
tensive parameter over a volume of the body. A prominent example for such a
pair, also addressed in the following section, is the extensive parameter mass
and the intensive parameter mass density. The mass of a body is determined
by a volume integration of the mass density over the domain of the body. An
intensive parameter, where the corresponding extensive parameter lacks the
prominence of its counterpart, is the temperature. The volume integration
of the temperature does seldomly appear in balance relations. However, it
may be divided by the volume of the body, interpreted as a mean value of
its intensive counterpart for the domain considered. Due to arbitrariness of
the domain integration, the intensive description is often favored in continuum
mechanics. Nevertheless, the correspondence to the physical intuition is often
more facile to grasp when the balance laws are expressed in their extensive
representation. Thus, the derivations often start with the extensive form and
yield the intensive form.
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An extensive parameter is homogeneous of degree one with respect to mass
or volume. Thus, an extensive parameter describing the state within a cer-
tain region can be additively composed from the extensive partial parameter
of arbitrary subregions of the body. From this, it follows immediately that
all balance relations must be linear with respect to all extensive parameters
appearing in the equations. This highlights the importance of the extensive
parameters when governing equations at the discontinuity are derived in sec-
tion 2.4. Since not only the discontinuity itself, but also its neighborhood has
to be considered, only extensive parameters can serve as valid parameters for
these derivations.

2.3.1 Transport theorem

For the following balance laws, time derivatives of integrals over the control
volume are necessary. The derivation with respect to time is worked into the
integral and further used in a similar fashion for the different balance relations.
To keep the focus on the balance laws in their respective sections and keep the
notation and derivations as simple as possible, the used procedure is derived
here in a slightly more general form. Let A be an n-th order Tensor, i.e.
A = Ai···j ei⊗· · ·⊗ej , the Gauss theorem for the domain R may be expressed
as

∫

∂R

A⊙ n da =

∫

R

A⊙∇ dv (2.95)

where ⊙ ∈ {·,⊗,×}. It may be noted that the use of the Gauss theorem is not
bound to a specific configuration, i.e. it might be used in any configuration.
The three terms can be replaced by the proper counterparts of any arbitrary
configuration, as e.g. dA, dV , and ∇0 for the referential configuration, as long
as the continuity of the measures is assured. The material time derivative of
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the volume integration of A can be expressed as

d

dt

∫

R

A dv =
d

dt

∫

R0

A J dV

=

∫

R0

(

dA

dt
J + A

dJ

dt

)

dV

=

∫

R0

(

Ȧ J + A J tr (L)
)

dV

=

∫

R

(

Ȧ + A tr (L)
)

dv

=

∫

R

(

Ȧ + A tr (D)
)

dv. (2.96)

This relation will be frequently used in the following relations. An alternative
form can be derived by use of the point that the tensor A depends on time t
and the spatial position x, i.e. A = A(x, t). One may use

Ȧ =
∂A

∂t
+ (∇A) · v (2.97)

and write

d

dt

∫

R

A dv =

∫

R

(

Ȧ + A tr (L)
)

dv

=

∫

R

(

∂A

∂t
+ (∇A) · v + A∇ · v

)

dv

=

∫

R

(

∂A

∂t
+ ∇ · (Av)

)

dv

=

∫

R

∂A

∂t
dv +

∫

∂R

Av · nda. (2.98)

This relation will be of use when the relations for nonhomogeneous regions are
derived.
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2.3.2 Balance of mass

The region R is homogeneously filled with matter with a time and spatially
varying mass density ρ = ρ(x, t) ≥ 0. The total mass of the region can be
calculated to be

m =

∫

R

ρ(x, t) dv. (2.99)

It is noteworthy that the integral bounds are not fixed in time. As the region
deforms, they may change. Since no reference is made to an observer in its
definition, the mass m in R is intrinsic to the region R, independent of the
motion of R and therefore an objective scalar. As the mass contained inside
the region may not change4, one may introduce

ṁ =
d

dt
m =

d

dt

∫

R

ρ(x, t) dv = 0. (2.100)

This statement is the principle of the conservation of mass. As the choice of
the control volume is arbitrary, one may also choose an infinitesimal control
volume and write relation (2.100) as

d

dt
(ρdv) = 0. (2.101)

Using (2.44) and (2.76), one may derive the local form of the mass balance

ρ̇+ ρ tr (L) = ρ̇+ ρ∇ · v = 0 (2.102)

or, by the use of (2.97),

∂ρ

∂t
+ ∇ · (ρv) = 0. (2.103)

As equation (2.102) may be valid for any homogeneous region, one may derive
an alternative extensive form of the mass balance as

∫

R

(ρ̇+ ρ tr (L)) dv = 0. (2.104)

4An extension not restricted to this issue is presented in section 2.4.
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Since the mass m within R is independent of the choice of the configuration,
one may state for the referential configuration

m =

∫

R

ρ(x, t) dv =

∫

R0

ρ0(X) dV (2.105)

where ρ0 denotes the mass density for the arbitrarily chosen referential config-
uration R0. Employing equation (2.44), one may express the mass density in
the referential configuration as

ρ0 = Jρ. (2.106)

2.3.3 Balance of linear momentum

The balance of linear momentum can be stated as

d

dt

∫

R

ρv dv =

∫

∂R

f da+

∫

R

ρb dv. (2.107)

The left hand side describes the resulting forces due to inertia, the first term
on the right hand side the resultant of the force f(x, t) acting on the surface
of the region R, and the second term the resultant due to volumetric forces
b(x, t) acting in R.

The Cauchy stress tensor σ is introduced such that

σT · n = f . (2.108)

Making use of the mass balance in the form (2.101) leads to

∫

R

ρ v̇ dv =

∫

∂R

σT · n da+

∫

R

ρb dv. (2.109)

By employing the Gauss theorem (2.95), i.e. substituting

∫

∂R

f da =

∫

∂R

σT · n da =

∫

R

∇ · σ dv, (2.110)
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one arrives at another extensive form of the balance of momentum
∫

R

ρ v̇ dv =

∫

R

(∇ · σ + ρb) dv. (2.111)

Using again the arbitrariness of the control volume leads to the intensive form
of the balance of linear momentum in the actual configuration

ρ v̇ = ∇ · σ + ρb. (2.112)

In some publications, this relation is referred to as Cauchy’s first law of motion.

By using Nanson’s formula (2.47) and the relations (2.44) and (2.106), equation
(2.109) may by expressed as

∫

R0

ρ0 v̇ dV =

∫

∂R0

J σT ·F−T ·N dA+

∫

R0

ρ0 b dV. (2.113)

By introducing the nominal stress tensor

P = J F−1 · σ, (2.114)

one may express the extensive form of the balance of linear momentum in
terms of the reference configuration as

∫

R0

ρ0 v̇ dV =

∫

∂R0

PT ·N dA+

∫

R0

ρ0 b dV, (2.115)

the referential counterpart to relation (2.109). By using the Gauss theorem
with respect to the referential configuration, one may derive a relation in close
analogy to equation (2.111)

∫

R0

ρ0 v̇ dV =

∫

R0

∇0 ·P dV +

∫

R0

ρ0 b dV. (2.116)

This leads directly to the local form of the linear momentum balance for the
referential configuration

ρ0 v̇ = ∇0 ·P + ρ0 b. (2.117)
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It is noteworthy that, even though the Cauchy stress is symmetric for a large
class of problems as shown in the next section, the nominal stress tensor is
generally non symmetric. Its transpose

T = PT (2.118)

is denoted first Piola-Kirchhoff stress5. The pull-back of the traction vector
f into the referential configuration, which is energetically motivated as later
shown, denoted by f0 = F−1 · f , leads to the introduction of the second Piola-
Kirchhoff stress

S = F−1 ·T = J F−1 · σT · F−T . (2.119)

The motivation behind the introduction of the second Piola-Kirchhoff stress
tensor will be more extensively discussed in section 2.3.5. Note that this tensor
is symmetric if the Cauchy stress tensor is symmetric. One example for another
stress definition is the Kirchhoff stress or weighted Cauchy stress

τ = J σ. (2.120)

A more detailed discussion on other possible choices for the stress description
can be found in Ogden (1984).

2.3.4 Balance of angular momentum

In this monograph, volumetric and surfacial moments are not taken into ac-
count for the homogeneous region R. Due to this restriction, only the result-
ing moments of body and surface forces are taken into account to express the
change of the angular momentum as

d

dt

∫

R

ρ (x− x0) × v dv =

∫

∂R

(x− x0) × f da+

∫

R

ρ (x− x0) × b dv

(2.121)

5The use of the denotation “First Piola-Kirchhoff stress” and “nominal stress” is not
fixed and sometimes used reversed, i.e. the First Piola-Kirchhoff stress is defined as the
transposed tensor.
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or, for a fixed point x0 by making use of the identity v×v = 0 and employing
relation (2.101) as

∫

R

ρ (x− x0) × v̇ dv =

∫

∂R

(x− x0) × f da+

∫

R

ρ (x− x0) × b dv.

(2.122)

Substitution of the balance of linear momentum (2.112) and the definition of
the Cauchy stress (2.108) yields

∫

R

(x− x0) × (∇ · σ) dv =

∫

∂R

(x− x0) ×
(

σT · n
)

da. (2.123)

Conversion of the surface integral into a volume integral by means of the Gauss
theorem and by introduction of the Levi-Civita Tensor ǫ (cf. equation (2.15))
leads to

∫

R

σ : ǫ dv = 0. (2.124)

As the control volume may be chosen arbitrarily,

σ : ǫ = 0 (2.125)

holds, which can generally only be fulfilled if

σT = σ. (2.126)

Thus, the restriction imposed in the opening of this section leads to the con-
clusion that the Cauchy stress tensor is symmetric. In some publications, this
relation is referred to as Cauchy’s second law of motion.

Even though this relation could be incorporated into the preceding equations,
it is not used in order to clarify the similarities between equations in the actual
and their corresponding relations in the reference configuration.



30 2 Thermomechanical frame

2.3.5 Balance of energy

2.3.5.1 Balance of kinetic energy

One possible point of departure for the notion of energy is the balance of linear
momentum. Multiplying relation (2.112) by v and using the mass balance
yields a work rate, the mechanical stress power

1

2
ρ (v · v)· = ρv · b + v · (∇ · σ). (2.127)

Integrating this term over the volumeR, use of the Gauss theorem, the balance
of mass, and integration by parts leads to

d

dt

∫

R

1

2
ρv2 dv =

∫

R

ρb · v dv +

∫

∂R

(σT · n) · v da−
∫

R

σ : L dv. (2.128)

By introducing the kinetic energy

E =

∫

R

1

2
ρv2 dv, (2.129)

the work rate due to the mechanical external forces

P =

∫

R

ρb · v dv +

∫

∂R

v · (∇ · σ) da, (2.130)

and the rate of the deformation energy

Ẇ =

∫

R

σ : L dv, (2.131)

relation (2.128) may be restated in the form

d

dt
E = P − Ẇ . (2.132)
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Use of the same procedure leads to the balance of mechanical energy in terms
of the referential description6

d

dt

∫

R0

1

2
ρ0 v2 dV =

∫

R0

ρo b·v dV+

∫

∂R0

(P·N)·v dA−
∫

R0

PT : ḞdV.(2.133)

Equations (2.128) and (2.133) are called balance of kinetic energy (Gyarmati
(1970)) or mechanical balance of energy (Schade (1970)).

2.3.5.2 Conjugate stress analysis

The last part of equations (2.128) and (2.133) may also be expressed as

Ẇ =

∫

R

ρ ẇ dv =

∫

R0

ρ0 ẇ dV (2.134)

where the definition of the specific mechanical work rate, i.e. per unit mass,

ẇ =
1

ρ
σ : L =

1

ρ
σ : D =

1

ρ0
τ : D (2.135)

is used. This scalar can also be expressed in terms of the referential configu-
ration as

ẇ =
1

ρ0
P : ḞT =

1

ρ0
TT : ḞT . (2.136)

The Kirchhoff stress τ and the stretching tensor D form a pair of variables
which are, due to the fact that their double contraction yields a work rate,
energetically conjugate. The same applies for the pair consisting of the first
Piola-Kirchoff stress T (or the nominal stress P) and the material time deriva-
tive of the deformation gradient Ḟ. This grouping is not unique. One may
also find other pairs, e.g. the second Piola-Kirchhoff stress S and the Green-
Lagrange strain E

ẇ =
1

ρ0
ST : Ė (2.137)

6The symmetry of the Cauchy stress tensor was implicitly used to derive relation (2.133).
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which provides the energetic motivation for the introduction of the second
Piola-Kirchhoff stress.

Apart from the possible addition of an arbitrary antimetric tensor, the group-
ing of the quantities to yield an expression for ẇ is unique providing that one
component of the pair is fixed. However, the grouping is no longer unique
when a relation for w with ẇ = dw/ dt is to be derived. For descriptions in
the referential frame, no difficulties arise. The material time derivative of a
quantity is replaced by the quantity itself to yield w. For the Eulerian descrip-
tion, this is not possible as the use of the material time derivative leads to a

non-objective measure. Thus, the objective time derivative
◦

(•) of a tensor is
introduced, presuming that

ẇ =
1

ρ0
Π :

◦
e . (2.138)

holds. Considering in this section only the constraints due to thermodynamics,

Π and e are pairs of stresses and strains as described above,
◦

(•) may be either
an objective time derivative or, for measures in the referential configuration,
the material time derivative. Furthermore, it is required that the chain rule
can be applied to a potential φ = φ(A) such that

φ̇ =
∂φ

∂A
:
◦

A (2.139)

holds. For corotational rates, which can be derived following the Lie concept
employing a configuration in which the material time derivative is sufficient
as described in section 2.2.5, Bruhns (2003) has shown that this holds true.
However, it may not be possible to prove the existence and uniqueness for any
objective rate.

2.3.5.3 First law of thermodynamics

Turning the focus to thermodynamics, the first law of thermodynamics states,
that the sum of work done by the external forces and the thermal energy
supplied to the region have to equal the change of the total energy of the body
R. The thermal energy supplied to the region Q̇ can be described by

Q̇ =

∫

R

ρ r dv −
∫

∂R

q · n da (2.140)
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where r denotes volumetric, specific heat sources (e.g. due to chemical re-
actions) and q the heat flux within the region R. Thus, the term −q · n
describes the heat flux into the region R through its surface. In contrast to
section 2.3.5.1 where only the total energy was taken into account, the energy
stored due to atomistic or micro processes is considered. In order to reflect
this, an additional energy term is introduced, the internal energy U . Classi-
cally, this term accounts for the thermal energy stored in the body due to e.g.
atomic oscillation. The total energy Et of the region R can be expressed as

Et = E + U. (2.141)

The first law of thermodynamics is now to be postulated as

d

dt
Et =

d

dt
(E + U) = P + Q̇. (2.142)

Combination of this equation with the mechanical form (2.132) leads to the
form

d

dt
U = Ẇ + Q̇. (2.143)

By introducing the specific internal energy implicitly by

U =

∫

R

ρ u dv, (2.144)

one may rewrite relation (2.142) as

d

dt







∫

R

1

2
ρv2 dv +

∫

R

ρ u dv







= (2.145)

∫

R

ρb · v dv +

∫

∂R

(σT · n) · v da+

∫

R

ρ r dv −
∫

∂R

q · n da.

The combination of this variant of the first law of thermodynamics with the
balance of the mechanical kinetic energy (2.128) leads to the continuum-
mechanical version of the first law of thermodynamics in the extensive form

d

dt

∫

R

ρ udv =

∫

R

ρ r dv −
∫

∂R

q · n da+

∫

R

ρ ẇ dv. (2.146)
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The intensive form can be derived after application of the Gauss theorem (2.95)
and the mass-balance as

u̇− ẇ − r +
1

ρ
∇ · q = 0. (2.147)

Again, these relations can also be obtained in terms of the reference configu-
ration in extensive form

d

dt

∫

R0

ρ0 u dV =

∫

R0

ρ0 r dV −
∫

∂R0

q0 ·N dA+

∫

R0

ρ0 ẇ dV (2.148)

and in intensive form

u̇− ẇ − r +
1

ρ0
∇0 · q0 = 0. (2.149)

Here, the referential heat flux q0 = J F−1 · q is introduced.

2.3.5.4 Thermal energy

The local form of the first law of thermodynamics (2.147) may be stated as

u̇ = ẇ + q̇ (2.150)

where the thermal flux

q̇ = r − 1

ρ
∇ · q (2.151)

has been introduced. In section 2.3.5.2, a pair of variables is identified which
lead in proper combination to the notion of the mechanical work rate ẇ. Fol-
lowing the ideas of rational thermodynamics (cf. Muschik et al. (2001)), two
scalar variables s and Θ are introduced such that

q̇ = Θ ṡ. (2.152)
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The variable Θ is an intensive variable, s an intensive, specific variable. Thus,
an extensive variable entropy

S =

∫

R

ρs dv (2.153)

can be defined as well. Both specific entropy s and temperature Θ are prim-
itive concepts, i.e. nothing is said how to define or measure these quantities.
Especially regarding the temperature it is important to note that the connec-
tion to the usual notion of temperature is yet to be established and may only
be shown for equilibrium thermodynamics. However, within this monograph,
the measure Θ is adopted as the thermodynamic temperature without further
derivation.

2.3.6 The second law of thermodynamics

The second law of thermodynamics is not a fundamental relation derived from
basic physical considerations. It is merely a statement following experimental
observations, which does not make it less strict as violations of the rule could
not be experimentally justified. The balance of entropy is adopted in the
extensive form

d

dt

∫

R

ρ sdv ≥
∫

R

ρ r

Θ
dv −

∫

∂R

q · n
Θ

da. (2.154)

This statement can be interpreted such that the change of total entropy within
the region under consideration must be always larger or equal to the entropy
change due to external entropy supply or drain due to heat transfer. A local
form of relation (2.154) can be derived as

ρ Θ ṡ ≥ ρr −∇ · q +
1

Θ
q ·∇Θ, (2.155)

a relation often referred to as the Clausius-Duhem inequality. The referential
forms of equations (2.154) and (2.155) are

d

dt

∫

R0

ρ0 sdV ≥
∫

R0

ρ0 r

Θ
dV −

∫

∂R0

q0 ·N
Θ

dA (2.156)
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and

ρ0 Θ ṡ ≥ ρ0r −∇0 · q0 +
1

Θ
q0 ·∇0Θ. (2.157)

If a material law is developed in accordance to inequalities stated in this sec-
tion, it is said to be thermodynamically consistent7..

2.3.7 State space

The state space is introduced in order to describe the problem completely, i.e.
the material behavior at time t can be expressed in terms of the variables in
the state space at time t (cf . Muschik et al. (2001)). The variables contained
in the state space are independent variables. However, the spatial derivative
of a variable may be included as well as the variable itself. This is in conflict
with the fact that the value of the scalar quantity at two different points and
the spatial gradient of the quantity are not independent. Thus, the require-
ment of independence of the variables within the state is only locally valid.
The requirement of independence yields certain restrictions on the choice of
the variables. The inclusion of both the mass density ρ and the deformation
gradient F would violate this requirement as the mass density can be expressed
in terms of the deformation gradient as ρ0/ρ = detF.

A state space Z is called large (cf. Muschik et al. (2001)) if the material
properties are defined by maps local in time, i.e. the state of the substance can
be completely described by the state variables. A state space Z is called small
if the material properties depend on the history of the state variables. In the
following, the focus will be on large state spaces as the functional dependence
involved in small state spaces is not convenient. Thus, the process history may
be captured by the introduction of an appropriate set of internal variables
into the state space. As the use of a large state space prohibits the use of
functionals, the total strain may generally not be included into the space.
Instead, only its reversible part8 may be included in the state and the inelastic
behavior is described by an appropriate set of internal variables which are part
of the state space.

7In addition, the Maxwell relations (2.185)-(2.188) have to fulfilled as well. However, they
are not included in this definition of thermodynamic consistency as they are restrictions due
to the introduction of the concept of potentials and not due to physical observations.

8The definition of the reversible part is based on thermodynamical considerations as
amplified later.
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As a consequence of the requirement that the chosen state space may com-
pletely describe the material, all other variables can be described in terms of
the chosen state. If, for example, the state space consists of the scalar x, the
Eulerian first order tensor y and the Eulerian second order tensor Z, i.e.

Z = {x,y,Z}, (2.158)

then a variable φ arising in the problem description can be expressed in terms
of the state, i.e. φ = φ(x,y,Z). Consequently, all measures derived from φ
can also be derived from the state space, as e.g.

φ̇ =
∂φ

∂x
ẋ+

∂φ

∂y
·
◦
y +

∂φ

∂Z
:
◦

Z, (2.159)

providing that the chain rule as noted in section 2.2.5 holds, or

∇φ =
∂φ

∂x
∇x+

∂φ

∂y
· (y ⊗∇) +

∂φ

∂Z
: (Z⊗∇). (2.160)

In order to simplify the notation, the expression

φ̇ =
∂φ

∂Z

◦

Z (2.161)

shall be used equivalently to equation (2.159).

2.3.8 Affinities and fluxes

Within the theory of the description of inelastic continua, it is fundamental
that general processes are not reversible. Thus, the mechanical work rate aris-
ing in such a process may be additively split into a reversible and an irreversible
part

ẇ = ẇr + ẇi. (2.162)

As the working variable in relation (2.135) is the velocity gradient tensor L,
the decomposition (2.162) implies a decomposition of L into a reversible part
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Lr and an irreversible part Li. Equivalently, providing that τ = τT holds, a
decomposition of the the stretching tensor D such that

D = Dr + Di (2.163)

is implied. Using this decomposition in relation (2.162) yields the forms

ẇr =
1

ρ0
τ : Dr and ẇi =

1

ρ0
τ : Di. (2.164)

It is important to note that the reversible part of the deformation rate tensor
Dr is, from the thermodynamical point of view, chosen such that it qualifies to
be included into the large state describing the material behavior. Furthermore,
the irreversible part Di can be expressed in terms of an appropriately chosen
set of internal variables. Thus, it does not qualify as a state variable. A pair
of thermodynamically conjugated variables consists of a thermodynamic force,
or affinity, and a thermodynamic flux. Focussing on ẇr, one may define τ as
the thermodynamic force and Dr as the associated thermodynamic flux.

Employing the same motivational ground and using (2.152), one might rewrite
the first law of thermodynamics (2.150) as

u̇ =
1

ρ0
τ : Dr + ẇi + Θ ṡ. (2.165)

Using the terms affinities (or thermodynamic forces) and associated fluxes, it
should be mentioned that the choice of the corresponding pairs is not unique.
Thus the idea may not be accepted unquestioningly (Eringen (1967)).

2.3.9 Thermodynamic potentials

2.3.9.1 The internal energy as a thermodynamic potential

It is now necessary to define the large state describing the state of the material.
We might use

Z = {er, s, ξ
h}. (2.166)

Here, it is assumed that a connection
◦
er= Dr for the general strain introduced

in section 2.3.5.2 is possible. ξh denotes a set of internal variables necessary to
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describe the thermomechanical behavior of the material appropriately. What
follows from this choice of the state space is that the internal energy can be
expressed as

u = u(er, s, ξ
h). (2.167)

The choice of er and s can be supplied if relation (2.165) is rewritten using
the general stress Π introduced in section 2.3.5.2 as

u̇ =
1

ρ0
Π :

◦
er +ẇi + Θ ṡ, (2.168)

where the working variables for ẇr and q̇ in this relation are the objective and
material time derivative of er and s, respectively. Taking the total derivative
of u based on the definition (2.167) yields

u̇ =
∂u

∂er
:
◦
er +

∂u

∂s
ṡ+

∂u

∂ξh

◦

ξh . (2.169)

Comparison with (2.168) leads to the relations for the partial derivatives of u

∂u

∂er
=

1

ρ0
Π and

∂u

∂s
= Θ. (2.170)

2.3.9.2 The Legendre transform

The Legendre transform may be explained here for the one dimensional case
as a motivating example. The extension to more dimensions is rather straight-
forward and not covered here. A more elaborate discussion of the subject can
be found e.g. in Aavatsmark (1995).

One may consider a relation between a measure x and a measure y described
by

y = f(x). (2.171)

The measure x shall be subject to a substitution: for each x with ∂f/∂x 6=∞,
a tangent to the curve with the slope

a =
∂f

∂x
(2.172)
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Figure 2.3: Tangents to curve y = f(x)

and the axis intercept

b = f(x)− ∂f

∂x
x = y − ax (2.173)

can be constructed (cf. figure 2.3). Thus, a function b = b(a) can be defined
such that the relation is no longer described by y = f(x) but by b = b(a).

2.3.9.3 Application of the Legendre transform to the internal en-

ergy

As described in section 2.3.9.1, the internal energy can be identified as a po-
tential which depends on the entropy s, the reversible part of the strain er and
an appropriate set of internal variables which describe the dissipative processes
of the thermal and the mechanical problem ξh, i.e.

u = u(s, er, ξ
h). (2.174)
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The partial derivatives are

∂u

∂er
=

1

ρ0
Π and

∂u

∂s
= Θ. (2.175)

Applying the Legendre transform to u in order to substitute s leads to the
introduction of the Helmholtz free energy

ϕ = u− ∂u

∂s
s = u−Θ s. (2.176)

As the variable s has been substituted by ∂u/∂s = Θ, the Helmholtz free
energy depends on the variables

ϕ = ϕ(Θ, er, ξ
h). (2.177)

The partial derivatives read

∂ϕ

∂er
=

1

ρ0
Π and

∂ϕ

∂Θ
= −s. (2.178)

The application of the Legendre transform to ϕ in order to substitute er leads
to the Gibbs free energy g = g(Θ,Π, ξh) with

g = ϕ− ∂ϕ

∂er
: er = ϕ− 1

ρ0
Π : er (2.179)

The partial derivatives are

∂g

∂Π
= − 1

ρ0
er and

∂g

∂Θ
= −s. (2.180)

The Legendre transform may be applied again to lead to the introduction of
the enthalpy h = h(s,Π, ξh) by

h = g − ∂g

∂Θ
Θ = g + sΘ. (2.181)

The partial derivatives of h are

∂h

∂Π
= − 1

ρ0
er and

∂h

∂s
= Θ. (2.182)
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A fourth application of the Legendre transform to the enthalpy in order to
substitute Π leads again to the internal energy. Thus, the enthalpy could also
be derived by applying the Legendre transform to the internal energy in order
to substitute er. Therefore, the four potentials constitute a “closed circle”
of all four possible potentials when the arguments Π, er, Θ, or s are varied.
Naturally, the introduction of further potentials is possible by applying the
transform with respect to the internal variables.

It is noteworthy, that the concept that the working variables are chosen as
the independent variables is still valid for the potentials introduced in this
section. This may be exemplarily shown for the Helmholtz free energy. Using
the definition of the first law of thermodynamics in the form (2.168) leads to

ϕ̇ =
1

ρ0
Π :

◦
er +ẇi − Θ̇ s, (2.183)

an alternative form of the first law suggesting the use of er, Θ, and ξh as the
independent variables.

As u, ϕ, g and h are potentials, they have to satisfy the integrability conditions,
i.e.

∂

∂x

(

∂φ

∂y

)

=
∂

∂y

(

∂φ

∂x

)

(2.184)

if φ is a potential φ = φ(x, y, ...). This leads to the Maxwell-relations, here
only stated with respect to the variables u, ϕ, g and h,

∂

∂s

∂u

∂er
=

1

ρ0

∂Π

∂s
=

∂Θ

∂er
=

∂

∂er

∂u

∂s
(2.185)

∂

∂Θ

∂ϕ

∂er
=

1

ρ0

∂Π

∂Θ
= − ∂s

∂er
=

∂

∂er

∂ϕ

∂Θ
(2.186)

∂

∂Θ

∂g

∂Π
= − 1

ρ0

∂er

∂Θ
= − ∂s

∂Π
=

∂

∂Π

∂g

∂s
(2.187)

∂

∂s

∂h

∂Π
= − 1

ρ0

∂er

∂Θ
=

∂Θ

∂Π
=

∂

∂Π

∂h

∂s
. (2.188)

It is also possible to state these relations with respect to the internal vari-
ables. These relations pose, in addition to the second law of thermodynamics,
important restrictions on the choice of the constitutive assumptions employed.
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2.3.9.4 Thermodynamic consistency

As already stated in section 2.3.6, a material law is said to be thermodynam-
ically consistent when developed in accordance to the restriction imposed by
the second law of thermodynamics. As the validity of the second law is widely
accepted, a material law should be developed in accordance to this rule. Thus,
its exploitation within this framework should be discussed more in detail.

Introducing the Gibbs free energy g by use of the definitions (2.176) and (2.179)
in local form of the balance of energy (2.147) yields

ġ+Θ̇s+Θṡ+
1

ρ0

◦

Π: er +
1

ρ0
Π :

◦
er=

1

ρ0
Π :

◦
er +ẇi + r− 1

ρ
∇ ·q.(2.189)

Use of the total differential of g

ġ =
∂g

∂Π
:
◦

Π +
∂g

∂Θ
Θ̇ +

∂g

∂ξh

◦

ξh (2.190)

and its partial derivatives (2.180a) and (2.180b) yields

r − 1

ρ
∇ · q = Θṡ+

∂g

∂ξh

◦

ξh −ẇi. (2.191)

Defining now the entropy change in a, possible fictive, reversible process as ṡr

leads, considering the inequality (2.155) as an equality and substituting ṡ by
ṡr, to

Θ ṡr = r − 1

ρ
∇ · q +

1

ρΘ
q ·∇Θ. (2.192)

Presuming an additive decomposition of the entropy change

ṡ = ṡr + ṡi (2.193)

yields

Θ ṡi ≥ 0. (2.194)
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Employing (2.192) in (2.191) gives

0 = Θ ṡi +
1

ρΘ
q ·∇Θ +

∂g

∂ξh

◦

ξh −ẇi (2.195)

leading to

Θṡi = ẇi −
∂g

∂ξh

◦

ξh − 1

ρΘ
q ·∇Θ ≥ 0. (2.196)

Usually, the set of internal variables ξh is decomposed into a non-interfering set
describing the mechanical process ξp and a set describing the thermal process
ξq, thus

ξh = {ξp, ξq} (2.197)

follows and relation (2.196) reads

Θṡi = ẇi −
∂g

∂ξp

◦

ξp − ∂g

∂ξq

◦

ξq − 1

ρΘ
q ·∇Θ ≥ 0. (2.198)

Using decomposition (2.197), a stronger assumption with respect to inequality
(2.196) is done. It is assumed that the mechanical part and the thermal part
independently satisfy inequality (2.196), i.e. that

ẇi −
∂g

∂ξp

◦

ξp ≥ 0 (2.199)

− ∂g

∂ξq

◦

ξq − 1

ρΘ
q · (∇Θ) ≥ 0 (2.200)

must be fulfilled independently.

2.3.10 Thermomechanical coupling

To close the considerations related to homogeneous media, the coupling be-
tween the thermodynamic process and the mechanical process has to be es-
tablished. Taking the time derivative of the definition of the Helmholtz free
energy (2.176), using the first law of thermodynamics in the form (2.150), and
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inserting the total derivative of ϕ̇ in conjunction with definition (2.178) and
decomposition (2.162) leads to

Θ ṡ = ẇi + q̇ − ∂ϕ

∂ξh

◦

ξh . (2.201)

Using the form (2.178b) for s leads to

−Θ
∂ϕ̇

∂Θ
= ẇi + q̇ − ∂ϕ

∂ξh
:

◦

ξh . (2.202)

Making use again of the total derivative of ϕ yields

cp Θ̇ = q̇ + ẇi + Θ
∂2ϕ

∂Θ ∂er
:
◦
er +Θ

∂2ϕ

∂Θ ∂ξh
:

◦

ξh − ∂ϕ

∂ξh
:

◦

ξh (2.203)

where the definition of the specific heat capacity cp (cf. relations (3.36) and
(3.37))

cp =
∂h

∂Θ
= Θ

∂s

∂Θ
= −Θ

∂2ϕ

∂Θ2
(2.204)

is used. In relation (2.203), the two terms containing mixed partial deriva-
tives represent the coupling terms between the thermal and their respective
subprocess. For example, the first term describes the piezocaloric coupling.

Relating this derivation to the form of the field equation usually used for
thermal problems

cp Θ̇ = −1

ρ
∇ · q + ḣlat (2.205)

one may identify

ḣlat = r + ẇi + Θ
∂2ϕ

∂Θ ∂er
:
◦
er +Θ

∂2ϕ

∂Θ ∂ξh
:

◦

ξh − ∂ϕ

∂ξh
:

◦

ξh (2.206)

or its equivalent, employing the Gibbs energy g (cf. Müller (2003)),

ḣlat = r + ẇi + Θ
∂2g

∂Θ ∂Π
:
◦

Π +Θ
∂2g

∂Θ ∂ξh
:

◦

ξh − ∂g

∂ξh
:

◦

ξh . (2.207)
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X, x = χ(X, t)

XΛ xΛ

R+
0

R−

0

Λ(X, t) = 0 χ(X, t)
Λ(x, t) = 0

R+

R−

nΛ

NΛ

Figure 2.4: Region surrounding xΛ in B0 and B.

2.4 Local considerations at a discontinuity

In the following section, local relations at a discontinuity, often termed jump
conditions, are derived. These relations can be found in various publications
or books (see e.g. Truesdell & Toupin (1960), Becker & Bürger (1975), Šilhavý
(1997)) and is included for later reference. In order to derive them, a suffi-
ciently small region R around the point of interest xΛ located on the discon-
tinuity Λ is considered. The region is chosen such that no discontinuity other
than Λ can be found in R. Therefore, R may be subdivided into two homo-
geneous subregions9 R+ and R− such that R = R+ ∪R− and R+ ∩R− = ∅.
Consequently, the discontinuity is defined by Λ = ∂R+ ∩ ∂R− (cf. figure 2.4)
and the boundary of the composed region R by ∂R = (∂R+\Λ) ∪ (∂R−\Λ).

2.4.1 Mathematical description of the spatial position of the dis-

continuity

As the interface might move within the body, the distinction between the
position of a material point x and the position of a point on the interface xΛ is
crucial. For each discontinuity, a function Λ = Λ(x, t) is defined. For a point

9The term homogeneous is used to describe a region without discontinuity.
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on the discontinuity with the vector xΛ describing its position, the condition

Λ(xΛ, t) = 0 (2.208)

holds. For the region R+, Λ(x, t) > 0 holds whereas for the region R−

Λ(x, t) < 0 holds. The unit vector normal to the discontinuity nΛ pointing
towards R+ is defined by

nΛ =
∇Λ

|∇Λ| . (2.209)

The sign convention for nΛ leads to

nΛ = n− = −n+ on Λ (2.210)

where n− and n+ are the usual unit vectors normal to ∂R− and ∂R+ point-
ing outwards. In terms of the referential description, this position may be
described by

Λ(XΛ, t) = 0. (2.211)

Equivalently, a normal vector NΛ can be defined in the referential configura-
tion. Its connection to nΛ can be established by virtue of Nanson’s formula
(2.47) as

nΛ =
F−T ·NΛ

|F−T ·NΛ|
(2.212)

and

NΛ =
FT · nΛ

|FT · nΛ|
. (2.213)

The velocity of a point on the interface is denoted by

vΛ =
∂xΛ

∂t
, (2.214)

the relative velocity of the interface by

uΛ = (vΛ − v) · nΛ. (2.215)
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In the referential configuration the velocity of a point on the interface is de-
noted by

VΛ =
∂XΛ

∂t
, (2.216)

the velocity of the interface in the referential description by

UΛ = VΛ ·NΛ. (2.217)

A jump at the discontinuity is denoted by square brackets,

[•] = •+ − •− (2.218)

where the superscript “+” denotes a value at the discontinuity approaching
from the region R+, whereas the superscript “–” is used in the same manner
regarding region R− . The average value is denoted by angle brackets

〈•〉 = •
+ + •−

2
. (2.219)

Some additional rules regarding the jump of a measure might prove useful in
the following:

[a b] = [a] 〈b〉+ 〈a〉 [b] (2.220)

where a and b are scalars and

[a⊙ b] = [a]⊙ 〈b〉+ 〈a〉 ⊙ [b] (2.221)

where a and b are vectors and ⊙ ∈ {·,×}.

2.4.2 Transport theorem

In section 2.3.1, a transport theorem is developed under the assumption that
the involved region is homogeneous. However, this does not apply for the
situation discussed in this section, thus an extension based on these derivations
is to be done. As in section 2.3.1, A denotes an n-th order tensor, i.e. A =
Ai···j ei ⊗ · · · ⊗ ej , as well as B and G.
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In the present monograph, only the transport theorem for volumes is used.
Thus, the main focus is on this theorem, refer to Schade (1970) for other
theorems. One may formulate the transport theorem for homogeneous regions
in the form (2.98) independently for each region α ∈ {+,−} such that

d

dt

∫

Rα

A dv =

∫

Rα

∂A

∂t
dv (2.222)

+

∫

Λ∩ ∂Rα

Aα vΛ · nα da+

∫

∂Rα ∩ ∂R

Av · nda.

The superscript α is introduced to distinguish the values approaching Λ from
region + from those approaching from region −. It is noteworthy that the
velocity of the boundary of the region vΛ and not the velocity of a material
particle on the boundary at time t must be used in the second term of the
right hand side of this relation as the boundary might move within the body.
The third term on the right hand side of this equation can be reformulated
using Gauss theorem (2.95). Note that an additional term arises containing
velocity of a material point v and not the velocity vΛ of Λ. Thus, one may
rewrite relation (2.222)

d

dt

∫

Rα

A dv =

∫

Rα

∂A

∂t
dv +

∫

Λ∩ ∂Rα

AαvΛ · nα da

+

∫

Rα

Av ·∇ dv −
∫

Λ∩ ∂Rα

Aα v · nα da. (2.223)

Evaluating this relation for both regions R+ and R− and adding the resulting
two equations leads to

d

dt

∫

R

A dv =

∫

R

(

∂A

∂t
+ A∇ · v

)

dv −
∫

Λ

[A] (vΛ − v) · nΛ da (2.224)

where the sign convention (2.210) and definition (2.218) is used.

In the following, focus is on the balance laws which can be expressed in the
form

d

dt

∫

R

A dv =

∫

R

B dv +

∫

∂R

G · n da, (2.225)
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which applies to the balances of mass, momentum, and angular momentum.
Furthermore, this relation can also be applied to the entropy inequality when
correctly stated as shown later. The tensors A and B are of order n, the tensor
G of order n+ 1. The last term in (2.225) may be rewritten as

∫

∂R

G · n da =

∫

∂R+

G · n da−
∫

Λ

G+ · n+ da

+

∫

∂R−

G · n da−
∫

Λ

G− · n− da

=

∫

R

G ·∇ dv +

∫

Λ

[G] · nΛ da. (2.226)

The previous relation is not bound to the use of the single contraction as
presented above. One may also use e.g. the dyadic product, providing that G

is a tensor of order n−1. Use of (2.224) and (2.226) in equation (2.225) yields

∫

R

(

∂A

∂t
+ A∇ · v −G ·∇−B

)

dv =

∫

Λ

([A] (vΛ − v) · nΛ + [G] · nΛ) da. (2.227)

This statement is valid for regions containing discontinuities as well as homo-
geneous regions Rh, h ∈ {+,−}. For the homogeneous region, the right hand
side is zero, yielding

∂A

∂t
+ A∇ · v −G ·∇−B = 0, (2.228)

or equivalently by employing (2.97)

Ȧ−G ·∇−B = 0. (2.229)

Thus, for a nonhomogeneous region,

∫

Λ

([A] (vΛ − v) · nΛ + [G] · nΛ) da = 0 (2.230)
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must hold. Due to the arbitrariness of the choice of the region R containing
Λ, the general form of the jump relations

[A] (vΛ − v) · nΛ + [G] · nΛ + ψ = 0 (2.231)

or

[A] uΛ + [G] · nΛ + ψ = 0 (2.232)

can be derived. The term ψ is added to account for the formation of surfacial
area. Examples for this term will be given below. An equivalent form in the
referential configuration can be derived by considering that the position of a
material point in the referential configuration is fixed. It follows, that if a
statement of the form

d

dt

∫

R0

A dV =

∫

R0

B dV +

∫

∂R0

G ·N dA, (2.233)

is valid, the relation at the discontinuity can be expressed as

[A]VΛ ·NΛ + [G] ·NΛ + ψ = 0 (2.234)

or

[A]UΛ + [G] ·NΛ + ψ = 0. (2.235)

2.4.3 Balance of mass

Application of equation (2.231) to the balance of mass in its form (2.100), i.e.
by comparison of (2.225) to (2.100) and setting A = ρ, G = 0, and ψ = 0 in
(2.231), leads to

[ρ] (vΛ − v) · nΛ = 0 . (2.236)

For a description in the referential description, one gets (A = ρ0 and G = 0)

[ρ0]VΛ ·NΛ = 0 . (2.237)
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2.4.4 Balance of linear momentum

The application of equation (2.107) with use of equation (2.108) (A = ρv,
G = σT , and ψ = 0 in (2.231)) yields

[ρv] (vΛ − v) · nΛ + [σT ] · nΛ = 0 . (2.238)

For the referential configuration, by setting A = ρ0v and G = PT in (2.234),
one gets

[ρ0 v]VΛ ·NΛ + [PT ] ·NΛ = 0 . (2.239)

2.4.5 Balance of angular momentum

Using the balance of angular momentum in the form (2.121), thus setting
A = ρ (x− x0)× v, G = (x− x0)× σT , and ψ = 0 in (2.231), yields

[ρ (x− x0)× v] (vΛ − v) · nΛ + [(x− x0)× σ] · nΛ = 0 . (2.240)

This equation yields no new jump relations after proper simplification (cf.
Eringen (1967)).

2.4.6 Balance of energy

For the balance of energy, a surfacial energy production term due to the for-
mation of interfacial area ψu is included. The energy balance is adopted in
its form (2.146), thus A = ρ u + ρv2/2 G = σ · v − q, and ψ = ψu is set in
(2.231). At the interface, one gets

[ρ u+
1

2
ρv2] (vΛ − v) · nΛ + [σ · v − q] · nΛ + ψu = 0 . (2.241)

For a description in the referential configuration,

[ρ0 u+
1

2
ρ0 v2]VΛ ·NΛ + [P · v −Q] ·NΛ + ψu = 0 . (2.242)

can be derived.
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2.4.7 The entropy inequality

The adaption of the procedure used above to the entropy inequality (2.154)
is realized by the decomposition of the entropy production into a reversible
and an irreversible part by relation (2.193) as ṡr = ṡ − ṡi and the definition
(2.192), restating the entropy inequality as

d

dt

∫

R

ρ sr dv =

∫

R

ρ r

Θ
dv −

∫

∂R

q · n
Θ

da. (2.243)

with the additional condition (2.194), ṡi ≥ 0. The procedure can now be
applied by setting A = ρ sr, G = −q/Θ, and ψ = ψs, introducing the non-
negative dissipation due to the movement of the interface ψs. This leads to

[ρ s] (vΛ − v) · nΛ −
[ q

Θ

]

· nΛ + ψs = [ρ si] (vΛ − v) · nΛ ≥ 0. (2.244)

Grouping of the dissipative terms into

ṡΛ = ψs − [ρ si] (vΛ − v) · nΛ (2.245)

yields

[ρ s] (vΛ − v) · nΛ −
[ q

Θ

]

· nΛ = −ṡΛ. (2.246)

For the applications considered within this context, it can be assumed that
the term due to the jump of the entropy production is small compared to the
original production term ψs. Thus, one may require

[ρ s] (vΛ − v) · nΛ −
[ q

Θ

]

· nΛ = −ṡΛ ≤ 0. (2.247)

In the referential description, the relation

[ρ0 s]VΛ ·NΛ −
[

Q

Θ

]

·NΛ = −ṡΛ ≤ 0. (2.248)

can be derived.
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2.4.8 Hadamard condition

Different paths lead to the introduction of the so called Hadamard condition
which is a vital part in numerous derivations at the discontinuity. The deriva-
tion shown here follows Wilmanski (1998).

Starting with the definition of the deformation gradient (2.39)

F = x⊗∇0 (2.249)

one may calculate the time derivative of this relation as

d

dt
F = v ⊗∇0. (2.250)

A weak form can be obtained by integrating over the region R0 such that

d

dt

∫

R0

F dV =

∫

R0

v ⊗∇0 dV. (2.251)

Application of the Gauss theorem (2.95) in the referential form as described
in section 2.3.1 and taking the time derivative yields

d

dt

∫

R0

F dV =

∫

∂R0

v ⊗NdA. (2.252)

The general form of the balance relation can be applied to this case with the
exception, that instead of the scalar product, the dyadic product has to be
used as remarked in section 2.4.2. Hence,

UΛ [F] + [v]⊗NΛ = 0 (2.253)

or

[F] = − 1

UΛ
[v]⊗NΛ. (2.254)

It must be noted, that the assumption the motion x being continuous every-
where is implicitly used. For the discontinuity, this implies

[x] = 0, (2.255)
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x2

x1

Figure 2.5: Non-coherent interface with {[F]}11 6= 0. The over-
layed mesh consists of squares of the same size for
vanishing deformation.

leading to the condition of coherence. Using this, it is obvious that the jump
of the deformation gradient is a rank one connection, i.e.

[F] = a⊗NΛ (2.256)

with

a = − 1

UΛ
[v] . (2.257)

Together with the implied coherence, relation (2.256) can be interpreted by
a simple example. Postmultiplying relation (2.256) by the normal vector N⊥

Λ

with N⊥
Λ ·NΛ = 0 yields zero, whereas a nonzero value violates the coherence

condition as depicted in figure 2.5.

2.4.9 Discontinuity movement

Introducing the Helmholtz free energy ϕ = u−Θ s (cf. equation (2.176)) in the
balance of energy in the form (2.242) leads, by making use of the assumption
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[Θ] = 0, to

ρ0 UΛ [ϕ+
1

2
v2] + [P · v] ·NΛ + ψu + Θ[ρ0 s]UΛ − [Q] ·NΛ = 0 . (2.258)

The entropy balance (2.248) can be written, also under the presumption [Θ] =
0, as

Θ[ρ0 s]UΛ − [Q] ·NΛ = −Θ ṡΛ. (2.259)

The combination of these equations leads to

ρ0 UΛ [ϕ+
1

2
v2] + [P · v] ·NΛ + ψu = Θ ṡΛ, (2.260)

and yields, by employing the balance of linear momentum (2.240) and the
Hadamard condition in the form (2.257) applied to the orientation of the dis-
continuity NΛ, the balance of linear momentum

ρ0 UΛ [ϕ+
1

2
v2]−ρ0 UΛ [v] ·〈v〉−〈P〉·NΛUΛ [F]·NΛ+ψu = Θ ṡΛ,(2.261)

and after some rearrangement

ρ0 UΛ [ϕ]− UΛ NΛ ·
[

FT
]

· 〈P〉 ·NΛ + ψu = Θ ṡΛ. (2.262)

Restricting ourselves to the quasistatic case, i.e. using (2.239) in the form
[PT ] ·NΛ = 0, and setting ψu = 0 yields

ζΛ = Θ ṡΛ = ρ0UΛ NΛ · [µ] ·NΛ (2.263)

where the definition

µ = ϕ1− 1

ρ0
FT ·P (2.264)

is used (see Heidug & Lehner (1985), Knowles (1995), Raniecki & Tanaka
(1994), Šilhavý (1997), Buratti et al. (2003)). It is noteworthy that the trans-
pose of µ is often denoted “Eshelby-Tensor”. As this tensor is always used in
conjunction with a projection in direction of the normal NΛ (i.e. NΛ · [µ] ·NΛ),
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the asymmetric part of µ does not influence the problem and this difference
is not of importance. Heidug & Lehner (1985) have shown that the condition
NΛ · [µ] ·NΛ = 0 is a necessary condition for unconstrained thermodynamic
equilibrium, i.e. for the absence of movement of the discontinuity. Thus, the
projection of the tensor µ can be x as the thermodynamic force for the local
movement of the discontinuity and may be used in a concept which describes
locally the movement of the phase transition front. A study which discusses
potential shortcomings and possible further developments can be found in Lev-
itas (2002), Oberste-Brandenburg (1999), and Oberste-Brandenburg & Bruhns
(2004).

Different notations have been introduced for µ. The first use of a similar ten-
sor can be traced back to Eshelby (1951, 1975), there using the term “elastic
energy momentum tensor”. He described the force on the movement of the
boundary of an inclusion in an isothermal frame. Thus, in his original intro-
duction, the elastic energy w was used instead of the Helmholtz free energy ϕ.
This tensor, and later its nonisothermal form (2.264), was used to constitute a
balance law, the “balance of pseudomomentum” (cf. Maugin (1993) or Gurtin
(1995)). These theories have even led to the introduction of the term “me-
chanics in material space” in contrast to the classical “mechanics in physical
space” (cf. Maugin (1993), Kienzler & Herrmann (2000); Kienzler & Maugin
(2001)). As the origins of this description can be traced back to the work of Es-
helby mentioned above, the term Eshelbian mechanics (Maugin (1993, 2002))
is frequently used, equally denoting µ by “Eshelby tensor”. Grinfeld used in
(1991) the term “asymmetric chemical potential tensor”, indicating that µ

has a strong connection to the scalar chemical potential as it collapses to a
unit-tensor times the chemical potential for hydrostatic stress states as shown
below. By using the term asymmetric, µ is distinguished from the symmetric
chemical potential tensor

K := F−T · µ · F T , (2.265)

where F−T = (F T )−1. This tensor, used in the description of materials with
changes in the chemical composition, was first introduced by Bowen (1967,
1976). Hence in Grinfeld (1991), he suggested the name “Bowen’s chemical
potential tensor”. Grinfeld (1991) also gives an extensive overview over the
developments that lead to the introduction of this tensorial value.
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3 Constitutive relations for a material point

3.1 Elastic behavior

If not otherwise stated, referring to elastic behavior of the material, it is as-
sumed that it can be described by

Π = C : (e− (Θ−Θ0) α) . (3.1)

C denotes the fourth order elastic stiffness tensor, α the tensor of thermal ex-
pansion. If not otherwise stated, the elastic behavior is assumed to be isotropic
(cf. Hahn (1985)). Following this assumption, C can be expressed as

C = λ1⊗ 1 + µ1(4) (3.2)

where 1(4) denotes the fourth order unit tensor and λ and µ the Lamé-
parameters. Young’s modulus E and Poisson’s ratio ν may be expressed in
terms of λ and µ as

E =
µ(3λ+ 2µ)

λ+ µ
and ν =

λ

2(λ+ µ)
. (3.3)

The shear modulus is G = µ. Inversion of (3.3) yields

λ =
νE

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
. (3.4)

The form used for the tensor of thermal expansion α is based on the isotropy
assumption as well. It can be described by

α = 1α (3.5)

where α denotes the isotropic thermal expansion.
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3.2 Derivation of the Helmholtz free energy

For phase transition problems discussed in the following two chapters, the
knowledge of the Helmholtz free energy is of vital importance. The procedure
described here follows the path of derivation as in Raniecki & Bruhns (1991).

The classical definition of the specific heat at constant volume is (cf. e.g.
Baehr (1966))

cv =
∂u

∂Θ

∣

∣

∣

∣

V

. (3.6)

The requirement that the volume may not change is transferred into this ther-
momechanical context by introduction of the requirement that the reversible
part of the strain er and the internal variables ξh may not change, i.e.

cv =
∂u

∂Θ

∣

∣

∣

∣

er,ξ
h

(3.7)

which introduces a stronger constraint because the internal variables may not
influence the change of volume of the body. Introducing the Helmholtz free
energy by (2.176) and the definition of the entropy (2.178b), one may write

cv = Θ
∂s

∂Θ

∣

∣

∣

∣

er,ξ
h

. (3.8)

Integrating this relation with respect to Θ leads to

s = cv ln
Θ

Θ0
− cΘv + s0 (3.9)

where s0 = s0(er,Θ0, ξh) and cΘv = cΘv (Θ) with

cΘv =

Θ
∫

Θ0

∂cv
∂Θ

ln Θ dΘ (3.10)

have been introduced. The second application of the definition of the entropy
(2.178b) leads to

ϕ = cv

[

Θ−Θ0 −Θ ln
Θ

Θ0

]

+ cΘΘ
v − s0(T − T0) + ϕ0, (3.11)
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where the constant ϕ0 = ϕ0(er,Θ0, ξh) is introduced. The function cΘΘ
v =

cΘΘ
v (Θ) is determined as

cΘΘ
v =

Θ
∫

Θ0

∂cv
∂Θ

Θ

[

ln
Θ

Θ0
− 1

]

+ cΘv dΘ (3.12)

To determine the unknowns ϕ0 and s0, the tangent C = C(er,Θ, ξh) is intro-
duced such that

C =
∂Π

∂er
. (3.13)

Inserting (3.13) and (3.9) into the Maxwell-relation (2.186) and differentiation
by er yields a differential equation for s0

∂2s0
∂e2

r

= − 1

ρ0

∂C

∂Θ
. (3.14)

Integrating twice with respect to er leads to

s0 = − 1

2ρ0
er :

∂C

∂Θ
: er + β0 : εr + s∗ (3.15)

with β0 = β0(ξh) and s∗ = s∗(ξh). By taking into consideration, that s0 =
s0(er,Θ0, ξh) and therefore

∂s0
∂Θ

= 0, (3.16)

one may derive, using the orthogonality of the independent variables,

er :
∂2

C

∂Θ2
: er = 0 (3.17)

and, as er is an independent variable of state,

∂2C

∂Θ2
= 0. (3.18)
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Twice integration of this relation with respect to Θ leads to

C = C0 + CΘ(Θ−Θ0) (3.19)

where the constants C0 = C0(er, ξh) and CΘ = CΘ(er, ξh) with

C0 = C(Θ = Θ0) (3.20)

and

CΘ =
∂C

∂Θ
(3.21)

are introduced. Using relation (3.19), the expression for s0 (3.15) can be
rewritten as

s0 = − 1

2ρ0
er : CΘ : er + β0 : εr + s∗. (3.22)

The starting point in course of the derivation of the differential equation for
ϕ0 is the use of the definition of the stress Π (2.178a) in the definition of the
tangent (3.13) leading to

∂2ϕ

∂e2
r

=
1

ρ0
C. (3.23)

Employing relation (3.11) leads to

∂2ϕ0

∂e2
r

− (Θ−Θ0)

(

2

ρ0
er : CΘe +

1

ρ0
er : CΘee : er

)

=
1

ρ0
C0 (3.24)

where

CΘe =
∂CΘ

∂er
=

∂2
C

∂Θ ∂er
(3.25)

and

CΘee =
∂2

CΘ

∂er ∂er
=

∂3
C

∂Θ ∂er ∂er
(3.26)
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are introduced. In the following, it is assumed that the relation between Π

and e may be described by a linear relation, i.e. CΘe = 0 and CΘee = 0.
Relation (3.24) can be integrated twice with respect to er to yield

ϕ0 =
1

2ρ0
er : C0 : er + ϕ′

∗ : er + ϕ∗ (3.27)

where ϕ∗ = ϕ∗(ξh) with

ϕ∗ = ϕ0(er = 0) (3.28)

and ϕ′
∗ = ϕ′

∗(ξh)

ϕ′
∗ =

∂ϕ0

∂er
(er = 0) (3.29)

are used. The combination of (3.11), (3.22), and (3.27) leads to the final form
of the Helmholtz free energy

ϕ = cv

[

Θ−Θ0 −Θ ln
Θ

Θ0

]

+ cΘΘ
v

+
1

2ρ0
er : C : er − β0 : εr(Θ−Θ0)

+ϕ′
∗ : er + ϕ∗ − s∗(Θ−Θ0). (3.30)

The caloric and thermal equations of state read for the case ϕ′
∗ = 0

− ∂ϕ
∂Θ

= s = cv ln
Θ

Θ0
− cΘv −

1

2ρ0
er : CΘ : er + β0 : er + s∗ (3.31)

ρ0
∂ϕ

∂er
= Π = C : er − (Θ−Θ0)β0 ρ0. (3.32)

The coupling between the elastic behavior of the material and the thermal
behavior, the piezocaloric effect, is characterized by

∂2ϕ

∂er ∂Θ
=

1

ρ0
CΘ : er − β0 =

1

ρ0
(CΘ : er − C : α) (3.33)
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with the tensor of thermal expansion given by C : α = ρ0 β0. The coupling
between the process described by the internal variables and the thermal process
is given by

∂2ϕ

∂ξh ∂Θ
= − 1

2ρ0
er :

∂CΘ

∂ξh

: er +
∂β0

∂ξh

: er +
∂s∗
∂ξh

. (3.34)

If the thermoelastic behavior is not influenced by the process described by the
internal variables, CΘ = CΘ(er) and β0 = const, thus

∂2ϕ

∂ξh ∂Θ
=
∂s∗
∂ξh

(3.35)

remains.

A relation for the specific heat capacity at constant pressure cp, here used in
a stricter formulation as the heat capacity at constant stress, may be derived
by using its definition within this thermomechanical frame

cp =
∂h

∂Θ

∣

∣

∣

∣

Π,ξ
h

. (3.36)

Using the definition of the enthalpy h = g + Θ s (2.181) yields

cp = Θ
∂s

∂Θ

∣

∣

∣

∣

Π,ξ
h

. (3.37)

It is important to note that the potential used now is the Gibbs free energy
g = g(Π,Θ, ξh). Thus, er in (3.31) is no longer a state variable and it should
be replaced by the stress Π in equation (3.31). For doing so, relation (3.32) is
used to yield

er = D : Π + (Θ−Θ0) α (3.38)

where the elastic compliance D with C : D = 1(4) is introduced. The relation
for cp then reads

cp = cv +
Θ

ρ0
(D : Π : CΘ : α + α : C0 : α) . (3.39)
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A relation for cv has not been specified yet. Following the theory of Debye
(Callen (1970),Morill (1972)), the heat capacity at constant volume can be
determined as

cv = 3R

[

4D(ΘD/Θ)− 3 ΘD/Θ

exp(ΘD/Θ)− 1

]

(3.40)

where ΘD denotes the Debye-temperature, R the special gas-constant with

R =
Rm

M
, (3.41)

Rm = 8.3143 J/(molK), and the molar mass M . D(x) denotes the Debye-
function

D(x) =
3

x3

x
∫

0

y3

exp(y)− 1
dy. (3.42)
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4.1 Motivation and observations – micromechanical view

4.1.1 An introductory example

The example shall explain the motivation for the model and especially clarify
the modeling space, i.e. the underlying assumptions, governing length scales
and related physical observations.

Phase transitions in NiTi are usually, when the R-phase is not involved, one
stage transformations, i.e. austenite transforms to martensite showing only
one peak in the curve measured in a differential scanning calorimeter (DSC)
experiment1. The same applies for the reverse transformation. Eggeler et al.
(2003) have shown, that for a Ni-rich NiTi alloy in which, due to its chemical
composition and the applied heat treatment, Ni4Ti3 precipitates of a consid-
erable size are present, the one stage transformation converts into a two stage
transformation as depicted in figure 4.1. Two possible explanations are dis-
cussed.

• It can be expected that the material around the Ni-rich precipitates has
a different chemical composition than the bulk NiTi. Thus, the material
around the inclusions has a different martensite start temperature which
may lead to the two stage transformation.

• The Ni4Ti3 precipitates have different mechanical properties than the
surrounding NiTi matrix. Thus, from the mechanical viewpoint they
can be regarded as inhomogeneities. This leads to nonhomogeneities of
the stress state around the inclusions, influencing the overall behavior.

The first explanation can only be proven by a thorough investigation of the
chemical composition around the inhomogeneities which is beyond the capa-
bilities of a mechanical investigation. The latter explanation can be verified by
a micromechanical simulation of the transformation process within a grain. In

1For a description of a DSC-measurement, refer to section 4.1.2.
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Figure 4.1: Left: Micrograph with Ni4Ti3 inclusions
Right: DSC measurement for the alloy shown left.

the following, this is addressed by the development of an approach which gives
detailed information about the position of the transformation front within a
grain (or a single crystal).

The section is organized as follows: after a description of the physical phenom-
ena observed on the microscale during the phase transition, these observations
are placed within a mechanical description in section 4.2. In section 4.3, a
numerical scheme is proposed to solve the problem posed in section 4.2. Some
numerical aspects of this scheme are discussed and one example problem closely
related to the initial question posed in this introduction is finally presented.

4.1.2 Phase transitions in shape memory alloys – micromechanical

observations

The term “phase” describes the aspect that the atomic arrangement in a ma-
terial can be different for a different thermomechanical environment without
change of the chemical composition. Prominent examples for such arrange-
ments are the face-centered-cubic (fcc), the body-centered-cubic (bcc) or the
orthorhombic structure (cf. Hornbogen & Warlimont (1991)). Martensite
and austenite are denotations used to identify phase structures frequently ob-
served. The austenitic phase is usually stable at higher temperatures whereas
the martensitic phase is stable, if at all, at lower temperatures. The atomic
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Figure 4.2: Schematic sketch of the transformation from B2-
austenite to B19’-martensite (Allafi (2002)).
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arrangement associated with the phase is not the same for all materials as e.g
in steels austenite is fcc and martensite is a distorted bcc-arrangement. In
NiTi however, austenite shows a B2 (bcc) structure, the diffusionless transfor-
mation to martensite may be either direct via the unstable orthorhombic B19
to the stress stabilized monoclinic B19’ structure (cf. figure 4.2) or including
an intermediate step, the R-phase. If the alloy is not freshly annealed but
already thermomechanically treated, a two stage transformation via B2→R-
phase→B19/B19’ might be observed. The R-phase is a triclinic phase, the
B2→R transformation is mechanically not well pronounced, however it is ac-
companied by a considerable release of latent heat. The change of the atomic
arrangement, the crystallographic structure, induces a strain, the Bain strain.
This strain depends on crystallographic parameters, or lattice parameters, and
the crystallographic orientation of the material. The resulting strain may be
determined by the crystallographic theory of martensite (CTM) as described by
Wechsler, Lieberman, and Read (WLR) (cf. Wechsler et al. (1953), Lieberman
et al. (1955)), Bowles and Mackenzie (BM) (cf. Bowles & Mackenzie (1954)),
or, more recently Ball and James (BJ) (cf. Ball & James (1987), Ball & James
(1992), see also section 4.2.2). Based on the crystallographic structure, only a
finite number of possible values for the induced strain due to the finite number
of choices for atomic arrangements are possible. These different configurations
are called martensite variants. Ball and James have shown by a description
in the stress free referential configuration, that an interface between austenite
and homogeneous martensite of only one single variant is not possible. An
austenite martensite interface may only exist when the martensitic phase con-
sists of a sequence of at least two different martensitic phases with a high
spatial frequency, called twinning of variants. This leads to nonhomogeneous
martensitic domains as depicted in figure 4.3. However, the Bain strain is
only the primary strain induced by the phase transition. As the martensite is
embedded into an austenitic matrix, the eigenstrain in the martensite induces
a stress (and therefore strain) in the austenitic matrix, leading again to an
additional strain in the martensite at equilibrium. Thus, the most favorable
configuration may even be a stack of self-accommodating martensite, leading
to a vanishing macroscopic deformation (cf. figure 4.4 and 4.5).

The decision which phase is favored is based on an energetic criterion. For
higher energetic levels, e.g. at higher temperatures, austenite is stable
whereas for lower energetic levels martensite becomes stable (cf. figure 4.6).
Traditionally, the Gibbs free energy g is regarded as the decisive factor. At
temperature T0 (here depicted for the stress free state) the Gibbs energies of
both phases are equal. If the temperature is lowered, the Gibbs energy of the
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Figure 4.3: Optical micrograph of spear-like martensite (Otsuka
& Wayman (1998)).

martensite is lower than the Gibbs energy of the austenite, making the marten-
site the favored phase. However, the transition does not follow immediately
after lowering the temperature, a certain amount of undercooling under the
temperature T0 is necessary. Only if a certain threshold is reached, the tran-
sition sets in, releasing the difference of the Gibbs energies between austenitic
and martensitic states as latent heat. Thus, the transformation from austenite
to martensite is an exothermal process, whereas the backtransformation is an
endothermal process. This leads to the behavior observed during a test in a
differential scanning calorimeter (DSC) as depicted in figure 4.7.

As the energy required to induce the phase transition may by supplied by
mechanical loads as well, a complex behavior in the stress-temperature space
can be observed. Depending on the energy barrier necessary to induce the
transition, characterized by the martensite start temperature in the stress
free state M0

s , different classes with qualitatively differing behavior, can be
observed:

• For temperatures above A0
f , thus ensuring that the austenitic phase (β) is

the only phase existing in the stress free state, pseudoelastic behavior can
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Figure 4.4: Scanning electron microscopy micrograph of
twinned martensite. Four variants have been
formed (Otsuka & Wayman (1998)).

Figure 4.5: (a) shape change upon martensitic transformation;
(b) accommodation due to slip;
(c) accommodation due to twinning;
(cf. Otsuka & Wayman (1998)).
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Figure 4.6: Schematic representation of free energies for both
parent and product phases in the stress free state.

be observed (see figure 4.8, lower sketch). Starting from the stress free
state, a mechanical load yields elastic response of the austenite. When a
threshold is reached, the phase transformation is induced and proceeds
with increasing load leading to an additional strain. When the phase
transition is completed, elastic behavior of the martensite (α∧) can be
observed. When the load is lowered, the backtransformation does not
follow the same path. As for the stress free transformation in the DSC-
measurement, a hysteresis can be observed, i.e. the backtransformation
can be observed at a lower stress level. If the material is well prepared
and trained, no permanent deformation remains when the stress free
state is reached again. Hence, the denotation pseudoelastic is used even
though a dissipation was induced due to the hysteretic behavior.

• Lowering the temperature from the austenitic state at zero stress below
M0

f initiates the stress free transformation. This yields no, or only a very
small, observable deformation as the twinned martensitic microstruc-
ture α// is energetically the most favorable (see figure 4.8, upper graph).
Applying mechanical load changes the situation: now, the untwinned
martensitic microstructure α∧ is favored, leading to a macroscopic strain.
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Q̇

TM0
sM0

f A0
fA0

s

Figure 4.7: Schematic sketch of a DSC-test with the tempera-
tures for start- and finish-temperatures for both the
formation of martensite (M0

s andM0
f ) and austenite

(A0
s and A0

f ) for a stress free state. Positive values

for the measured heat flux Q̇ indicate an exothermal
process.
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Figure 4.8: Schematic sketch of pseudoelastic (T > M0
f ) and

pseudoplastic behavior of shape memory alloys.
The deformation of material due to the thermal ex-
pansion is not depicted for clarity.
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Thus, the strain observed is not primarily due to the austenite-martensite
transformation but has its origin in the reorientation of martensite from
a twinned to an untwinned configuration. Thus, backtransformation can
not be induced by simple removal of the load. For the unloaded state,
martensite is still stable as re-twinning can not be induced by removal
of the load. The transformation back to austenite can only be induced
by increasing the temperature above A0

s and finally completed by reach-
ing A0

f . As the behavior regarding the stress/strain plane resembles the
behavior of classical plasticity, the term pseudoplastic behavior is used.
Focusing on the functional behavior of the material, the term one-way
shape memory effect is also used frequently.

• Considering a thermal cycle as performed in a DSC-measurement, i.e.
completing a whole transformation cycle, generally no macroscopically
observable deformation is present as the microscopic deformation is ac-
commodated by the twinned structure. However, if this twinning process
may be inhibited leading to a non-twinned microstructure even for a van-
ishing stress on the macroscale, a behavior as depicted in figure 4.9 can
be achieved. As this effect is completely driven by a temperature change
in either direction, the term two-way shape memory effect is used. The
microstructure necessary to inhibit the twinning process can be estab-
lished by a training process in which dislocations are induced into the
material.

Of importance regarding the applicability in structures are the pseudoelastic
and the pseudoplastic effect at the moment. Hence, the main focus in this
monograph will be on the description of these phenomena.

To close this introductory section, it has to be noted that the observations
discussed in this context are not meant to be a complete crystallographic de-
scription of the phenomena occurring during the austenite/martensite trans-
formation in shape memory alloys. They may only serve to better understand
the problem statement described in the following section and the derived so-
lution to the problem.

4.2 Problem statement

The description of the austenite/martensite transition historically focusses on
the change of the crystallographic structure and is therefore regarded as a
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Figure 4.9: Schematic sketch of the behavior of a shape memory
alloy exhibiting the two-way effect.
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Figure 4.10: Body decomposed into three non-overlapping re-
gions R1, R2, and R3.

process related to the bulk material. However, during the phase transition,
usually a sharp interface can be observed between the parent and the product
phase. When the phase transformation progresses, the transition front moves
within the body. Thus, the phase transition can be understood as a process
in which the phase transition front moves within the solid. The aim of the
approach described in the remainder of this chapter is to explicitly track the
movement of this interface.

The clear identification of the phase interface classifies it as a weak disconti-
nuity, i.e. the coherency requirement is fulfilled but jumps of the deformation
gradient, stress, strain, etc. might be present. This allows to use the pro-
cedures for a moving weak discontinuity derived in section 2.4, leading to a
locally defined expression for the driving force of the movement of the interface.

Due to the presence of a sharp interface, the domain Ω of the body under
consideration B can be subdivided into nreg subregions Rα, α ∈ I with I =
{1, ..., nreg} such that no overlapping occurs, i.e. Ω =

⋃nreg

α=1 Rα and Rα ∩
Rβ = ∅ ∀α, β ∈ I, α 6= β. The boundary of the Region Rα is denoted by
∂Rα. The interface between the subregions Rα and Rβ with the normal
vector on the interface nαβ pointing towards region Rα is denoted by Λαβ, i.e.
Λαβ = ∂Rα ∩ ∂Rβ ∀α, β ∈ I, α 6=β . An example consisting of three regions is
depicted in figure 4.10.
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The idea that the phase transformation is regarded as movement of the trans-
formation surface within the body poses two subproblems:

• the movement of the transformation surface has to be described locally
depending on the stress, strain, and temperature jump at the transfor-
mation surface, and

• the thermoelastic behavior including eigenstrains due to the phase trans-
formation of the bulk, i.e. the regions itself, has to be captured as well.

The coupled nature of the whole problem is evident: the thermomechanical
state at the interface due to external thermomechanical loads influences (and
initially initiates) the movement of the transformation front. Vice versa does
the movement of the transition front lead to the induction of an additional
strain due to the phase transition and a change of the material behavior when
the transition occurs within a region.

4.2.1 Bulk behavior

The clear distinction between austenitic and martensitic phase allows to use
different material laws for each phase. Due to restrictions of the implementa-
tion of the boundary element method, small strain theory is adopted. Thus,
consequently instead of e, the infinitisimal strain ε is used. The same applies
for Π and σ. Each phase is characterized as:

• for the austenitic phase a linear thermoelastic stress strain relation (cf.
equation (3.1)) is employed

σ = C
A :

(

ε− (Θ−Θ0) αA
)

(4.1)

where CA denotes the fourth order stiffness tensor of isotropic elasticity
within the austenite as described in section 3.1. The material parameters
are denoted by λA, µA, and αA = 1αA.

• for the martensitic phase a linear thermoelastic stress strain relation
extended by an eigenstrain εpt due to phase transformation

σ = C
M :

(

ε− εpt − (Θ−Θ0) αM
)

(4.2)
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where C
M denotes the fourth order stiffness tensor of isotropic elasticity

within the martensite. The material parameters are denoted by λM ,
µM , and αM = 1αM . As reorientation of martensite is currently not
considered, the term εpt is in general spatially not constant, but remains
the same for a specific material point when chosen. For the strain εpt

induced by the phase transformation, the time when the transformation
takes place determines its crystallographic structure. After that, εpt

remains constant. A strategy to choose a proper value for εpt is presented
in the following section wherein a term for the right Cauchy Green tensor
CM due to the phase transition is derived. As only small deformations
are taken into account, the term might be approximated in a Green-
Lagrange sense as

εpt =
1

2
(1 + CM ) . (4.3)

4.2.2 Deformation induced by change of the crystallographic struc-

ture

Different theories exist in the literature which predict the deformation induced
to the material due to the change of the crystallographic structure during
transformation. As the most prominent approach, the Wechsler-Lieberman-
Read theory should be mentioned (Wechsler et al. (1953)). A more recent
approach was suggested by Ball & James (1987, 1992) which is frequently used
in crystallographic theories nowadays (see eg. Shield (1995), Lusk (1996)).
This approach is used in the following to determine the induced deformation.

4.2.2.1 Stretch-tensors associated with change of the crystallo-

graphic structure

The deformation induced by a change of the crystallographic structure can be
described by the positive definite matrix U0 such that2 x̃ = U0 ·X where X

describes the position of a material point before transformation in the referen-
tial configuration and x̃ thereafter. For lingual simplicity, we will refer to the
reference configuration as austenite and the configuration after transformation
as martensite.

2The choice of a proper coordinate system is a prerequisite for this relation.
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The shape change due to the change of the crystallographic structure from
cubic to orthorhombic structure U0 takes the form

U0 =
ηi(ei + ej)⊗ (ei + ej) + ηj(ei − ej)⊗ (ei − ej)

2
+ ηkek ⊗ ek,(4.4)

where ei, i = 1, 2, 3 are the unit base vectors in the orthonormal cubic basis
of the parent phase. For Cu-Al-Ni, the parameters are (see Shield (1995), Sun
(2001))

η1 = 1.0619, η2 = 1.0230, η3 = 0.9178 (4.5)

leading to six possible choices for U0.

Based on these stretches, the variants of the transformed material but also the
parent phase can be described by a rotation Ri such that

1,R1 ·U0 ·RT
1 , ....,Rν ·U0 ·RT

ν , (4.6)

where ν denotes the number of variants.

4.2.2.2 Determination of choices satisfying compatibility

The main starting point for the frame by Ball & James (1987, 1992) developed
in this section is the assumption, that the interfaces within the material are
coherent. These interfaces may be between austenite and martensite or differ-
ent martensite variants. This leads to the coherence condition at the interface
(2.256) which may be expressed here as

F+ − F− = a⊗N (4.7)

where F+ and F− are the limiting values of the deformation gradient F from
either side of the discontinuity. It is noteworthy that at the moment no restric-
tion with respect to the type of interface is imposed. Hence, different types of
interfaces may be discussed in the following:

(I) Austenite/Austenite Interfaces
For austenite, only U+ = U− = 1 is possible. Thus (4.7) reads in this
case

R+ −R− = a⊗N, (4.8)
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which implies that

R∗ = 1 + a ∗ ⊗N, (4.9)

where R∗ = (R−)T ·R+ and a∗ = (R−)T ·a. Relation (4.9) implies that
R∗ = 1 (cf. Ball & James (1987)) and therefore

R+ = R− = 1, (4.10)

which means that no austenite/austenite interfaces are possible.

(II) Martensite/Martensite Interfaces
Based on the polar decomposition of the deformation gradient, the jump
relation (4.7) and the possible choices for U (4.6), an interface between
martensite variants i and j is governed by

R̂+ ·U0 ·RT
i − R̂− ·U0 ·RT

j = â⊗ N̂ (4.11)

where R̂+ = R+ ·Ri, R̂− = R− ·Rj , N̂ denotes the normal vector to

the interface, and â 6= 0. Premultiplying by (R̂−)T and postmultiplying
by Rj yields

R ·U0 · R̄−U0 = a⊗N (4.12)

where R = (R̂−)T · R̂+, R̄ = RT
i ·Rj , a = (R̂−)T · â, and N = RT

j · N̂.

(III) Austenite/Martensite Interfaces
The interfaces are governed by

R ·U0 ·RT
k − 1 = a⊗N (4.13)

which implies that

Rk ·U2
0 ·RT

k = (1 + N⊗ a) · (1 + a⊗N). (4.14)

This in turn implies that a vector perpendicular to both a and N is an
eigenvector of Rk · U2

0 · RT
k with an eigenvalue equal to 1. But this is

impossible unless one of the eigenvalues of U0 equals 1. Taking into
account the structure of U0, it renders an interface between austenite
and martensite impossible. However, this is in clear contradiction to
experimental observations. In the following, the approach by Ball and
James to circumvent this contradiction is described.



4.2 Problem statement 81
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Figure 4.11: A sketch of the Austenite/Martensite interface
structure.

The approach is based on the experimental observation that the martensitic
phase usually exhibits a finely layered structure as depicted in figure 4.11.
Thus, in the following compatibility is not sought directly between marten-
site and austenite but between the deformation gradient FA and the averaged
deformation gradient FM.

First, the focus is on the martensitic phase and the martensite/martensite
interface. Using volumetric averaging, the mean deformation gradient in the
martensite can be expressed as

FM = λF+ + (1− λ)F−, (4.15)

where λ denotes the volumetric fraction within the martensite where a de-
formation gradient F+ was induced due to the transformation as depicted in
figure 4.11. Compatibility is now required on the average between FM and FA.
Thus, compatibility can be expressed as

FM − FA = b⊗ n (4.16)

or, considering that the austenitic state corresponds to the referential state, as

FM − 1 = b⊗ n. (4.17)
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At the martensite/martensite interface, the condition

F+ − F− = c⊗m (4.18)

has to be fulfilled. The combination of equations (4.15), (4.16), and (4.18)
with FA = 1 yields

F+ = 1 + b⊗ n + (1− λ) c⊗m

F− = 1 + b⊗ n− λ c⊗m.
(4.19)

As stated already, the deformation gradients for martensite can be expressed
as

F+ = R+ ·U+ (4.20)

F− = R− ·U−. (4.21)

By introducing R = RT
− ·R+, c∗ = RT

− · c, m∗ = U−1
− ·m, one may restate

the jump relation (4.18) as

R ·U+ ·U−1
− = 1 + c ∗ ⊗m ∗ . (4.22)

As the determinants of R, U+, and U− are larger than zero, 1 + c ∗ ·m∗ > 0
holds. Relation (4.19b) now reads

F− = R− ·U− = 1 + b⊗ n− λ (R− · c∗)⊗ (m ∗ ·U−) (4.23)

leading to

U− + λ c ∗ ⊗(m ∗ ·U−) = RT
− · (1 + b⊗ n). (4.24)

This relation establishes a connection between the problem posed by the jump
conditions of the martensite/martensite interface on the left hand side and the
problem posed by the jump conditions of the austenite/martensite interface on
the right hand side. Note that by considering relation (4.17), the term 1+b⊗n

can be identified as the averaged deformation gradient in the martensitic phase.
Thus, the right Cauchy-Green Tensor induced due to the phase transition can
be determined as

CM = FT
M · FM = (1 + n⊗ b) · (1 + b⊗ n) (4.25)
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or as

CM = (U− + λ (m ∗ ·U−)⊗ c∗) · (U− + λ c ∗ ⊗(m ∗ ·U−)). (4.26)

The possible solutions of this relation have to be found. Proposition 4 by Ball
and James (Ball & James (1987)) states that any matrix C of the form

C = (1 + q⊗ p ) · (1 + p⊗ q ) (4.27)

must have eigenvalues λ1 ≤ λ2 ≤ λ3 with following properties

λi ≥ 0 and λ2 = 1. (4.28)

In that case, the solutions p and q are given by:

p = ρ

(
√

λ3(1− λ1)

λ3 − λ1
NC

1 + κ

√

λ1(λ3 − 1)

λ3 − λ1
NC

3

)

q = ρ−1

(√
λ3 −

√
λ1√

λ3 − λ1

)

(−
√

1− λ1 NC
1 + κ

√
λ3 − 1NC

3 ),

(4.29)

where NC
1 and NC

3 are normalized eigenvectors of C corresponding to λ1 and
λ3, respectively. The constant ρ represents an invariant scaling of the solution
and will be used to choose unit normal vectors. The constant κ can take the
values ±1. Considering that 1 + p ⊗ q can be interpreted as a deformation
gradient, the requirement 1 + p · q > 0 follows. This requirement is already
worked into (4.29).

As the matrix CM fulfills equation (4.25) as well as (4.26), the condition that
one eigenvalue of CM has to be 1 in order to be expressible in the form stated
above restricts the values for λ. To ensure that at least one eigenvalue equals
one, a function g(λ) is introduced such that

g(λ) = det(CM − 1). (4.30)

The function g(λ) only depends on λ as the focus is on the determination of λ
for given b and n. One root for g(λ) has to be found with 0 ≤ λ ≤ 1 in order
to be physically admissible. Generally, g(λ) is a sixth order polynomial. By
using proposition 5 in Ball & James (1987), it can be shown that it reduces
to a quadratic function in λ, leading to two solutions for relation (4.30). In
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addition, proposition 6 of the publication mentioned above poses restrictions
on CM due to the fact that 0 ≤ λ1 ≤ 1 and λ3 ≥ 1.

The complete “CTM-problem” consists of the determination of the rotation
tensors, c, n, b, and m3. However, within this application, the theory is only
used to determine the deformation induced by the phase transition. Thus,
knowledge of CM is sufficient and only the steps taken to determine the correct
value for CM are necessary.

4.2.2.3 Criterion choosing the existing strain

The procedure by Ball & James (1987, 1992) yields the possible values for
the strain induced regardless of the stress applied. Thus no information is
provided which variant is the one which will actually form within a specific
region. Therefore, an additional criterion must be introduced which will be
used to finally decide which variants are active. In the following, a proposition
by Shield (1995) is adopted. An energy criterion is introduced: the variant
which minimizes the strain energy due to the induced Bain strain is chosen.
Thus, from the possible choices Ci

M , the one which minimizes

W̃ i
M = tr(Ci

M · σ), (4.31)

is selected.

4.2.3 Interfacial movement

In order to simplify the notation, the superscript αβ is omitted in the following
section, i.e. [•] = [•]αβ, Λ = Λαβ, and n = nαβ . The restriction on the
movement of the interface imposed by the second law of thermodynamics may
be described by (2.263). It is adopted in the notation used within this chapter
as

ζΛ = Uρ0 n · [µ] · n ≥ 0. (4.32)

Various approaches are possible to satisfy relation (4.32): one may assume that
the interfacial movement is always in equilibrium (cf. Raniecki & Lexcellent

3The approach by Ball and James predicts plane interfaces. This is in clear contradiction
to the results presented here. However, it must be noted that the theory is developed in the
referential frame. The transformation into he actual configuration leads to curved interfaces
(Lusk (1996)).
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(1999)), satisfying relation (4.32) by ensuring that n·[µ]·n = 0. This approach
may lead to large changes or jumps of the position of the interface, which in
turn may lead to numerical instabilities. Thus, a different approach is employed
here. In what follows, a linear relation

U = cn · [µ] · n (4.33)

with the restriction c > 0 to satisfy relation (4.32) is used. It changes the char-
acter of the problem: the equilibrium approach is time independent. When
the equilibrium position is to be found at a different position, even infinite
propagation speeds of the transformation interface may be possible. the ap-
proach (4.33) introduces a time dependence into the problem. The position
of the interface does not only depend on the equilibrium position but also on
the parameter c. For c → ∞, this model approaches the equilibrium scheme.
Thus, the choice of the parameter c is still an open issue. One may choose
a value which is large enough to allow for fast approach of the equilibrium
position but small enough to avoid numerical instabilities. However, regard-
less of the choice of c it must be noted that the equilibrium position is finally
reached, as long as the numerical scheme works correctly. In addition to the
preceding considerations, the choice of a linear relation may be questioned
(cf. Berezovski & Maugin (2005)). But as the main focus of this chapter is
on the development of the numerical scheme, this choice suffices for now. An
extension to other, nonlinear approaches is straightforward.

4.3 Numerical realization

As described in section 4.2.3, the evolution of the interface can be locally
described in terms of the jump of the state variables between the coexisting
phases. However, these local state variables, such as stress, deformation gradi-
ent or temperature, strongly depend on the behavior of the bulk material and
the externally applied boundary conditions. Thus, its movement can not solely
be described by a local description at the phase boundary, which is a sufficient
approach when the interfacial movement is primarily driven by its curvature
(Taylor et al. (1992), Russo & Smereka (2000), Gurtin & Jabbour (2002)).
Closed form solutions of the coupled problem exist only for some special cases
(Raniecki & Lexcellent (1999), Berezovski & Maugin (2002, 2003)). To address
problems with arbitrary geometries4, a numerical scheme able to capture the

4The initial geometry might be chosen based on micrographs. After reaching the equilib-
rium state, the geometry reached in the simulation should again be compared to micrographs.
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Figure 4.12: Discretization approaches discussed in section 4.3.

behavior of the bulk material must be developed. Different approaches might
be possible (cf. figure 4.12):

a) The finite element method (FEM) is used to describe the bulk behav-
ior. Its mesh coincides with the interface. Thus, the FEM-nodes can
be used to constitute a mesh on the interface and establish a numerical
scheme to describe the movement of the phase boundary. The state at
the interface can be determined by extrapolation of the quantities at the
Gauss-points to the interfacial nodes. This procedure is only an extrap-
olation as usually a jump of the quantity of interest can be found at the
phase interface. Thus, no interpolation over the interface is possible. The
values at both sides of the interface have to be extrapolated from the cor-
responding bulk Gauss-points. When the interface evolves, remeshing of
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the generally three-dimensional FEM-mesh is necessary which renders to
be difficult. An application of this approach can be found in Ghoussoub
& Leroy (2001).

b) Deviating from the previous approach, a two-dimensional discretization
of the interface independent of the discretization of the bulk is used. This
mesh can move within the body without any restriction which may be
imposed by the bulk discretization. Again, extrapolation of the quanti-
ties at the gauss-points to the interfacial points is necessary. The quality
of this extrapolation varies depending on the distance of the interfacial
node from the gauss-points of the corresponding bulk material. This in-
troduces an extrapolation error which may lead to inaccurate results for
the interfacial values.

c) Again, the FEM is used to solve the bulk problem, but the position
of the interface is described implicitly by means of a level set function
(Sethian (1998), Barles et al. (1993)). An additional degree of freedom is
introduced by this level set. The movement of the interface is now solved
at the gauss-points, an extrapolation of the interfacial values to the gauss-
points is necessary. As also strong discontinuities can be addressed with
this approach, the displacement field may be enriched by an additional
term, leading to the extended finite element method (XFEM) (Sukumar
et al. (2001), Chessa & Belytschko (2004)) approach. This approach
has been successfully applied to crack growth problems (Sukumar & H.,
2003; Huang et al., 2003; Budyn et al., 2004) or solidification problems
(Chessa et al. (2002)).

d) The method proposed in the following explicitly discretizes the interface
by a two-dimensional mesh as in proposal b). The same discretization is
used to solve the bulk problem as the boundary element method (BEM),
which generally only requires a surfacial mesh as it provides by its con-
cept a reduction of the problem dimension. Schmidt et al. (Schmidt &
Gross (1997), Gross et al. (2003)) used the same approach to calculate
the equilibrium shape of an elastically inhomogeneous inclusion. Thus,
the approach was similar but it lacked the evolution algorithm for the
interface as the determination of the equilibrium shape was subject of
their contribution.
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4.3.1 Preliminaries

The developed description is not restricted to the use of an explicitly speci-
fied configuration even though it is presented here within the context of small
deformations. The position vector r ∈ Rn, where n denotes the number of spa-
tial dimensions, may describe the position of a material point in an Eulerian,
Lagrangian or any intermediate configuration. Consequently, the measures in-
troduced have to be well defined in the configuration employed. The approach
is therefore coupled to the BEM description employed and its ability to provide
values for certain measures at the interface in the chosen configuration.

4.3.2 Boundary Element Method

This section shall not be understood as an introduction to the boundary ele-
ment method. The complete description of the boundary element method is
beyond the scope of this contribution. Numerous textbooks exist which give
a detail introduction and an overview of the current research within this field,
see e.g. Gao & Davies (2000b), Beer (2001). This section is only included to
give a reader, who is not familiar with the idea behind the boundary element
method, an idea about the concepts followed within this approach.

4.3.2.1 Main idea of the Boundary Element Method

In order to keep the focus on the main ideas of the Boundary Element Method,
an introductory example is presented in this section. Here the problem of
stationary heat conduction, described by the Laplace equation, is discussed.
The problem statement in strong form is as follows: the domain Ω is governed
by the Laplace equation as stated below, its boundary ∂Ω can be separated
into two regions such that ∂Ω = Γu ∪ Γq and Γu ∩ Γq = ∅. The solution for
u ∈ R, stated in the strong form, is sought that

∇
2u = 0 in Ω

u = u∗ on Γu

q = ∇u · n = q∗ on Γq.
(4.34)
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is satisfied. A weak form of (4.34) can be derived by introduction of a, not yet
explicitly specified, weighting function û(x, x̂) to lead to

∫

Ω

û
(

∇
2u

)

dΩ(x)

+

∫

Γu

q̂ (u− u∗) dΓ(x)−
∫

Γq

û (∇u · n− q∗) dΓ(x) = 0 (4.35)

with q̂ = ∇û · n. The weighted integrals lead, due to the introduction of
the weighting function û(x, x̂), funtions of the new spatial variable x̂. It is
noteworthy, that not only the differential equation is part of the weak form of
the problem statement but also the boundary conditions are included. Relating
this aspect to the idea pursued in this section and its environment of isotropic
elasticity, the tractions and stresses can be evaluated at the boundary with
higher accuracy compared to an approach based on finite elements. Thus, two
positive aspects are noticed: the measures are evaluated directly at the points
of interest, the interface. Furthermore, the inclusion of the traction leads to a
higher accuracy for the determination of the stresses. The weighting functions
used for the differential equation and the boundary conditions are different and
not of the same type as u, thus qualifying this method as a Petrov-Galerkin
method. Twice partial integration of the first term in (4.35) yields

∫

Ω

∇
2û udΩ(x)−

∫

Γ

∇ûu · n dΓ(x) +

∫

Γ

û (∇u) · ndΓ(x)

+

∫

Γu

q̂ (u− u∗) dΓ(x)−
∫

Γq

û (∇u · n− q∗) dΓ(x) = 0, (4.36)

after rearrangement

∫

Ω

∇
2û udΩ(x)

−
∫

Γq

q̂ u dΓ(x)−
∫

Γu

q̂ u∗ dΓ(x) +

∫

Γu

û q dΓ(x) +

∫

Γq

û q∗ dΓ(x) = 0, (4.37)
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and finally

∫

Ω

∇
2û u dΩ(x)−

∫

Γ

q̂ u dΓ(x) +

∫

Γ

û q dΓ(x) = 0. (4.38)

The main idea is now to choose the weighting function û such that the re-
maining volume integral collapses. For the integral derived, û is chosen such
that

∇
2û(x̂) = δ(x− x̂) (4.39)

holds. If the above requirement holds, û is called a fundamental solution. The
derivation of the fundamental solution depends on the underlying differential
equation. Thus, the formalism leading to the boundary element formulation is
closely bound to the differential equation used to derive the fundamental solu-
tion and even for slight modifications, as e.g. the transition from isotropic to
orthotropic behavior in elasticity, a new derivation of the fundamental solution
is necessary. Furthermore, the derivation is bound to the problem dimension
as well.

Assuming that a three dimensional problem has to be solved, the fundamental
solution for the case considered here reads

û =
1

2 π
ln

1

|x− x̂| . (4.40)

Using (4.40), relation (4.38) can be rewritten as

c u(x̂)−
∫

Γ

q̂ u dΓ(x) +

∫

Γ

û q dΓ(x) = 0, (4.41)

where c = 1 if x is an interior point and c = 1
2 if x is a point on the boundary.

The transformation of the problem from one which is defined by a differen-
tial equation in the bulk and appropriate boundary conditions to a problem
solely described in terms of the boundary is achieved. The integrals over the
boundary are split into an element-wise integration over the elements I

c u(x̂)−
∑

I

∫

ΓI

q̂(x, x̂) u(x) dΓ(x) +
∑

I

∫

ΓI

û(x, x̂) q(x) dΓ(x) = 0. (4.42)
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Special care has to be taken for the singularities related to the evaluation of û
and q̂ = ∇û · n. For other elements, usual Gaussian integration can be used.
The two integrals now have to be evaluated in terms of the nodal values u and
q to yield the matrices

Cu− Ĥu + Gq = 0, (4.43)

or

Hu = Gq (4.44)

with H = Ĥ−C. Here, C has only nonzero components on the main diagonal
which are either 1 or 1/2, depending on the associated value of c. At each node,
either u∗ is specified and q is unknown or q∗ is specified and u is unknown.
The terms which are known are multiplied with their corresponding matrix H

or G and grouped into a vector y. The unknowns are grouped into x, leading
to the equation to be solved

Fx = y. (4.45)

4.3.2.2 Multiregion BEM for isotropic elasticity and nonhomoge-

neous eigenstrain

As already described in section 4.3.1, the domain Ω of the body B can be
divided into nonintersecting regions Rα. For each region Rα, the boundary
element method must provide a solution of the bulk problem, i.e. provide a
solution for the vector of unknowns u and tractions t on the boundary ∂Rα

of the region. Thus, depending on the problem type, an appropriate scheme
has to be chosen.

The term isotropic elasticity is used to characterize the elastic response of the
region considered. In fact, a nonhomogeneous strain within the domain might
be present as introduced in section 4.2.1.

Starting point for the description for isotropic elasticity is the Somigliana iden-
tity

C · u(x̂) =

∫

Γ

U(x, x̂) · t(x) dΓ(x)−
∫

Γ

T(x, x̂) · u(x) dΓ(x)

+

∫

Ω

Ê(x, x̂) : εpt(x) dΩ(x), (4.46)
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u
α = u

β

t
α = −t

β

Region α

Region β

Figure 4.13: Node on the interface, the regions are drawn apart
for clarity.

which is the equivalent to relation (4.41). The tensors U, T, and Ê, depend
on the problem type and their appropriate choice is explained in appendix A.
However, due to the additional strain εpt, a term with a volume integration
remains in the formulation which can not be transferred to the boundary.
Thus, two aspects distinguish this formulation from a plain boundary element
formulation: equation (4.46) is only valid for a homogeneous region α and
a volume integral is still present in the formulation. Both aspects will be
covered in the following section even though the underlying derivations are
well established (cf. Gao & Davies (2000b,a), Kane et al. (1990), or Potrc
et al. (1987)). The same discretization procedure as described in the previous
section leads to

Cα uα − Ĥαuα + Gαtα + f iα = 0, (4.47)

and analogously to (4.44)

Hα uα = Gα tα + f iα. (4.48)

The additional term f iα stems from the integral containing εpt. For multido-
main problems, relation (4.48) can be formulated for each region α. However,
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for nodes belonging to multiple regions, the grouping into known and unknown
measures as described previously cannot be performed. This is clarified by fig-
ure 4.13. For each node on the interface belonging to region α, an associate
node in region β at the same position exists. Each node provides three equa-
tions for a three dimensional problem. The number of unknowns is six for each
interfacial node, uα, tα, uβ, and tβ. The connection of the nodes is brought
in by the additional conditions uα = uβ and tα = −tβ as shown in figure 4.13.
Thus 2 ∗ 3 + 2 ∗ 3 = 12 equations are given for the 2 ∗ (3 + 3) = 12 unknowns.
Thus, all displacements and tractions can be determined.

The additional constraints at the boundary provide the additional relations
and rules underlying the procedure employed to combine the regional governing
equations (4.48) to a global governing equation

Hu = Gt + fpt (4.49)

which again can be rearranged to be solved for the unknowns at each node.

The third term on the right hand side of relation (4.46), which can only be
treated by a volume integration, does not pose any special problems for this
particular application. It has to be taken into account, that the additional
induced strain εpt is only present in regions where the transformation has
already taken place. As the simulation considers the movement of the phase
transition front within the body, each part of the region where the eigenstrain
is induced was once located directly behind the moving phase transition front.

The volumetric elements which are used to compute the additional term are
constructed by taking the two dimensional element at the beginning and the
end of the time step, thus providing two faces for the volume element. The
other four faces of the element are constructed by taking the appropriate nodes
of the two dimensional element as depicted in figure 4.14. No connectivity of
the nodes which do not belong to the same volume element are necessary
as only the volume integration is performed. Furthermore, the elements can
even overlap, which might happen if the phase interface starts to reverse the
transformation, accompanied by a removal of the strain induced due to the
phase transformation. For the majority of the elements, the integration can be
carried out by a low order Gauss integration. For elements where singularities
occur, again special steps have to be taken (cf. appendix A).
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martensite

austenite

martensite

austenite

austenite

martensite

a)

c)

b)

Figure 4.14: Construction of a volumetric element.
a) Interfacial mesh at the start of time step.
b) Interfacial mesh at the end of time step.
c) Construction of a volume element by use of a

new and an old face.
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4.3.3 Interfacial movement

The scheme proposed here is based on the gradient-weighted moving finite
element (GWMFE) approach by Miller et al. (Carlson & Miller (1998a,b);
Kuprat (2000)). However, due to the interaction with the BEM, the coupled
problem is solved in the approach presented here. Furthermore, the remeshing
due to distortion of the mesh and restrictions due to the morphology are taken
into the evolution step and not handled by a separate software as proposed by
Kuprat (2000).

The position of a point on the interface is denoted by xΛ. It can be described
by an additive decomposition

xΛ = r + u, (4.50)

where u describes the displacement of the point due to the deformation of the
body. The remainder r stems from the movement of the phase boundary. It
is assumed that for the description of the interfacial movement, the term r is
sufficient to describe its position. This can be achieved in two ways:

• u≪ r, thus the error introduced by u can be neglected, or

• the description is a Lagrangian description, thus the position of a mate-
rial point is the referential position X which does not change.

As the description is restricted to small deformation measures due to the capa-
bilities of the BEM-package used, the first option is sufficient for the remainder
of the section. However, a description in the referential configuration would be
highly desirable (Foerster & Kuhn (1993), Köhler (1999)). Let each boundary
∂Rα of a subregion Rα of the body B be discretized by a mesh of nodes J α,
and let Fαβ ⊂ J α be the nodes on Λαβ. The mesh is chosen such that the
nodes on the interfaces between regions coincide, i.e. Fαβ = Fβα (cf. figure
4.15). Meshes constituted by J α are used for the solution of the boundary
element problem described in section 4.3.2.2 whereas the mesh described by
the nodes Fαβ are used to describe the evolution of the interface Λαβ (or Λβα).
Again, to simplify the notation, the movement of a single interface within a
body is considered, i.e. nodes on the interface are denoted by F .

The movement of the interfacial nodes ṙ is split into a normal and a tangential
part, i.e.

ṙ = nU + n⊥ U⊥ (4.51)
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Rα

Rβ

Figure 4.15: Set of nodes, region α with set J α circled, re-

gion β with set J β boxed, interface with set Fαβ

crossed.

where n ·n⊥ = 0 and U⊥ denotes the tangential velocity of the interfacial node
under consideration. It is important to note that U⊥ is not physically founded.
It is added to avoid a degeneration of the mesh or to satisfy restrictions imposed
on the movement of the nodes, e.g. on the boundary of the body B. It may not
change the results obtained providing that the numerical solution converges
to the physical solution of the system. However, the use of this term is of
vital importance as degenerated elements have a tremendous influence on the
accuracy the numerical solution.

4.3.3.1 Weak form

The derivation of the weak form of the problem follows a Bubnov-Galerkin
approach. The use of a weak form greatly simplifies the treatment of bound-
aries and edges (Simha & Bhattacharya (1999, 2000)). By combination of the
strong form of the governing differential equation (4.33)

U = cn · [µ] · n (4.52)
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with the description of the nodal positions on the interface (4.51)

ṙ = nU + n⊥ U⊥ (4.53)

one may, after premultiplication by a weighting function r∗, obtain the weak
form after integration over the interface

∫

Λ

{

r∗ · ṙ− c (r∗ · n) (n · [µ] · n)− r∗ · n⊥ U⊥
}

dA− B̂P = 0. (4.54)

The term B̂P is an additional penalty term introduced in order to satisfy
constraints on the movement of the interfacial nodes or to avoid excessive
mesh distortion. It is described in detail below. Identifying the terms

B̂M =

∫

Λ

r∗ · ṙdA (4.55)

B̂FN =

∫

Λ

c (r∗ · n) (n · [µ] · n) dA (4.56)

B̂FT =

∫

Λ

r∗ · n⊥ U⊥ dA, (4.57)

one may write relation (4.54) as

B̂M − B̂FN − B̂FT − B̂P = 0. (4.58)

r is approximated by

rh(x, t) =
∑

I∈F

NI(x)pI(t), (4.59)

where NI(x) are shape functions provided by the boundary element system.
Equivalently, for the test functions r∗, relation

r∗(x, t) =
∑

I∈F

NI(x)p∗
I(t) (4.60)
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holds. pI(t) and p∗
I(t) can be interpreted as nodal values, i.e. nodal positions

of the interface. Considering that the choice of r∗ is arbitrary, one may find a
relation which satisfies (4.58) to be

BM −BFN −BFT −BP = 0. (4.61)

The different terms occurring can be expressed as

BM = MN ṗ, (4.62)

where MN = {MIJ}, p = {pJ}, and

MIJ =

∫

Λ

NI ·NJ dA. (4.63)

The term BFN can be expressed as

BFN = fFN , (4.64)

with fFN = {FFN
I } and

FFN
I =

∫

Λ

c (NI · n) (n · [µ] · n) dA. (4.65)

Constraints on the motion of the interfacial nodes are incorporated by means
of penalty functions. Three different cases, BP0, BPBC , and BPM leading to

BP = BP0 + BPBC + BPM (4.66)

are considered in the following.

• If the nodal movement is not restricted and no special considerations due
to mesh distortion are necessary,

U⊥ = 0 (4.67)
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∂B

n

Λ

R1 R2

nc

Figure 4.16: Node on the boundary of B, restricted to a move-
ment in direction nc.

may hold. For this situation, the penalty terms BPBC and BPM are set
to zero. In general, the term BP0 is chosen as

BP0 = fP0 = −αP0

∫

Λ

r∗ · n⊥ U⊥ dA, (4.68)

where αP0 = 1, which ensures the validity of condition (4.67) in the weak
sense.

• Constraints on the nodal movement due to the morphology of the body
B are incorporated by means of BPBC. Let for the node with the spatial
position rc exist a constraint on the nodal movement, a term

BPBC = αPBC

∫

Λ

r∗ · ṙc δ(r− rc) dA (4.69)

with the penalty factor αPBC ≫ 1 is added. The example depicted in
figure 4.16 illustrates the determination of ṙc: for the node depicted, the
movement ṙ may only be coaxial to nc. Thus,

ṙ = nc · (nc · ṙ) (4.70)

must hold. Introducing the projection tensor Pc = 1−nc⊗nc, one may
express the requirement on the movement as

ṙc = Pc · ṙ = 0. (4.71)
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Using again the approximations (4.59) and (4.60), equations (4.69) and
(4.71) yield

BPBC = MPBC ṗ (4.72)

with MPBC = {MPBC
IJ } and

MPBC
IJ = αPBC

∫

Λ

NI ·Pc ·NJ δ(r− rc) dA. (4.73)

The penalty αPBC must be large enough to ensure approximate fulfill-
ment of the restrictions imposed and small enough to avoid badly condi-
tioned matrices. For now, αPBC = 103 is chosen, however more extensive
studies might be necessary related to the choice of the penalty.

• If severe mesh distortion, leading to a badly conditioned matrix MN ,
may be the result of the current time step, additional terms might be
included via BPM . As this is done due to purely numerical reasons,
it is heavily coupled to the choice of the integration scheme employed.
Furthermore, the constraint should not be formulated in terms of the
current position p(t) or its change ṗ, but in terms of the position at the
end of the current time step p(t+δt). Possible choices are e.g. a penalty
employed when a the ratio between height and width of the elements
would get too large.

The combination of the components leads to

Mṗ = f (4.74)

with

M = MN + MPBC (4.75)

and

f = fFN + fP0. (4.76)

This equation has to be integrated in time in order to yield the solution. It is
noteworthy that M and f are dependent on the solution p.
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4.3.3.2 Evaluation of M and f

The terms MPBC and fP0 pose no special problems during the course of the
evaluation of (4.75) and (4.76). MN and fFN are determined by evaluation
of the surface integrals over the interface Λ. For fFN , integration has to
be carried out explicitly as the term resulting from the driving force of the
movement of the interface varies. The surface integration MN only depends
on the geometry of the interface. Thus, an explicit integration is not necessary
and the element contribution to the global matrix MN can be evaluated in
terms of nodal positions of the elements. Further analyzing the structure of
MN , it is obvious that the evaluation of MN follows the same procedures as
the evaluation of the mass matrix used in transient finite element analysis.
However, a so called “lumped mass-matrix” approach is often employed there.
The use of this approach within the application presented here would lead to
large inaccuracies as explained by the following example.

The evolution of an interface consisting of a single element in a two dimensional
case is considered. The position on the interface is described by a variable η
with −1 ≤ η ≤ 1. Initially, the interface may be at the position r(η) = 0.
As depicted in figure 4.17, the driving force for the movement of the interface
U = cn · [µ] · n may be described by

U =

{

k (η + 1) if − 1 ≤ η ≤ 1
0 otherwise.

(4.77)

Denoting the nodal positions by pI = r(η = −1) and pII = r(η = 1), they
can be grouped into the vector p = (pI , pII)

T . Furthermore, the use of linear
shape functions is assumed, i.e.

NI(η) =











1

2
(1− η) if I = 1

1

2
(η + 1) if I = 2.

(4.78)

Evaluating only the part due to the normal movement of the interface, the
vector f can be shown to be

f =

1
∫

−1

NI(η)U(η) dη =

1
∫

−1

NI(η)k(η + 1) dη =
k

3

(

2
4

)

. (4.79)
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Node 2

η = −1 η = 1η

U = k (η + 1)

Node 1

Figure 4.17: Driving force and expected movement for the ex-
ample from section 4.3.3.2

The evaluation of M yields

M =

1
∫

−1

NI(η)NJ (η) dη =
1

3

(

2 1
1 2

)

. (4.80)

Solving M∆p = f for the unknown ∆p leads to

∆p = k

(

0
2

)

(4.81)

which coincides with the analytical solution. Use of the lumped matrix

M =

(

1 0
0 1

)

(4.82)

yields

∆p = k
1

3

(

2
4

)

. (4.83)

Thus, the lumped approach would lead to a movement of Node 1 even though
the driving force at this node is zero. As the purpose of this description is an
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accurate description of the movement of the phase boundary, the use of the
lumped approach is ruled out.

4.3.3.3 Time integration scheme

The purpose of the time integration scheme is to advance the problem solution
in time and provide the new position of the interface at that time instance. As
mentioned before, both M and f depend on the solution p. Furthermore, the
solution of the bulk problem also influences and depends on the interfacial step.
Thus, stability properties are difficult to analyze. In order to at least partially
resolve this problem, a numerically fast, but less stable and a more stable but
computationally more expensive integration scheme for p are developed in the
following. Both feature a constant time step ∆t and start at time t = t0. The
denotations pk = p(t = t0 + k∆t), Mk = M(pk), and fk = f(pk) are used.

4.3.3.3a Staggered Integration

An explicit, staggered scheme where the descriptions of section 4.3.3 and 4.3.2.2
are completely decoupled is featured here. The term ṗ is approximated by

ṗ(t) ≈ p(t+ ∆t)− p(t)

∆t
. (4.84)

The algorithm can be described as follows:

(E1) At time t = t0, the position of the interface is known. The current
position pk is set to pk ← p0 (and k ← 0).

(E2) (bulk step) Based on the position of the interface pk, the state at the in-
terface is determined employing the boundary element scheme described
in section 4.3.2.2. The local driving force for the movement of the inter-
face and the local velocity of the interface can be determined.

(E3) (interface step) The matrix Mk and the vector fk can be determined be
means of (4.75) and (4.76), the next interfacial position can be deter-
mined using (4.74) and (4.84) such that

pk+1 = pk + ∆tM−1
k fk. (4.85)

(E4) The solution is advanced by setting k ← k + 1 and the scheme proceeds
with step (E2).
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This scheme bears certain advantages, as e.g.

• the matrix Mk and the vector fk have to be evaluated only once for each
time step,

• only one inversion of the matrix Mk is necessary for one time step,

• the time step ∆t can be easily changed from one step to another.

Possible problems might occur when

• a stepsize ∆t is chosen too large resulting in instabilities,

• the solution does not converge as the scheme is a staggered scheme.

4.3.3.3b Predictor-Corrector Integration

An important aspect related to M and f is that they are in general nonlinear
functions of the interfacial position p. Thus, the explicit scheme proposed
above might lead to a numerical solution which deviates significantly from the
true solution due the staggered scheme. Furthermore, the stability properties
are difficult to investigate. In order to relax this situation, a predictor corrector
scheme which finds the solution considering both the interfacial step and the
bulk step is proposed here. The scheme is based on the solution of equation
(4.74) at time step k + 1

Mk+1 ṗk+1 = fk+1 (4.86)

and a slightly different approximation

ṗ(t) ≈ p(t)− p(t−∆t)

∆t
. (4.87)

The algorithm can be described as follows:

(PC1) As for the explicit scheme, for t = t0 the current position pk is set to
pk = p0.

(PC2) As in step (E2) of the explicit method, Mk and fk are calculated.
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(PC3) A predictor p̃k+1 for pk+1 is calculated by using

p̃k+1 = pk + ∆tM−1
k fk. (4.88)

(PC4) Using the predictor p̃k+1 of the nodal positions on the interface, pre-
dictor values for the matrix M̃k+1 = M(p̃k+1) and f̃k+1 = f(p̃k+1) are
determined.

(PC5) Using these, a corrector value

p̂k+1 = pk + ∆t M̃−1
k+1 f̃k+1 (4.89)

is calculated.

(PC6) If norm(p̂k+1 − p̃k+1) > ε, where norm(•) denotes an appropriately
defined norm and ε a threshold value, p̃k+1 ← p̂k+1 and the iteration
proceeds with step (PC4). Otherwise, pk+1 ← p̂k+1, Mk+1 ← M̃k+1,
fk+1 ← f̃k+1, and finally k ← k + 1 is set and the scheme proceeds with
step (PC3).

This scheme avoids the main two shortcomings of the staggered scheme: it
avoids the possible deviation due to the uncoupling of the BEM-scheme and
the interfacial scheme due to the iteration and a higher stability is achieved as
the correction steps are implicit. However, unconditional stability can not be
achieved due to the nonlinear nature of the problem.

4.3.4 Remeshing strategies

As the nodes which are common to the outer surface and the interface move
with ongoing phase transformation, a remeshing strategy has to be used. As
a first approach, two strategies are discussed (cf. figure 4.18):

a) The first approach is based on the idea that the distortion of the ele-
ments should be kept as small as possible. Only the nodes on the outer
surface which also belong to the interface are moved. As long as these
nodes do not destroy the elements on the outer surface they belong to,
i.e. the Jacobian of the element becomes negative, nothing is done. If the
element collapses, a remeshing step for the abjected surfacial elements is
performed: the node which moved to far will be a node of the element



106 4 Micromechanical approach

a) b)

Figure 4.18: Discussed remeshing strategies. Interfacial nodes
are crossed. a) Reconnecting b) Stretching

it moved into, the free node will then be a node of the element which
lacks a node. This procedure has been implemented and tested. It yields
numerical instabilities when the nodes are very close to each other. This
situation can not be avoided as the nodal position must reach a point
where the Jacobian becomes negative. More elaborate remeshing condi-
tions based on this scheme might be considered, but those require thor-
ough investigations. As the main scope is not on the choice of remeshing
strategies, this approach will not be used further.

b) A simple proportional stretch of the elements on the outer surface of the
body is performed. This simple approach bears certain disadvantages:
for complex geometries the stretching is difficult to determine and the
elements may become ill conditioned due to the stretching applied. How-
ever, for the studies done here, this approach has proven to be sufficient
to perform simulation up to a very high percentage of martensite.

4.3.5 Convergence studies

In order to study the convergence properties of the proposed approach, a sim-
ple model is considered as depicted in figure 4.19. The outer shape of the model
is a rectangular block which is separated by a transformation front dividing
the block into two halves of the same size. Within the martensitic region, a
homogeneous eigenstrain is assumed consistent with the crystallographic the-
ory of martensite explained before. At the lateral faces of the block, boundary
conditions are applied to lead to a constant face load on those faces. Due to
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Figure 4.19: Rectangular block used for convergence studies.
The mesh drawn is only symbolic, nonvisible mesh
on the body surface not drawn, interfacial mesh
drawn with thicker lines.

the load applied, the propagation of the transformation front is initiated. The
influence of the time step and the size and ratio of the edge lengths on the
accuracy of the solution is investigated in the following.

The convergence studies concerning the number of nodes used for the solution
consider a different number of nodes on the transformation interface. The
highest number of nodes used was 176, defining the results obtained with this
number of nodes as true solution of the problem. The error is defined as

errα =
∑

I

(

uα
I − u176

I

)2
(4.90)

where uI denotes the z-position of the interfacial node I at the end of the test
and the superscript the number of nodes on the interface. The summation
is performed over all nodes with common x and y coordinates for all meshes,
which are the corner nodes. The result depicted in figure 4.20 exhibits almost
linear convergence.

If the number of time steps, using the same mesh, is varied, the error measure

errβ =
∑

I

(

uβ
I − u2000

I

)2

(4.91)

is used where uβ
I denotes the result of the test with β time steps. The maximum

number of time steps used is 2000, defining this result as the true solution.
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Figure 4.20: Convergence study, different number of nodes.

The result is depicted in figure 4.21, linear convergence can be observed again.
The predictor-corrector scheme is not presented here as its use can not be
recommended for such simple problems. The number of time steps is not
the governing factor but rather the number of iterations for a given required
accuracy. A comparison of the staggered scheme with the predictor-corrector
scheme will be presented in the following section.

4.4 Example – Phase transition in a single crystal

To show the abilities of the presented approach, an example as depicted in
figure 4.22 is considered. It can be interpreted as the model of a single crystal
in which the transformation proceeded up to the half of the domain under
consideration. The reasons for the existence of the martensitic domain are not
part of the simulation. This example is very similar to the one considered in
the preceding section, in fact only the inhomogeneity in the austenitic phase is
added. In figure 4.22, the region pointing towards the observer is the austenitic
region whereas the region in the back is the martensitic region. The load is
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Figure 4.21: Convergence study, different number of time steps
for staggered scheme.
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h

w

l

Figure 4.22: Discretization used for the studies in this section.
In the figure, the dimensions are w = 1, h = 2,
l = 8, the diameter of the sphere is d = 0.8.

applied at the nodes on the frontal surface (defined by its dimensions width w
and height h) to yield a homogeneous traction on this surface. For a problem
without inhomogeneity, this setup would lead to a homogeneous stress state
within the specimen. A void of diameter d is added at the center of the
austenitic phase as the most simple inhomogeneity.

4.4.1 Introductory setup

The geometry for the first setup is chosen as depicted in figure 4.22. The
diameter is d = 0.8. Furthermore, the traction at the frontal surface is chosen
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as5 t = 150. The material parameters are chosen as follows:

EA 1 · 105

νA 0.25
EM 7.2 · 104

νM 0.25
c 1.0

The staggered evolution scheme is chosen with a constant stepsize of ∆t =
0.1. The evolution of the transformation front is depicted in figure 4.23. At
t = 0, the transformation plane starts moving homogeneously with a constant
velocity due to the applied stress. Due to the inhomogeneous stress state
around the inhomogeneity, the velocity is no longer the same for all points
on the transformation surface, thus the plane character of the transformation
surface is lost under the influence of the stress state around the inhomogeneity.
For the dimensions chosen in this example, a state of equilibrium is reached at
approximately t = 18 as no further movement of the interface can be detected.
The inhomogeneity has not been reached by the transformation surface even
though the distance is very small. Thus, the approach described here can not
only track the movement of the transition front, but it is also able to calculate
equilibrium shapes of the transformation surface when nonhomogeneous stress
states within the grain exist.

5Units are omitted as the numerical solution is only a proof of concept to show its
general ability to investigate the phenomena discussed in the introduction of this chapter
qualitatively. A quantitative description can be done based on this approach, but would
require a detailed knowledge of the micromechanical morphology and is out of the scope of
this contribution.
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0 175

Figure 4.23: Evolution of the transformation plane for time in-
stances t = 0, t = 5, t = 10, t = 15, t = 20, and
t = 25 from upper left to lower right picture. Col-
ors represent the value of |σ · n| on the interface.
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Figure 4.24: Number of iterations including “zeroth” predictor
step necessary to reach the error threshold ε.

4.4.2 Integration procedure

To compare the staggered scheme with the predictor corrector scheme, the ex-
ample presented in the previous section is simulated employing the predictor
corrector algorithm described in section 4.3.3.3b. The norm operator intro-
duced in section 4.3.3.3b is norm(•) = • · • where • is a vector. The error
measure ε is chosen such that three iterations are necessary including the first
initial predictor step during the first phase of the simulation. The term “num-
ber of iterations” includes the first predictor step, even though the first step
is not an iteration.

For the movement of the plane interface at the beginning of the simulation,
the number of iterations is three or four. Keeping in mind that the minimum
number of iterations is two, one may conclude that the stepsize is chosen such
that it almost yields the accuracy required by the choice of ε. When the
transformation front approaches the inhomogeneity and is no longer plane,
the number of iterations tends towards five. This high number of iterations
is necessary as long as the interface changes its shape. When for t ≈ 18
the stationary state is reached, the number of iterations drops back to the
initial value of three. One may ask why the minimum number of iterations is
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0 3 · 10−4

Figure 4.25: Evolution of the transformation plane for time in-
stances t = 0, t = 5, t = 10, t = 15, t = 20, and
t = 25 from upper left to lower right picture. Col-
ors represent the value of ∆PCST on the interface.
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not reached for this state. It must be noted that the stationary state is not
completely stationary. As no threshold is present in the material law which
described the movement of the interface (4.3.3), small perturbations of the
BEM-Solution, possibly due to numerical errors, lead to a movement of the
transformation front. However, after a perturbation, the transformation front
returns to the stationary, the equilibrium, shape.

In figure 4.25, the squared difference between the solution of the staggered
scheme uST

z and the predictor corrector scheme uPD
z of the horizontal position

of the nodes on the interface ∆PCST = (uPD
z − uST

z )2 is depicted. The value
always remains below 3 ·10−4. Considering the length scale used in this model,
this result can be regarded as a small difference.

4.4.3 Influence of the value of the applied traction

It can be expected that the value of the applied tractions has an influence on
the result as the transition front moves faster. However, to justify that the
approach is able to capture the behavior observed in a DSC-experiment, it has
to be shown that the transformation front would progress past the inclusion
for an increased load.

The result for a test with an applied traction of 300 is depicted in figure 4.26.
The transformation surface proceeds until it reaches the inhomogeneity, the
state which is depicted in figure 4.266. As extensive remeshing operations
would be necessary at this point, the simulation is stopped. Those operations
are not implemented yet, but are generally possible using the approach pro-
posed. The fact that the transformation surface reached the inhomogeneity
indicates that an elevated stress level yields to an ongoing phase transition.

4.4.4 Size effects regarding the inhomogeneity

To investigate the influence of the size of the inhomogeneity a simulation with
an inhomogeneity with reduced size is performed. The results are shown in
figure 4.27. At t = 15.2, the interface reaches the inhomogeneity and the simu-
lation is stopped due to the reasons described in the previous paragraph. The
transformation surface is relatively plane, the influence of the inhomogeneity
on the state of the transformation front is relatively small, as e.g. the traction

6The state depicted for comparison is based on the velocity of the transformation plane
observed for the homogeneous case.
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0 350

Figure 4.26: State at t = 0.35 for an applied stress of 300. For
comparison, the state at t = 1.4 for the load 150 is
depicted right. Colors represent the value of |σ ·n|
an the interface.

depicted in figure 4.27. A further progress of the transformation front can be
expected.

4.5 Summary and outlook

Based on this simple model, some phenomena discussed in the opening could
be verified:

• If an inhomogeneity in the austenitic phase exists, the surrounding stress
state can stop the progress of the transformation front if the external
thermomechanical loads remain constant. This may explain the transi-
tion from a one stage to a two stage transformation as in this case, the
thermomechanical load on the specimen had to be increased further in
order to show a proceeding phase transition.

• The behavior may not be apparent if the size of the inhomogeneity is
below a certain size compared to the size of the grain. This corresponds
well to the experimental observations as inhomogeneities of different sizes
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0 175

Figure 4.27: Evolution of the transformation plane for time in-
stances t = 0, t = 5, t = 10, and t = 15 from upper
left to lower right picture with d = 0.2. Colors rep-
resent the value of |σ · n| an the interface.
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are always present in the material. However only inhomogeneities of a
considerable size lead to a visible macroscopic effect.

The current implementation is restricted to isothermal processes due to the
limitations of the BEM-package. As the phase transition problem is strongly
coupled, an extension to cover heat conduction as well is highly desirable.
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5 Macroscopic approach

5.1 Motivation and observations – macroscopic view

The approach developed in this chapter focuses, even though meso- or mi-
cromechanical observations serve as the motivational base, on a macroscopic
description of the material. Thus, in this introductory section, only macro-
scopically observable phenomena are shown whereas the underlying crystallo-
graphic mechanisms are discussed in section 4.1.

The three basic classes categorizing the behavior of SMA also apply to poly-
crystals. Thus, SMA show pseudoelastic, pseudoplastic and the two way effect.
In comparison to single crystals, the transformation strain observed is usually
smaller. For single crystals, transformation strains range up 17% whereas for
polycrystals only strain up to 7% (Luig et al. (2005)) can be achieved. The
behavior strongly depends on the heat treatment used for the material during
preparation. To conclude, it must be noted that the observations from the mi-
cromechanical, single crystal1 scale can only be transferred to the macroscopic,
polycrystal level to a certain extent. This can be traced back to

• the interaction of the grains,

• grain boundaries induce, from a mechanical viewpoint, inhomogeneities
which lead to nonhomogeneous stress states,

• the unique crystallographic orientation of each grain which may range
from a completely randomized structure with no distinct orientation to
a situation where the orientation of the grains coincides relatively well.

These aspects lead to macroscopically observable phenomena which can not
solely be explained on the microscopic level, but stem from the scale transition.
Two aspect might be mentioned here:

1Even though it is nowadays possible to manufacture single crystals of macroscopic size,
in this context the term single crystal shall denote a single crystal within a polycrystal.
Thus, the use of the term single crystal corresponds to observations on the microlevel.
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Figure 5.1: Curve characterizing the onset of the phase tran-
sition for a CuAlNi-SMA, measured by Lexcellent
et al. (2002).

• For multiaxial behavior, the transition from the region where elastic
austenite is the only phase present to the region where already martensite
is present (the transformation regime) may be characterized, borrowing
the term from plasticity even though the effects observed do not pri-
marily stem from plastic deformations, as a yield surface. Such a curve,
measured for a CuAlNi-SMA, is depicted in figure 5.1. The shape of
the yield limit can not be explained by a J2-theory based on the value
of the applied stress even for a specified temperature. Furthermore, the
“normality-rule” frequently used in plasticity does not apply for this be-
havior in stress space (cf. figure 5.2). The description may even get
more complicated when cycles in stress- or strain-space are considered
(cf. figure 5.3). Strong cross-effects between the behavior in tension
and torsion are present which can not be explained with simple theories
adapted from plasticity.

• In figure 5.4, the stress and temperature evolution during a test in simple
tension is depicted. For the stress-strain curve, the observed behavior is a
typical result for a pseudoelastic material: a linear region where austen-
ite is assumed to be deformed elastically is followed by a plateau where
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Figure 5.2: Stress-controlled box test. Note that large devia-
tion for εΘΘ stems from elastic lateral contraction
(Lexcellent et al. (2002)).

the austenite transforms into martensite accompanied by a deformation
induced by the phase transition. When the specimen is unloaded, again
a stage where the material behaves linearly can be observed, followed by
the plateau where the backtransformation occurs. When only austenite
is present, the specimen is elastically unloaded until the stress free state
is reached. However, the temperature evolution does not conciliate with
theoretical considerations. The austenite to martensite transformation
is an exothermic process whereas the backtransformation is endother-
mic. An elastic loading is slightly endothermic due to the piezocaloric
coupling. Following these considerations, the temperature would slightly
decrease during the first stage of the loading, followed by a sudden tem-
perature increase resulting from the forward transformation. During the
first stage of the unloading, a slight temperature increase could be ob-
served due to the piezocaloric coupling followed by a large decrease due
to the backtransformation. This kind of behavior can not be observed
at all in figure 5.4. During the mechanically linear stage, a temperature
increase can be observed. When the plateau is reached, the temperature
increase gets even smaller. At the time instance when the specimen is un-
loaded, the temperature decreases immediately. Again an approximately
constant temperature is observed during the plateau-stage. It seems that
an exothermal process is present during what is classically considered as
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Figure 5.3: Multiaxial test on thin walled tube conducted by
Helm (2001).
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Figure 5.4: Stress σ and temperature Θ for a test in simple
tension.
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elastic loading of austenite and an endothermal process during what is
classically considered as elastic unloading of martensite.

It is important to note that the behavior depicted in figure 5.4 has been
observed by Lim, T.J. & McDowell, D.L. (1999) as well. It is also ev-
ident in figure 5.3: during stage 1 up to a stress of 300 MPa, a linear
relation between stress and strain can be observed whereas the temper-
ature increases drastically. When, still in stage 1, the typical non-linear
behavior observed for SMA is present, the temperature is relatively con-
stant. During stage 4, when the load is brought back to zero by removing
the shear angle, the temperature increases when, according to common
believe, the apparently elastic unloading, takes place. The increase is
of a magnitude which can not be explained by the piezocaloric effect.
However the heat exchange with the environment is a factor which is
difficult to take into consideration.

In order to explain these phenomena, two approaches are proposed: the
influence of the R-phase leads to this behavior (R) or the existence of
twinned martensite at low stress levels (TM) serves as mechanism behind
these phenomena. A further elaboration of these approaches yields the
following:

– During the mechanically linear elastic loading, a strong endothermic
process is present in the material. Possible reasons for this could be

(R) An austenite to R-Phase transition might lead to an endother-
mic process, as observed in the previous example. However,
even though the influence of this type of transformation on the
mechanical behavior is small, it would lead to an observable
deviation from the linear behavior observed here (cf. Lim, T.J.
& McDowell, D.L. (1999)).

(TM) An austenite to twinned martensite transition might be present.
The local deformation due to the transformation from austenite
to martensite is rather small and could easily be accommodated
by the surrounding austenitic matrix.

– The second stage, within the classical context, is believed to re-
flect the transformation from austenite to martensite. Following
the proposal above, it might be that

(R) The R-phase now transforms to martensite, leading to the re-
lease of the latent heat and the macroscopic deformation of the
material.
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(TM) The twinned martensite reorients due to the increased stress to
a untwinned martensite. This process is to common believe,
not accompanied by any considerable release or consumption
of heat. Thus, during this stage, austenite to martensite and
martensite to martensite transformations might occur at the
same time.

– When unloading takes place, an immediate heat consumption can
be observed. Furthermore, no sharp transition from an elastic re-
gion to a plateau is visible. Thus, one may conclude that an imme-
diate transformation from untwinned martensite to austenite sets
in when the specimen is unloaded. But this transformation must
be accompanied by a relative large mass fraction which transforms
from untwinned martensite to twinned martensite as the mechanical
behavior indicates. When the load is decreased further, the transfor-
mation from twinned martensite to austenite takes place. However,
the processes during unloading are more difficult to analyze and
further detailed micromechanical investigations are necessary for a
thorough development of a material model.

To conclude, the effects observed on the macroscopic scale are usually difficult
to separate from each other. Heat exchange with the environment, having a
large influence on the temperature and therefore altering the material proper-
ties considerably, leading to pseudo-viscous effects, overlays the effects which
can be directly traced back to the material. Hence, a thorough modelling of
the material behavior is only possible when detailed information about mass
fractions of the phases involved, martensite variants present, and the caloric
interaction of the specimen with its surrounding are available. Unfortunately,
experimental investigations taking all aspects into consideration can be rarely
found.

In the following, a frame which allows the distinction between twinned and
untwinned martensite is developed. Such approaches exist (eg. Thamburaja
(2005)), but either have the focus on the microscale or do not use the kinetic
variable as a directed measure.

Basic features, such as the predicted martensite start temperature and the
kinetics for the transition from austenite to martensite are discussed. Due to
the uncertainties related to the backtransformation, no development leading
to the concrete formulation describing the backtransformation is conducted.

The chapter is organized as follows: in the following section, basic consid-
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erations leading to the introduction of tensorial transformation kinetics are
discussed. In section 5.3, the approach is specialized to the case of SMA.
In sections 5.4, 5.5, and 5.6, questions regarding the onset, kinetics and the
backtransformation are discussed.

5.2 General considerations

The aim of this section is to derive a macroscopic description based on the
derivations local to the discontinuity. Thus, a scale transition with appropriate
homogenization assumptions must be introduced leading to a pair of tensorial
variables describing the transformation kinetics macroscopically. Restriction
for the transformation kinetics based on thermomechanical and micromechan-
ical considerations have to be derived.

5.2.1 Scale transition

For the derivations in this section it has to be noted that a macroscopic de-
scription, independent of the local orientation of the phase interface, is desired.
However, the local orientation may not, and under certain conditions must not,
be discarded and taken into account in a averaged, global sense. Thus, the in-
formation concerning the existence of a local orientation of the phase interface
characterized by its normal vector has to be transferred to the macroscopic
scale. The introduced macroscopic internal variable may therefore not only
bear scalar information about the mass fraction of the martensite, but also,
up to a certain extend, statistical informations about the local orientations.

The main idea of the following procedure is based on the local dissipation at
the phase boundary due to its movement. In section 2.4.9, the local dissipation
at the phase boundary due to its movement is derived, leading to expression
(2.263). This relation is adopted in the form

ζΛ = ρUN n · [µ] · n ≥ 0 (5.1)

or

ζΛ = (ρUN n⊗ n) : [µ] ≥ 0. (5.2)
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The second order tensor ρUN n⊗n holds information about the local orienta-
tion of the transformation surface whereas the term [µ] represents an orienta-
tion independent measure for the driving force of the discontinuity. It must be
noted that [µ] is not the local driving force for the movement of the disconti-
nuity. The projection of this tensor in direction normal the phase boundary is
identified as the driving force. However, a macroscopic description which does
not hold any explicit knowledge of the local direction is derived in the follow-
ing. Following the reasoning by Grinfeld (1991), the whole tensor µ is used to
“characterize the state of the substance in the entire vicinity of a material par-
ticle, independently of the choice of any elementary area”. This consideration
by Grinfeld is supported by recent developments which introduce “mechan-
ics in a material space” (cf. Maugin (1993), Kienzler & Herrmann (2000),
and Kienzler & Maugin (2001)). There, a balance law is formulated using µ,
leading to

∇0 · µ + b = 0 (5.3)

where b is a material force (cf. e.g. Maugin (1993)). Even though this
approach is very attractive, it poses a completely new problem besides the
thermal and mechanical description.

The preceding description has to be transferred to the macroscopic scale. This
implies, that the definition of the macroscopic quantities is already based on
the homogenization assumptions employed. The further derivations are based
on the following assumption: the phases are assumed to be homogeneous, i.e.
a field variable within a phase can be characterized by a single variable, usually
the mean value of the field variable. A subscript α is used to denote a phase
specific variable associated to phase α.

To simplify the notation, the following derivations are conducted under the
presumption that only two phases coexist within the body under consideration
at any time. For a body consisting of more phases, the approach described
must be applied for each possible combination of phases. Restrictions on the
internal variables are imposed by the requirement that the total mass of the
body shall not change.

As stated before, the whole tensor [µ] is used as the driving force for the
progress of the phase transformation. Consequently, a thermodynamically
conjugated tensorial measure has to be introduced as the associated thermo-
dynamic flux. When the local form of the dissipation inequality (5.2) has to
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be fulfilled, the relation has to hold in an averaged sense as well, i.e.

ζΛ
g =

∫

Λ0

ζΛ dA0 =

∫

Λ0

(ρUN n⊗ n) : [µ] dA0 ≥ 0 (5.4)

Introducing formally the definitions

µ∆ =
1

AΛ

∫

Λ0

[µ] dA0 (5.5)

for the mean driving force on the considered interface Λ0 and

ξ̇ =
1

Mtot

∫

Λ0

ρUN n⊗ n dA0, (5.6)

where

AΛ =

∫

Λ0

dA0 (5.7)

and Mtot denotes the total mass of the body under consideration, the dissipa-
tion inequality can be restated as

µ∆ : ξ̇ ≥ 0. (5.8)

The assumption about the homogeneity of the phases is employed while deriv-
ing this relation.

The use of the whole tensor may be supported by the aspect that the approach
with the tensorial variables can be tracked back to the classical approach. It
can be shown that the trace of the variable ξ̇ describes the specific mass change
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of the phase under consideration by

tr
(

ξ̇
)

=
1

Mtot
tr





∫

Λ0

ρUN n⊗ n dA0





=
1

Mtot

∫

Λ0

ρUN tr (n⊗ n) dA0

=
1

Mtot

∫

Λ0

ρUN dA0 (5.9)

=
Ṁ

Mtot

= ξ̇

where Ṁ =
∫

Λ0
ρUN dA0 denotes the mass change and therefore ξ the mass

fraction of the phase under consideration. Thus, the first invariant of ξ̇ is
the scalar information about the change of the mass fraction of the phase,
bearing no information about the orientation of the phase boundary. Even
though such direct interpretations of other invariants, i.e. the invariants of the
deviator, are more difficult to derive, one may conclude that other invariants
bear information about the current orientation of the interfaces due to the
definition of the tensor.

The aspect that the first invariant of ξ is of special importance is supported by
the observation that for a purely hydrostatic stress state σ = −p1, the tensor
µ∆ collapses to µ∆ = 1 g∆. Here, g∆ denotes the difference of the Gibbs free
energy of the phases. Using this result in the form (5.8) of the dissipation
inequality, the second order unit tensor in front of g∆ acts as a trace operator,
yielding the form of (5.8) for hydrostatic stress state as

g∆ ξ̇ ≥ 0 (5.10)

which coincides with classical formulations used in thermodynamics.

5.2.2 Kinetic relation

The aim of the remainder of this chapter is to develop a set of constitutive
equations which describe the relation between the measures µ∆ and ξ. As a
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first approach, a function ξ̇ = ξ̇(µ̇∆,µ∆, ξ) is proposed. The use of the tensor
ξ in the arguments for the desired relation is important. In case ξ is omitted,
only situations where the probability for each orientation is equal, i.e. only
spheroidal inclusions exist, can be considered. Furthermore, it is shown that
its use is important to account for some situations dealing with SMA.

The basic development of this relation is based on the following observations:

• In order to initiate a macroscopic progress of the phase transformation,
undercooling below the equilibrium temperature is necessary to induce
the phase transition. For mechanically induced phase transitions, this
leads to a hysteresis when a loading-unloading cycle is performed. This
behavior can be observed in shape memory alloys where, in contrast to
most steels, the transition from austenite to martensite and vice versa is
primarily a time independent, martensitic transformation.

• The transformation is not time dependent. Thus, if the change of the
driving force is zero, i.e. µ̇∆ = 0, ξ̇ = 0 should hold too. It should
be noted at this point, that during phase transitions in SMA, a rate de-
pendence can be observed macroscopically (cf. Iadicola & Shaw (2004)).
However, this may be primarily due to the latent heat released during
the transformation and conducted to the environment. As the heat con-
duction is a first order process, a rate dependence is introduced. Some
authors claim that the rate effects observed can not completely be ex-
plained by thermal effects (Helm (2001)). Therefore, this questions still
remains open.

In order to develop a relation between µ and ξ̇, different approaches are con-
sidered:

• An approach solely based on thermodynamic considerations, leading to
a rule which is similar to the “normality-rule” known from associated
plasticity, is developed first.

• A deviation from the normality rule is also considered. This approach
rather suits situations where the underlying microstructure, as e.g. the
question which martensitic variants form at which stage, is predominant
and leads to a violation of the rules developed focusing only on macro-
scopic thermodynamic aspects. Thus, based on the associated approach
proposed before, different non-associated proposal are discussed.
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The associated approach is based on the assumption that each subprocess max-
imizes the dissipation associated with itself. For the subprocess that describes
the phase transition, the dissipation seek a maximum, i.e.

µ∆ : ξ̇ −→ Max. (5.11)

Furthermore, a threshold value

F ξ = F ξ(µ∆, ξ) = 0 (5.12)

must be reached to induce the phase transformation. It is assumed that this
condition holds during the complete phase transition. Thus, relations (5.11)
and (5.12) constitute a constraint optimization problem which can be solved
by introducing the Lagrange multiplier λξ such that

L = µ∆ : ξ̇ − λξF ξ −→ Extr. (5.13)

Partial differentiating of L with respect to µ∆ leads to

∂

∂µ∆

[

µ∆ : ξ̇ − λξF ξ
]

= 0 (5.14)

and finally to

ξ̇ =
〈

λξ
〉

ξ

∂F ξ

∂µ∆
(5.15)

where

〈x〉ξ =

{

x if F ξ = 0
0 otherwise.

(5.16)

Due to circumstances discussed in detail in section 5.2.2.1, it may be necessary
to deviate from this purely thermodynamical approach. Thus, a new poten-
tial P ξ = P ξ(µ∆, ξ) is introduced in order to determine the direction of the
evolution of ξ, such that

ξ̇ =
〈

λξ
〉

ξ

∂P ξ

∂µ∆
. (5.17)
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ξ̇ = λξ ∂P
ξ

∂µ∆

µ∆
1 = µ∆

2

ξ̇ = λξ ∂F
ξ

∂µ∆

µ∆
1

µ∆

µ∆
2

F ξ = 0

Figure 5.5: F ξ and P ξ in the µ∆-space
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The deviation from the normality rule for a two dimensional example is de-
picted in figure 5.5. Possible approaches for the choice of P ξ are discussed in
section 5.2.2.2 and 5.2.2.3. Making use of the decomposition

ξ̇ =
1

3
1 ξ̇ + ξ̇′ (5.18)

with ξ̇ = tr
(

ξ̇
)

leads to

ξ̇ =
〈

λξ
〉

ξ
tr

(

∂P ξ

∂µ∆

)

(5.19)

and

ξ̇′ =
〈

λξ
〉

ξ

(

∂P ξ

∂µ∆

)′

. (5.20)

The yet undetermined variable λξ can be determined by use of the consistency
condition Ḟ ξ = 0, i.e.

Ḟ ξ =
∂F ξ

∂µ∆
: µ̇∆ +

∂F ξ

∂ξ
: ξ̇ = 0. (5.21)

The unknown multiplier λξ can be determined as

λξ = −

∂F ξ

∂µ∆
: µ̇∆

∂F

∂ξ
:
∂P ξ

∂µ∆

loading finally to

ξ̇ = − ∂P
ξ

∂µ∆

∂F ξ

∂µ∆
: µ̇∆

∂F

∂ξ
:
∂P ξ

∂µ∆

. (5.22)
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The deviation from the normality rule might lead to a violation of the require-
ment of thermodynamic consistency. Thus, employing the relation derived for
ξ̇ so far, equation (5.8) may be restated as

ξ̇ : µ∆ = − ∂P
ξ

∂µ∆
: µ∆

∂F ξ

∂µ∆
: µ̇∆

∂F

∂ξ
:
∂P ξ

∂µ∆

≥ 0, (5.23)

leading to restriction on the choice of P ξ.

In order to proceed, a further specification of the functions F ξ and P ξ is
necessary. As a relatively general approach, it is assumed that a combination of
the invariants has to reach a threshold which depends on the internal variables
introduced. In the following, the functions

F ξ = c1 I
µ
1 + c2

√

−Jµ
2 + c3

3

√

Jµ
3 − g(ξ) (5.24)

introducing the parameters c1, c2, and c3 and

g(ξ) = g0 + g1 I
ξ
1 + g2

√

−Jξ
2 + g3

3

√

Jξ
3 (5.25)

with the parameters g0, g1, g2, and g3 are used. The invariants of the tensors
µ and ξ are specified by (2.23) and (2.27). In order to avoid overparame-
terization, g0 = 1 is set. For P ξ, three different cases are considered in the
following.
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5.2.2.1 Case 1: P ξ = F ξ

The determination of the derivatives yields

∂F ξ

∂µ∆
= c1 1 + c2

µ∆′T

2
√

−Jµ
2

+ c3
1

3
3

√

Jµ
3

2

[

(

µ∆′ · µ∆′
)T

+
2

3
Jµ

2 1

]

(5.26)

−∂F
∂ξ

=
∂g

∂ξ
= g1 1 + g2

ξ′T

2

√

−Jξ
2

+ g3
1

3
3

√

Jξ
3

2

[

(

ξ′ · ξ′
)T

+
2

3
Jξ

2 1

]

. (5.27)

Making use of

∂F ξ

∂µ∆
: µ̇∆ = c1 İ

µ
1 − c2

J̇µ
2

2
√

−Jµ
2

+ c3
J̇µ

3

3
3

√

Jµ
3

2
(5.28)

leads to

ξ̇ =



c1 1 + c2
µ∆′

2
√

−Jµ
2

+ c3
1

3

√

Jµ
3

2

[

(

µ∆′ · µ∆′
)T

+
2

3
Jµ

2 1

]



 λξ

(5.29)
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with

λξ =



c1 İ
µ
1 − c2

J̇µ
2

2
√

−Jµ
2

+ c3
J̇µ

3

3
3

√

Jµ
3

2







3 c1 g1 + c2 g2
ξ′ : µ∆′

4

√

Jξ
2J

µ
2

+ c3 g2
tr

(

ξ′ · µ∆′ · µ∆′
)

6

√

−Jξ
2

3

√

Jµ
3

2

+c3 g3
tr

(

ξ′ · ξ′ · µ∆′ · µ∆′
)

− 20
9 Jξ

2J
µ
2

9
3

√

Jξ
3

2 3

√

Jµ
3

2







−1

. (5.30)

Using the decomposition (5.18), one may eventually formulate differential
equations for ξ and ξ′ as follows:

ξ̇ = 3 c1 λ
ξ (5.31)

ξ̇′ =



c2
µ∆′

2
√

−Jµ
2

+ c3
1

3

√

Jµ
3

2

[

(

µ∆′ · µ∆′
)T

+
2

3
Jµ

2 1

]



 λξ. (5.32)

Apart from the specifications for F ξ and P ξ done so far, a more general aspect
should be discussed. Without reference to a choice for F ξ , one may substitute
the Lagrange multiplier in relation (5.20), providing that tr

(

∂P ξ/∂µ∆
)

6= 0
which is generally true for P ξ = F ξ, by the term derived from (5.19) leading
to

ξ̇′ =
ξ̇

tr
(

∂P ξ

∂µ∆

)

(

∂P ξ

∂µ∆

)′

. (5.33)

This relation states that an evolution of ξ̇′ is only possible if ξ̇ is nonzero.
Relating this statement to the description of pseudoelastic and pseudoplas-
tic shape memory alloys, no reorientation of the martensite is possible if
ξ = 1. A possible approach to avoid this situation is to choose P ξ such that
tr

(

∂P ξ/∂µ∆
)

= 0, rendering the substitution performed above impossible for
this case. This aspect leads to the introduction of the non-associated rule
discussed in the next sections.
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5.2.2.2 Case 2: P ξ = F ξ − c1 Iµ
1 I

ξ
1

As stated above, P ξ is now chosen such that for ξ = 1, a change of the
deviatoric part of ξ is possible. One approach is to choose

P ξ = F ξ − c1 Iµ
1 I

ξ
1 (5.34)

which leads to

∂P ξ

∂µ∆
= c1 1 (1− tr (ξ)) + c2

µ∆′

2
√

−Jµ
2

.

+ c3
1

3
3

√

Jµ
3

2

[

(

µ∆′ · µ∆′
)T

+
2

3
Jµ

2 1

]

. (5.35)

Solving for ξ̇ yields

ξ̇ = 3 c1 (1− ξ)λξ (5.36)

ξ̇′ =



c2
µ∆′

2
√

−Jµ
2

+ c3
1

3

√

Jµ
3

2

[

(

µ∆′ · µ∆′
)T

+
2

3
Jµ

2 1

]



 λξ (5.37)

with

λξ =



c1 İ
µ
1 − c2

J̇µ
2

2
√

−Jµ
2

+ c3
J̇µ

3

3
3

√

Jµ
3

2







3 c1 g1 (1− ξ) + c2 g2
ξ′ : µ∆′

4

√

Jξ
2J

µ
2

+ c3 g2
tr

(

ξ′ · µ∆′ · µ∆′
)

6

√

−Jξ
2

3

√

Jµ
3

2

+c3 g3
tr

(

ξ′ · ξ′ · µ∆′ · µ∆′
)

− 20
9 Jξ

2J
µ
2

9
3

√

Jξ
3

2 3

√

Jµ
3

2







−1

. (5.38)

Two positive aspects can be noticed:

• The differential equation for ξ automatically satisfies the condition
0 ≤ ξ ≤ 1.
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• Even for ξ = 1, a reorientation of the martensite is possible.

The second remark holds also true for ξ = 0, which is considered non-physical
within this context. Thus, a possible extension to circumvent this contradiction
is discussed in the following section.

5.2.2.3 Case 3: P ξ = F ξ − c1 I
µ
1 I

ξ
1 −

(

c2
√

−Jµ
2 + c3

3
√

Jµ
3

)

(1 −
fξ(Iξ

1 , J
ξ
2 , J

ξ
3 ))

Now, P ξ is extended such that the deviatoric part of ∂P ξ/∂µ∆ vanishes for
ξ = 0. This can be achieved by using

P ξ = F ξ − c1 Iµ
1 I

ξ
1 −

(

c2

√

−Jµ
2 + c3

3

√

Jµ
3

)

(1− fξ(Iξ
1 , J

ξ
2 , J

ξ
3 ))

= c1 I
µ
1 (1− ξ) + fξ(Iξ

1 , J
ξ
2 , J

ξ
3 )

(

c2

√

−Jµ
2 + c3

3

√

Jµ
3

)

(5.39)

with the function fξ(Iξ
1 , J

ξ
2 , J

ξ
3 ) introduced such that fξ(Iξ

1 = 0) = 0. The

simplest choice meeting the requirement stated above is fξ(Iξ
1 , J

ξ
2 , J

ξ
3 ) = ξ.

Other invariants might be incorporated to reflect situations where the reorien-
tation process of the martensite is no longer possible. The choice can, within
the framework of the application to shape memory alloys, be interpreted in
a way that during the transformation from austenite to martensite, first only
nonoriented martensite forms. During the transformation, gradually oriented
martensite is formed by transformation from austenite to martensite as well
as by orientation of nonoriented martensite.

This approach yields

∂P ξ

∂µ∆
= c1 1 (1− ξ) + c2

µ∆′
fξ

2
√

−Jµ
2

+ c3
fξ

3
3

√

Jµ
3

2

[

(

µ∆′ · µ∆′
)T

+
2

3
Jµ

2 1

]

. (5.40)
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and finally

ξ̇ = 3 c1 (1− ξ)λξ (5.41)

ξ̇′ =



c2
µ∆′

2
√

−Jµ
2

+ c3
1

3

√

Jµ
3

2

[

(

µ∆′ · µ∆′
)T

+
2

3
Jµ

2 1

]



 fξ λξ

(5.42)

with

λξ =



c1 İ
µ
1 − c2

J̇µ
2

2
√

−Jµ
2

+ c3
J̇µ

3

3
3

√

Jµ
3

2







3 c1 g1 (1− ξ) + c2 g2 f
ξ ξ′ : µ∆′

4

√

Jξ
2J

µ
2

+ c3 g2 f
ξ

tr
(

ξ′ · µ∆′ · µ∆′
)

6

√

−Jξ
2

3

√

Jµ
3

2

+c3 g3 f
ξ

tr
(

ξ′ · ξ′ · µ∆′ · µ∆′
)

− 20
9 Jξ

2J
µ
2

9
3

√

Jξ
3

2 3

√

Jµ
3

2







−1

. (5.43)

The condition of thermodynamic consistency (5.23) may be written as

ξ̇ : µ∆ = λξ

[

c1 (1− ξ)Iµ
1 + c2 f

ξ
√

−Jµ
2 + c3 f

ξ 3

√

Jµ
3

]

= λξP ξ ≥ 0.(5.44)

5.3 Further specifications

In order to derive expressions for F ξ and P ξ in terms of global stress and
temperature, further assumptions are necessary. These are again related to
the phase-specific behavior of the material and the homogenization.

The following assumptions are imposed for the remainder of this section:

• The assumption related to the homogeneity of the phases already intro-
duced is still assumed to be valid.

• To separate the kinematic description from the material specific descrip-
tion, small strain measure are used. Taking into account the previous
assumption, the strain in phase α is denoted by eα and the stress by Πα.
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• Based on relation (3.30) and the assumption that the specific heat at
constant volume of the phases does not differ (as well as β0 and ϕ′

∗ ),
the approach for the difference of Helmholtz free energy is chosen as

ϕ = ϕc +
ΠA : eA

r −ΠM : eM
r

2ρ
(5.45)

with

ϕc = ∆s(Θ0 −Θ). (5.46)

• It is assumed that the phase specific material behavior can be described
by the relation (cf. equation (3.32))

Πα = C
α : (eα

r − 1αα
Θ (Θ−ΘΘ)) (5.47)

where an additive decomposition of the strains

eα = eα
r + κα (5.48)

is employed. κα denotes the phase-specific strain due to the phase trans-
formation, constant within the phase. Here,

κA = 0 and κM = κ (5.49)

is used. κ is not yet determined or specified, a discussion related to this
term can be found in section 5.5.

• A mixture rule for stresses and strains is used, i.e.

Π = ξΠM + (1− ξ)ΠA (5.50)

and

e = ξ eM + (1− ξ) eA. (5.51)

Furthermore, it is assumed that a variant of the Taylor assumption is
valid such that the elastic strains in the phases are equal, i.e.

er = eM
r = eA

r (5.52)
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To simplify the notation, it is assumed that the coordinate-system is chosen
such that the global stress state Π can be expressed as a principal stress state

Π =





σ1 0 0
0 σ2 0
0 0 σ3



 . (5.53)

By introducing the abbreviations Ξ = 1+(α−1)ξ and EA = E and EM = αE
for the Young’s moduli, the first invariant of µ∆ can be expressed as

Iµ
1 =

(α− 1)
(

σ2
1 + σ2

2 + σ2
3 − 2 ν (σ2 σ3 + σ1 σ2 + σ1σ3)

)

2E Ξ2 ρ

+
σ1 (α− 1 + 2ακ11)

Ξ ρ

+
σ2 (α− 1 + 2ακ22)

Ξ ρ

+
σ3 (α− 1 + 2ακ33)

Ξ ρ

+ 3ϕc (5.54)

For SMA, the ratio σi/E can be expected to be of a magnitude 10−2 or lower.
Thus, Iµ

1 can be approximately be expressed as

Iµ
1 = − Σ1 + Σ2 + Σ3

Ξ ρ
+ 3ϕc (5.55)

where the abbreviation Σi = −σi (α− 1 + 2ακii) is used. The corresponding
expression for the second invariant is

Jµ
2 = −

(

Σ2
1 + 2K12Σ1Σ2 + Σ2

2 + 2K23Σ2Σ3 + Σ2
3 + 2K13Σ1Σ3

)

3 Ξ2ρ2
(5.56)

with

Kij =
1

2
− 6α2 κij

(α− 1 + 2ακii)(α− 1 + 2ακjj)
. (5.57)

The expression for Jµ
3 is omitted because the further derivations do not ex-

plicitly take this part into account.



142 5 Macroscopic approach

5.4 Onset of the phase transition

In this and the following section, the transformation from austenite to marten-
site is discussed. Thus the term “onset of the phase transition” refers to the
case where the martensite just begins to form within the austenitic matrix.
Considering this, the state may be characterized by ξ = 0, thus Ξ = 1 follows.
Using this, the invariants read

Iµ
1 = − Σ1 + Σ2 + Σ3

ρ
+ 3ϕc (5.58)

Jµ
2 = −

(

Σ2
1 + 2K12Σ1Σ2 + Σ2

2 + 2K23Σ2Σ3 + Σ2
3 + 2K13Σ1Σ3

)

3 ρ2

(5.59)

In order to keep the focus on the basic aspects of the approach proposed, c3 = 0
is chosen. Possible extension based on other choices are discussed in section
5.4.6.

5.4.1 Stress free state

For the stress free transformation,

σ1 = σ2 = σ3 = 0 (5.60)

holds. Thus,

F ξ = 3 c1 ϕc − 1 = 0 (5.61)

follows and the martensite start temperature for the stress free state M0
s can

be determined as

M0
s = Θ0 −

1

3 ∆s c1
. (5.62)
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5.4.2 Simple tension and compression

Now,

σ1 = σ, σ2 = σ3 = 0 (5.63)

is set which leads to

F ξ = c1

(

−Σ

ρ
+ 3ϕc

)

+ c2
1

ρ
√

3

√
Σ2 − 1 = 0, (5.64)

introducing the abbreviation Σ = Σ1. Defining a dimensionless temperature

Θ̂ =
Θ−Θ0

Θ0 −M0
s

(5.65)

which can be interpreted as a relative degree of undercooling as Θ̂(Θ0) = 0
and Θ̂(M0

s ) = −1 yields

− c1
Σ

ρ
+ c2

1

ρ
√

3

√
Σ2 = 1 + Θ̂. (5.66)

An interpretation in a Clausius-Clapeyron diagram might be useful. The slope
in the Clausius-Clapeyron diagram can be determined as

∂Σ

∂Θ̂
=

√
3 ρ

−
√

3 c1 + sgn(Σ)c2
. (5.67)

Due to the structure of relation (5.66), two different cases have to be considered
when depicting the Clausius-Clapeyron diagram: the case c2 > 0 and the case
c2 < 0. For c2 > 0, the Clausius-Clapeyron diagram in the Σ/Θ̂-space is
depicted in figure 5.6, for c2 < 0 the Clausius-Clapeyron diagram can be found
in figure 5.7. In order to clarify the influence and physical interpretation of
the parameters introduced so far, an identification of the parameters c1, c2,
and ∆s in terms of experimentally measurable terms Σ+ = Σ(F ξ = 0,Σ > 0),
Σ− = Σ(F ξ = 0,Σ < 0), Θ0, and M0

s is given:

∆s =
Θ0 −M0

s

2 c1
(5.68)

c1 = −(1 + Θ̂) ρ
Σ+ + Σ−

2 Σ+ Σ−
(5.69)

c2 = −(1 + Θ̂) ρ
Σ+ − Σ−

2 Σ+ Σ−
. (5.70)
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∂Σ

∂Θ̂
=

√
3 ρ

c2 −
√

3 c1

∂Σ

∂Θ̂
=

√
3 ρ

−c2 −
√

3 c1

c2 >
√

3 c1c2 <
√

3 c1

Θ̂

Σ

Figure 5.6: Clausius-Clapeyron diagram for test in simple ten-
sion, c2 > 0.

Σ

∂Σ

∂Θ̂
=

√
3 ρ

−c2 −
√

3 c1

∂Σ

∂Θ̂
=

√
3 ρ

c2 −
√

3 c1

c2 >
√

3 c1

c2 <
√

3 c1

Θ̂

Figure 5.7: Clausius-Clapeyron diagram for test in simple ten-
sion, c2 < 0.
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Providing the experimentally measurable values of the undercooling Θ0 −M0
s

and the stresses Σ+ and Σ−, the three parameters ∆s, c1, and c2 can be
determined.

5.4.3 Pure shear

Even though this example is implicitly included in the consideration concerning
the two dimensional case in section 5.4.5 (as is the example before), it is
included here due to its importance. Now,

σ1 = τ , σ2 = −τ , σ3 = 0 (5.71)

is set. Assuming isotropy related to the deformation induced by the transfor-
mation, i.e. κ11 = κ22 = κ, the invariants can be expressed as

Iµ
1 =

τ2(α− 1) + 6µΞ2 ρϕc

2µΞ2ρ
(5.72)

Jµ
2 = −τ2 1− 2α (1 + 2κ) + α2(1 + 4κ+ 4κ2 − 4κ12)

Ξ2ρ2
. (5.73)

Dropping the term containing τ2 due to its magnitude in (5.72) and specializing
for the onset Ξ = 1 leads to

Iµ
1 = 3ϕc (5.74)

Jµ
2 = −τ2 1− 2α (1 + 2κ) + α2(1 + 4κ+ 4κ2 − 4κ12)

ρ2
. (5.75)

It is noteworthy that the first invariant solely depends on the chemical part
of the Helmholtz free energy but not on the shear stress applied. Thus, a
shear test may also prove useful to identify the material parameters. Using
the above result in conjunction with relation (5.24), the condition to induce
the transformation may be formulated as

3 c1 ϕc + c2

√

τ2
1− 2α (1 + 2κ) + α2(1 + 4κ+ 4κ2 − 4κ12)

ρ2
= 1, (5.76)
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∂τ

∂Θ̂
= c2Kτ

Θ̂

τ

Figure 5.8: Clausius-Clapeyron Diagram for shear-test,

Kτ = ρ−1
√

1− 2α (1 + 2κ) + α2(1 + 4κ+ 4κ2 − 4κ12).

or, using the dimensionless temperature Θ̂ and restricting to positive values
for τ , as

c2 τ

√

1− 2α (1 + 2κ) + α2(1 + 4κ+ 4κ2 − 4κ12)

ρ2
= 1 + Θ̂. (5.77)

This result is depicted in figure 5.8. Again, a straight line can be observed in
the Clausius-Clapeyron diagram. However, its slope does not depend on the
parameter c1.

5.4.4 Hydrostatic stress state

The statement made concerning the implicit inclusion of this case in the two
dimensional example applies to this section as well. Now,2

σ1 = σ2 = σ3 = p (5.78)

is set. Using the assumption, that isotropy with respect to the induced defor-
mation may be present, i.e. κ11 = κ22 = κ33 = κ, and dropping higher order

2p denotes a negative pressure. This sign convention is chosen to allow for simpler com-
parison with the results of other sections.
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terms, the invariants read

Iµ
1 =

3 p (α− 1 + 2κα)

Ξ ρ
+ 3ϕc (5.79)

Jµ
2 = −4 p2α2 κ

2
12 + κ2

23 + κ2
13

Ξ2 ρ2
. (5.80)

Specializing to the onset of the transformation yields

Iµ
1 =

3 p (α− 1 + 2κα)

ρ
+ 3ϕc (5.81)

Jµ
2 = −4 p2α2 κ

2
12 + κ2

23 + κ2
13

ρ2
. (5.82)

It is generally believed that the onset of the transformation for SMA is not
influenced by a superimposed hydrostatic stress. This behavior can only be
achieved if by posing an additional restriction on the choice of the parameters,

c1
c2

= −2

3

α
√

κ2
12 + κ2

23 + κ2
13

α− 1 + 2ακ
. (5.83)

However, experimental results by Kakeshita et al. (1999) indicate, that this
assumption, which is based more on theoretical considerations, might be not
valid in all cases. For some SMA, a slight dependence of the hydrostatic part
of the stress on the onset of the transformation exists.

5.4.5 Two dimensional stress-state

For the considered two-dimensional stress state,

σ3 = 0 (5.84)

is chosen. This leads to

Iµ
1 = − Σ1 + Σ2

ρ
+ 3ϕ (5.85)

Jµ
2 = −

(

Σ2
1 + 2K12Σ1Σ2 + Σ2

2

)

3 ρ2
(5.86)
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for the invariants. By introducing Σ0, a scaled stress derived from the uniaxial
simple tension case, such that

−c1
Σ0

ρ
+ c2

1

ρ
√

3
Σ0 = 1 + Θ̂ (5.87)

holds, the transformation condition can be expressed as

F ξ = −c1
(

Σ1

Σ0
+

Σ2

Σ0

)

+ c2

√

(

Σ1

Σ0

)2

+ 2K12
Σ1

Σ0

Σ2

Σ0
+

(

Σ2

Σ0

)2

−
(

c2√
3
− c1

)

= 0 (5.88)

Taking the square of this relation and rearranging yields

s ·A · sT + 2 a · sT −
(

c2√
3
− c1

)2

= 0 (5.89)

with s = (Σ1/Σ0,Σ2/Σ0),

A =

(

c22 − c21 K12 c
2
2 − c21

K12 c
2
2 − c21 c22 − c21

)

, (5.90)

and

a =

(

c1 (c1 − c2/
√

3)

c1 (c1 − c2/
√

3)

)

. (5.91)

Introduction of a translated coordinate-system

ŝ = s− (1, 1)
c1(c1 − c2/

√
3)

2 c21 − c22 (1 +K12)
(5.92)

leads to

ŝ ·A · ŝT + a = 0 (5.93)
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with

a = c22

(

c2√
3
− c1

)2
1 +K12

2 c21 − c22 (1 +K12)
. (5.94)

Finally, the introduction of a coordinate system x = (x, y) which is rotated by
an angle of 45◦ such that

x =
1√
2

(ŝ1 + ŝ2) and y =
1√
2

(−ŝ1 + ŝ2) (5.95)

yields

x · Â · xT + a = 0 (5.96)

with

Â =

(

−2 c21 + c22(1 +K12) 0
0 c22(1−K12)

)

. (5.97)

The structure of equation (5.96) and the resulting shape of the transformation
condition can easily by analyzed (cf. Bronstein et al. (1997)). The following
cases have to be considered:

• Zero-point or an intersection of beams.
As the transformation condition should constitute a surface for a general
three-dimensional situation, this case is considered degenerate here. In
both situations, a = 0 holds, which leads to the restrictions

c2 6= 0
c2√
3
− c1 6= 0 (5.98)

K12 6= −1.

• F ξ forms an ellipse.
In this case, Â11 and Â22 have to be of the same sign whereas a is nonzero
and of opposite sign, i.e.

Â11 Â22 > 0 and a Â11 < 0 (or, equivalently a Â22 < 0). (5.99)
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The requirement that a should be nonzero can be satisfied by fulfillment
of (5.98). The second condition in the equation above can be satisfied if

K12 > −1 (5.100)

and, using relations (5.98a) and (5.98b),

K12 6= 2

(

c1
c2

)2

− 1. (5.101)

The latter requirement can be geometrically interpreteded such that an
ellipse of infinite diameter would be constructed if not obeyed. Taking
into account that the condition 1 + K12 > 0 has been derived already,
this requirement may be adapted to

1 +K12 < 2

(

c1
c2

)2

(5.102)

The third requirement in equation (5.99) may be, using (5.102), ex-
pressed as

K12 > 1, (5.103)

which is a stronger condition for the lower bound as the condition derived
before. Assuming that the conditions for an ellipse hold, relation (5.96)
can be rewritten to yield

(

x

rx

)2

+

(

y

ry

)2

= 1 (5.104)

with

rx =
c2

(

c2/
√

3− c1
)√

1 +K12

2 c21 − c22 (1 +K12)
(5.105)

ry =
(

c2/
√

3− c1
)

√

(1 +K12)(1−K12)

2 c21 − c22 (1 +K12)
(5.106)
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• F ξ forms an hyperbola.
As the stress free state should be enclosed within the region where no
transformation occurs, this case is considered a degenerate case for this
application. In this case, Â11 and Â22 have to be of opposite sign and a
nonzero which is already assured by the validity of requirements (5.98a)-
(5.98c). This leads to the restriction

Â11 Â22 < 0. (5.107)

• In case Â11, Â22, and a have the same sign, no real solutions can be found.
This case should generally be avoided, its occurrence can be avoided by
validity of one of the previous cases.

5.4.6 Closing remarks

Several examples for loadings and the influence of the parameters are pre-
sented in the preceding sections. Furthermore, some conditions related to the
choice of the parameters have been derived if certain types of behavior can be
observed. However, these conditions may overdetermine the parameters such
that it is not possible to fulfill all restrictions imposed by the phenomena ob-
served. It should be kept in mind that the initial approach (5.24) is the most
simple combination of the invariants of the tensor µ∆ and might be altered
if necessary. Furthermore, certain assumption about the induced deformation
have been made. These assumption may only be justified or disproven by the
aid of thorough multiaxial experimental investigations at different tempera-
tures. Those results are, in the quantity required for this task, not available
nowadays.

5.5 Transformation kinetics

The derivations so far do not depend on a special choice of the strain induced
by the phase transformation κ, it could be treated as a variable. Thus, κ has
not been fixed yet. Generally, it may by a function of the internal variable ξ

and the applied stress. Unfortunately, not enough experimental data is avail-
able concerning this question for multiaxial situations. In order to proceed
further, κ is treated as a constant regarding µ∆ and ξ. In order to keep the
governing differential equations sufficiently simple to allow for an analytical
treatment, only the case of simple tension is considered. Furthermore, Θ̂ = 0,
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κ11 = const, and κ12 = κ13 = 0 is set. Due to these simplifications, this section
should be rather taken as an introductory example gaining first insight into the
properties of the transformation kinetics rather than a complete and thorough
investigation. The consideration are not elaborated further as measurements
perpendicular to the loading axis are even necessary for the uniaxial case as
these directions are influenced by the principal value of the tensor ξ perpendic-
ular to the loading direction. Multiaxial experimental investigations on SMA
are rare (Helm (2001), McNaney et al. (2003)) and their focus has not been on
the thorough observation of the states perpendicular to the loading direction.
Thus, in oder to make more specific assumptions about the measure involved,
multiaxial experiments with a special emphasis on the discussed aspects are
necessary.

From equations (5.41)-(5.43), it can be deduced that

ξ̇ = 3 c1(1− ξ)λξ (5.108)

ξ̇′ = c2
fξ µ∆′

2
√

−Jµ
2

λξ (5.109)

and

λξ =

−c1 +
c2√
3

3 c1 g1 (1− ξ) +
1

2
c2 g2 f

ξ

(

Σ

Ξ

)·

(5.110)

holds when the approach

ξ =
1

3





ξ + ξ′ 0 0
0 ξ − ξ′/2 0
0 0 ξ − ξ′/2



 (5.111)

is used.

Considering the simplest approach for fξ

fξ(ξ) = ξ, (5.112)

the differential equation for ξ can be solved to yield

Σ = (1+( α−1)ξ)






Σ0 +

c1 ξ

4

12 c1 g1(3 + ξ(ξ − 3)) + c2 g2 (3− 2ξ)

−c1 +
c2√
3






(5.113)
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using the initial conditions Σ(ξ = 0) = Σ0 and Ξ(ξ = 0) = 1. The stress
reached at the end of the transformation can thus be calculated as

Σ(ξ = 1) = α






Σ0 +

c1
4

12 c1 g1 + c2 g2

−c1 +
c2√
3






. (5.114)

The slope at the onset of the transformation can be determined as

∂Σ

∂ξ
(ξ = 0) =

9 c21 g1

−c1 +
c2√
3

(5.115)

whereas the slope at the end is

∂Σ

∂ξ
(ξ = 1) = (α− 1)

3 c1

(

c1 g1 +
1

12
c2 g2

)

−c1 +
c2√
3

. (5.116)

By using these relation, the influence of the parameters g1 and g2 becomes
clearer: g1 influences the slope at the onset of the transformation whereas a
combination of g1 and g2 governs this for ξ = 1.

As stated in section 5.1, this approach may be used to describe the process
of reorientation when only martensite is present, i.e. for ξ = 1. In order to
investigate this process further, ξ = 1 is assumed for the following and the
differential equation for Jξ

2 is developed. For ξ = 1 and fξ(ξ) = ξ, λξ reads

λξ = 2

−c1 +
c2√
3

c2 g2

Σ̇

α
(5.117)

A direct analytical analysis of the deviatoric part of ξ renders to be difficult.
However, a differential equation for Jξ

2 can be derived as

˙
Jξ

2 = −c2
4

√

−Jξ
2 λ

ξ. (5.118)
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The solution of the relation can be expressed as

Jξ
2

√

−Jξ
2

− Jξ
2 1

√

−Jξ
2 1

= −1

4

−c1 +
c2√
3

g2

Σ− Σ1

α
. (5.119)

where Σ1 denotes the value of Σ at the end of the austenite to martensite
transformation and begin of the reorientation. The reorientation may not
proceed forever, thus the relation should reflect this. This is currently not the
case and is an open question. But again it has to be noted, that experimental
observations on this subject do not exist, thus a further specification is ruled
out.

5.6 Backtransformation

The backtransformation from martensite to austenite may be described by a
completely different set of functions gξ, F ξ, and P ξ with ξ ∈ {A,M}, imply-
ing that a complete new set of material parameters is used. This approach
differs from the usual procedure where both transformations are treated in
a symmetric fashion, i.e. as variants of essentially the same physical proce-
dure. However, phenomena mentioned in section 5.1 indicate that the forward-
and backtransformation are completely different processes. Again, it has to
be noted that the lack of experimental investigations related to the approach
proposed here render the further specification impossible.

5.7 Summary and Outlook

Even though the lack of experimental data left some important issues regarding
the transformation kinetics open, the approach can be used to describe the
twinning phenomenon. Furthermore, it is shown that it can be regarded as an
extension of classical description stemming from thermodynamics.
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6 Conclusion

Two approaches to describe the behavior of shape memory alloys are presented.
Even though they describe the same material, the length scales and their
problem statements lead to completely different solutions.

The micromechanical scheme is developed to capture the influence of inhomo-
geneities within the material on the martensitic transformation. A numerical
scheme which captures the interfacial movement as well as the bulk behavior
is developed. The qualitative influence of the size of inhomogeneities and the
applied load can be verified.

The macroscopical approach has a completely different objective. Its aim
is to describe macroscopically the behavior of SMA within a material law
which could be implemented into an FE-code. Important characteristics can be
verified using the proposed approach. However, due to the lack of experimental
data, some questions remain open.

To close this monograph, the statement made in the introduction related to
the choice of the modeling scale should be repeated: such thing as THE right
modeling scale which does not need any assumptions related to an underlying
scale does not exist.
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A Specification of U, T, and Ê

The kernel functions used in the Somigliana identity can be stated for linear
elastic, isotropic material behavior (cf . Gao & Davies (2000b)) as

U(r, r̃) =
A

r
(B 1 + ∇r ⊗∇r) =

A

r

(

B 1 +
(r− r̃)⊗ (r− r̃)

r2

)

(A.1)

with r = |r− r̃|,

A =
1

16 πG(1− ν) , (A.2)

and

B = 3− 4 ν, (A.3)

where G and ν denote shear modulus and Poisson’s ration respectively. For
the traction kernel T,

T(r, r̃,n)=−2GA

r2
(C (n⊗∇r −∇r ⊗ n) + n ·∇r (C 1 + 3 ∇r ⊗∇r))

(A.4)

with

C = 1− 2 ν (A.5)

holds. For the volumetric term, a kernel E with the components

Eijk(r, r̃,n) =
Uij,k + Uik,j

2
, (A.6)

where Uij,k are the components of U, can be used to yield the components of

Ê

Êijk = CjkrsEirs. (A.7)

Cjkrs denotes the components of the fourth order tensor of isotropic elasticity.
Special care has to be taken when singularities occur. Procedures to deal with
weak and strong singularities are described in Gao & Davies (2000b).
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umsmechanik , B.G. Teubner, Stuttgart 1994.

Baehr, H. (1966): Thermodynamik , Springer-Verlag 1966.

Ball, J. M. & James, R. D. (1987): Fine phase mixtures and minimizers
of energy , in: Arch. Rat. Mech. Anal, Volume 100, 13–52.

Ball, J. M. & James, R. D. (1992): Proposed experimental test of a theory
of fine microstructure and the two well problem, in: Phil. Trans. R. Soc.
Lond. A, Volume 338, 389–450.

Barles, G., Soner, H. M. & Souganidis, P. E. (1993): Front propagation
and phase field theory , in: SIAM J. Control and Optimization, Volume 31,
2, 439–469.
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Optimierung von Stäben unter stochastischer Erregung

Nr. 23 Jürgen Preuss: Februar 1981
Optimaler Entwurf von Tragwerken mit Hilfe der Mehrzielmethode

Nr. 24 Ekkehard Großmann: Februar 1981
Kovarianzanalyse mechanischer Zufallsschwingungen bei Darstellung der mehrfachkorrelierten Er-
regungen durch stochastische Differentialgleichungen

Nr. 25 Dieter Weichert: März 1981
Variational Formulation and Solution of Boundary-Value Problems in the Theory of Plasticity and
Application to Plate Problems

Nr. 26 Wojciech Pietraszkiewicz: Juni 1981
On Consistent Approximations in the Geometrically Non-Linear Theory of Shells

Nr. 27 Georg Zander: September 1981
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terial

Nr. 86 Achim Menne: Januar 1994
Identifikation der dynamischen Eigenschaften von hydrodynamischen Wandlern

Nr. 87 Uwe Folchert: Januar 1994
Identifikation der dynamischen Eigenschaften Hydrodynamischer Kopplungen

Nr. 88 Jörg Körber: April 1994
Ein verallgemeinertes Finite-Element-Verfahren mit asymptotischer Stabilisierung angewendet auf
viskoplastische Materialmodelle

Nr. 89 Peer Schieße: April 1994
Ein Beitag zur Berechnung des Deformationsverhaltens anisotrop geschädigter Kontinua unter
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Zur Modellierung nichtlinearer Dämpfungsphänomene in der Strukturmechanik

Nr. 92 K. C. Le/H. Stumpf: November 1994
Finte elastoplasticity with microstructure

Nr. 93 O. T. Bruhns: Dezember 1994
Große plastische Formänderungen - Bad Honnef 1994

Nr. 94 Armin Lenzen: Dezember 1994
Untersuchung von dynamischen Systemen mit der Singulärwertzerlegung - Erfassung von Struk-
turveränderungen

Nr. 95 J. Makowski/H. Stumpf: Dezember 1994
Mechanics of Irregular Shell Structures

Nr. 96 J. Chroscielewski/J. Makowski/H. Stumpf: Dezember 1994
Finte Elements for Irregular Nonlinear Shells

Nr. 97 W. Krings/A. Lenzen/u. a.: Februar 1995
Festschrift zum 60. Geburtstag von Heinz Waller

Nr. 98 Ralf Podleschny: April 1995
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