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Summary

It is known from experiments that all materials and in more special case, brittle materials
develop anisotropic damage under general loading conditions. A micromechanical based
continuum damage model based on the reduction of stiffness due to kinking elliptical
microcracks is proposed to show the anisotropic irreversible process of damage accumu-
lation due to microcrack kinking and growth in brittle and quasi-brittle materials. The
model is formulated consistently in a fully analytical way based on the concept of linear
elastic fracture mechanics. The degradation of the elastic properties is associated with the
irreversible process of crack kinking and growth. In order to make the formulation of the
model mathematically traceable, the concept of an equivalent elliptical crack is proposed.
The geometry and the orientation of the equivalent crack are resulting from the postulates
of equivalent dissipation and equivalent damage induced anisotropy. The evolution of the
cracks is governed by the criterion of maximum driving force coupled with a fatigue crack
evolution law. The proposed formulation yields a consistent damage model which consid-
ers the kinking and growth of microcracks, and accounts for the type of damage induced
anisotropy in a local sense. The proposed model is appropriate to show the evolution of
damage in brittle and quasi-brittle materials under fatigue conditions.

Zusammenfassung

Es ist aus Experimenten bekannt, dass alle Materialien und insbesondere sprode Ma-
terialien unter allgemeine Belastungen anisotrope Schadigung entwickeln. In der vor-
liegende Arbeit wird ein Kontinuumsschédigungsmodell basierend auf wachsenden el-
liptischen Mikrorissen vorgeschlagen, mit dem der anisotrope irreversible Prozess der
Schidigungsakkumulation basierend auf Mikrorissen die sich ausbreiten und hierbei
abknicken modelliert werden kann. Das Modell wird in einer véllig analytischen Weise
basierend auf dem Konzept der linear elastischen Bruchmechanik formuliert. Der Ab-
bau der elastischen Eigenschaften ist mit dem irreversiblen Prozess der Mikrorissausbre-
itung verbunden. Ein Konzept dquivalenter elliptischer Risse wird vorgeschlagen um die
Formulierung mathematisch nachvollziehbar herleiten zu konnen. Die Geometrie und
die Orientierung des dquivalenten Risses resultieren aus den Postulaten der Aquivalenz
der Dissipation und der Aquivalenz der schidigungsinduzierten Anisotropie. Die Aus-
breitung der Risse wird durch das Kriterium der maximalen treibenden Kraft verbun-
den mit einem Ermiidungs-Riss-Ausbreitungs-Gesetz bestimmt. Die vorgeschlagene For-
mulierung liefert ein konsistentes Schadigungsmodell, unter Beriicksichtigung des Wach-
stums von Mikrorissen und der schidigungsinduzierten Anisotropie in einem lokalen
Sinne. Das vorgeschlagene Modell ist geeignet, um die Schidigungsakkumulation der
sproden und quasi-sproden Materialien unter zyklische Belastungen zu betrachten.
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Nomenclature

The choice of notation is tried to be as classical as possible, but using the same letter for
different meanings cannot be avoided. The general symbols which are used throughout
the thesis are given below and if there is a different meaning for a symbol, it is given
subsequently. In general scalars are denoted by lightface symbols, and vectors and tensors

by boldface symbols.

Symbol Notation

a crack size

am(u;) Jacobi amplitude

Az, A, AL unknown functions

By, By functions of the given form in the thesis

B coefficients in the stress expansion formula

C,n material parameters in the considered crack evolution law

Can components of the curvature tensor

C curvature tensor

da/dN, q, $ fatigue crack growth rate

di, dr length increment along the considered path

dr length increment in the radial direction

ds length increment in the direction of kink

dA area increment

dav volume increment

Dijmn components of the damage tensor

D damage variable

e dilatation

€ local orthogonal basis

€n, er unit vectors in the normal and radial directions to the circumference
of an ellipse

E Young’s modulus

E(ky) complete elliptical integral of the second kind
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Nomenclature

E(lk1)

F
F(dlki)

% % R

ij» Gij> Nyj»
l‘%a m:ijts ni‘;’ Vi
F9HL
Forr, F1, B2

G

Gi,', Rij
Gmum Gmin
Go, G
G(e)

G#

Jla JZ: J3

J2(0)
T

Jmax, J min

ki, k2, k3
ch’ Glc

Kmax, Kmin

ORT(e)

elliptical integral of the second kind

material force
elliptical integral of the first kind

universal functions in terms of 6
ellipsoidal harmonic potential functions
target functions of the form defined in the thesis

energy release rate

functions of the given form in the thesis

maximum and minimum value for G in a load cycle

threshold value for G and G*, respectively

energy release rate for the kinked crack with an extension length of €
strain energy release rate for the kinked crack with e — 0

components of the path independent J-integral

von Mises yield function

threshold value for J-integral

maximum and minimum value for J-integral in a load cycle

functions of the aspect ration B/

fracture toughness

maximum and minimum value for stress intensity factors in a load cycle
derivatives of the stress intensity factors along the crack front

stress intensity factors

stress intensity factors for the kinked crack with an extension length of €
stress intensity factors for the kinked crack with e — 0

complete elliptical integral of the first kind

coefficient matrix of the given form in the thesis
components of the tensor valued function in terms of the damage variables
functions of the given form in the thesis, where i = 1..4

normal vector to the considered path
local trihedral at the crack front
number of load cycles

eigenvectors of the stiffness tensor

an operator that nulls out the non-orthotropic components of a given tensor
deviating from zero



Nomenclature

Pij
Pu
Poo

q
Q(s)

1,0
R

R
RO RT

§ijmna Cijmn
S

SMatrix

Siimm Ciimn
g!(_ink
ijmn

T

u
W

We

(x1, X2, X3)
(x,Y,2)

(%1, X3, X3)
v, 2)

()« and (o)*
o, B

SA

5A
bAp
Asﬁack
ASKink
ASc

projections of the remote loading into the plane of the crack
second invariant of the deviatoric stress tensor
remote tensile loading

shear stress
function of the form given in the thesis

local polar coordinates at the crack tip

stress ratio of the load cycle

orthogonal transformation

orthogonal transformation corresponding to the best approximate
orthotropic representation

components of the compliance and stiffness tensors, respectively

effective compliance tensor

compliance tensor of the undamaged matrix

components of the compliance/stiffness tensors modified by damage
components of the tensor for the rate of the change of compliance due
to crack kinking

non-singular constant terms in the stress expansion formula (T-stresses)

displacement vector
components of the displacement vector

strain energy density

Cartesian coordinates

rotated and shifted Cartesian coordinates at the new crack tip
mode of crack deformation

semi-major and semi-minor axes of the ellipse, respectively

total area element

remaining area element

damaged area elements

compliance tensor corresponding to the considered crack
compliance tensor corresponding to crack kinking

tensor of the change of compliance corresponding to crack growth



X Nomenclature
~ORT . . . .
c best approximate orthotropic representation of the compliance tensor
€ crack extension length
Eij components of the strain tensor in the corresponding coordinate system
3 effective strain
Yx> Yys Yz rotation angles of the crack (Euler angles)
r curvature of the projected crack front to the tangent plane
A, A2 mode-mixities
Ans En eigenvalues for symmetric and antisymmetric loading
Ay eigenvalues of the stiffness tensor
i shear modulus
T Eshelby’s stress tensor
v? Laplacian operator
v Del operator
v Poisson’s ratio
w angle between the shear load and the x-axis
w continuity parameter
bmax kmkmg angle
(0] Airy stress function
P* energy dissipation corresponding to self-similar crack growth
P** energy dissipation corresponding to crack kinking
O3 components of the stress tensor in the corresponding coordinate system
c stress tensor
o' deviatoric part of the stress tensor o
Oyield tensile yield strength
(4 effective stress
On angle between the normal vector to the ellipse and the x-axis

&m0

ellipsoidal coordinates



Introduction

“everything should be made as simple as possible, but not simpler.”

Albert Einstein

Since people started to design and make components, most of their effort have been
spent trying to detect and avoid damage and failure. Many failure criteria have been
proposed so far, and the pioneering works in this field go back to TRESCA (1872),
MOHR (1900),voN MISES (1913), DRUCKER & PRAGER (1952). Their theories were
based on a combination of the stress or the strain components, given in the form of a func-
tion. In designing parts to resist failure, the critical value of this function is to be lower
than a material parameter, e.g. the yield strength for ductile materials or ultimate strength
for brittle materials. These are yes or no criteria, but in practice it was observed that many
components designed using these criteria failed as well. This is because these theories
were based on static loading, while real structures and components are experiencing vari-
able loadings. The concept of Wohler diagram, also known as S-N diagram, proposed
by WOHLER (1860) was a great step to solve the problem of time varying loads. Using
this concept, the strength of materials is determined under the action of cyclic loads, but
it was observed that the S-N diagrams for two different specimens, but made of the same
material, showed a significant difference. The diagrams also showed load dependency,
i.e. depending on whether the load nature was cyclic with a constant amplitude or with a
fluctuating amplitude, different curves were resulting. These and other observations sug-
gested that for each individual component a unique S-N diagram should be measured.

Using the concept of S-N diagram, it is possible to characterize the evolution of dam-
age in materials under cyclic loading. Damage is the deterioration which occurs in
materials prior to failure. For centuries fracture has been studied as a yes or no pro-
cess related to a critical value of load, stress, strain and time or number of load cy-
cles. PALMGREEN (1924), MINER (1945) and ROBINSON (1952) pioneered the con-
cept of the variables related to the progressive deterioration prior to failure. 1958 is
the year to be considered as the starting point of continuum damage mechanics, when
KACHANOV (1958) published the first paper on a field variable w called continuity.
About fifteen years later D = 1 — w received the status of a state variable in the thermo-
dynamical sense, where 0 < D < 1 (0 for the undamaged state and 1 for failure). During
these fifteen years, this concept did not improve noticeably, and only one important result
appeared in 1968, introducing the concept of effective stress by RABOTNOV (1968). The
basic development of damage mechanics occurred during the 1970, at least ten years af-
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ter the tremendous development of the field fracture mechanics. In the 1980s, the theory
was set up on a more rigorous basis using thermodynamics and micromechanics, and ap-
plications to engineering problems began and accelerated as many more people involved
themselves in this discipline.

Since the pioneering work of KACHANOV (1958) and RABOTNOV (1969), contin-
uum damage mechanics is a successfully developing branch of solid mechanics, fracture
mechanics, material science, physics of solids, etc. Surprisingly, rapid development in
this field in the last decades has shown how important the problem is and how difficult is
the proper irreversible thermodynamics based modeling of the material damage response.
The ability to characterize and predict the mechanical failure modes, damage evolution
and the remaining operational life of a mechanical system are the main concerns of this
field. For example, in the field of damage mechanics based on fracture mechanics and
crack growth, much material failure prediction has been accomplished using the Paris’
law and the Forman’s law for cyclic loading. There is no unique method for the predic-
tion of damage evolution and material failure and, furthermore, one model may not be
easily related to other models.

The larger portion of the literature on continuum damage mechanics is probably de-
voted to the development of damage variables and constitutive equations rather than to
the development of damage evolution equations. Since damage is assumed to degrade, at
least locally, the elastic properties of a material, modeling its response must address the
formulation of constitutive properties. A task which may be approached using microme-
chanical or phenomenological approaches. An extensive review of such approaches can
be found in (KRAJCINOVIC 1996). The micromechanical modeling process leads to a
one to one correspondence between a discontinuous field on an inhomogeneous mesoscale
and an effective continuous field on the homogenous macroscale. The homogenization
(averaging) of the meso-structural field of defects within a representative volume element
(RVE) into a macrofield of the effective continuum corresponds to micromechanical
modeling. In contrast to micromechanical models, phenomenological models do not
consider the micro-details of the material response, but describe damage indirectly
by introducing internal (or hidden) variables. This has caused some confusion and
spawned more extensive, substantially different, models of the same phenomena. Since
the selection of the damage variables is perhaps the most important step, irreversible
thermodynamics has been used to provide a scientific basis for theories of contin-
uum damage mechanics (KESTIN & BATAILLE 1977), (MURAKAMI & OHNO 1981),
(KRAJCINOVIC & FONSEKA 1981), (ZIEGLER 1983), (KRAJCINOVIC 1983A),
(KraJCINOVIC 1983B), (KRAJCINOVIC 1985), (LEMAITRE 1985).

All materials, and in more special case brittle materials, under general loading condi-
tions develop anisotropic damage. For a given stress state, materials damaged by micro-
cracks in general accumulate additional damage through the kinking and growth of these
microcracks. Five decades of research on the identification of different damage mecha-
nisms have provided this field with a wealth of damage models and variety of different
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concepts to study the evolution of damage and failure analysis of materials and structures.
However, there is still a need for new material models and ideas covering the natural as-
pects of the irreversible damage process. In the present work a micromechanics based
continuum damage model for brittle materials is proposed, which is based on the reduc-
tion of stiffness due to the kinking and growth of elliptical microcracks. The proposed
meodel captures the local damage induced anisotropy due to the kinking and growth of
microcracks in a thermodynamically consistent manner, without considering any ad hoc
assumption. The model is formulated consistently in a fully analytical way. In order to
make the formulation of the model mathematically traceable, the concept of an equiva-
lent elliptical crack is proposed. The geometry and the orientation of the equivalent crack
are resulting from the postulates of equivalent dissipation and equivalent damage induced
anisotropy in a local sense. Considering the kinking and growth of microcracks in the
formulation of the proposed damage model makes it suitable for loadings with chang-
ing direction and amplitude (non-proportional loading). In such cases, the assumption
of self-similar growth of microcracks is not sufficient to show the irreversible thermody-
namic process of material degradation due to the kinking and growth of microcracks to
other planes and shapes, and it may underestimate the accumulated damage.

This thesis is structured into six chapters. Subsequent to this preface, the principles
of the fracture mechanics are addressed in chapter 1. A short and brief history review
on the fracture mechanics is given first. This chapter covers the fundamentals and main
principles of this field, including the physical irreversible process of fracture and crack
growth, theory of the linear elastostatic fracture mechanics, the concepts of material forces
and path independent integrals in linear elasticity, and the mechanism of fatigue crack
growth.

Besides the stress intensity factors and the well known J-integral concept, the non-
singular constant terms in the stress expansion formula have proven to play an important
role in fracture mechanics and plasticity (LARSSON & CARLSSON 1973), (RICE 1974),
(AYATOLLAHI, PAVIER & SMITH 1998), (SCHUTTE & MOLLA-ABBASI 2007B),
(MOLLA-ABBASI & SCHUTTE 2008). The 2nd chapter is devoted to give the full set
of the T-stresses for elliptical and circular cracks embedded in a homogenous isotropic
infinite solid. Using the potential method and a transformation technique, the asymp-
totic solutions for the stress components are derived, from which the T-stress terms for
elliptical and circular cracks in infinite isotropic linear elastic solids are resulting.

The prediction of crack paths under general mixed-mode loading conditions, using the
theory of linear elastic fracture mechanics, has been the subject of many investigations,
both in the two- and three-dimensions. These include both the theoretical works devoted
to infinitesimal crack extension from a given geometry, and numerical studies simulat-
ing the propagation of cracks. The 3rd chapter deals with the theory, mechanism and
simulation of crack growth phenomena. The maximum driving force fracture criterion,
resulting from the variational principle of a cracked body in equilibrium, along with a
modified Paris’ law is considered further in the simulation of the quasi-static crack prop-
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agation in linear elastic isotropic and homogenous solids. The model provides a general
framework for mixed-mode linear elastic fracture mechanics under small strain assump-
tions, and gives the evolution of the stress intensity factors and the T-stresses by crack
growth. A variety of numerical examples is presented, including central straight cracks
in two-dimensional case, and internal circular and elliptical cracks in three-dimensions
with different mode-mixities in linearly elastic, homogeneous and isotropic solids, with
or without inclusions.

The 4th chapter is concerned with the numerical analysis of the evolution of the
anisotropic damage due to a single growing mixed-mode internal elliptical or circular
crack in a unit cell. This provides a better insight into the irreversible process of dam-
age on the macroscale from the microscale level. For this, the concept of the unit cell
damaged by a single growing mixed-mode crack is considered, and based on the results
given in chapter 3, the type of the anisotropy induced by the damage due to the growth
of the elliptical and circular microcracks are determined. To identify the type of material
symmetry, the approach proposed by COWIN & MEHRABADI (1987) is applied, which
is based on the characteristics of the eigenvalues and eigenvectors of the elasticity tensor.
The results are then verified with the help of an optimization procedure.

The fundamentals of continuum damage mechanics are reviewed in chapter 5. With
the help of the approach of micromechanics, the effective continuum elastic properties of
isotropic linear elastic solids damaged respectively by an internal elliptical crack and a
kinking elliptical crack are presented, from which the results corresponding to the initia-
tion and the kinking of a single internal circular crack are resulting. Within the approach
of micromechanics, the effective elastic properties of a solid damaged by a planar ellip-
tical crack are derived from the contribution to the complementary strain energy corre-
sponding to the quasi-static, selfsimilar growth of the crack. For this, the stress intensity
factors suffice to give the energy released during the quasi-static, selfsimilar growth of the
crack. However, for the formulation of the complementary strain energy corresponding to
the kinking of a crack, the analytical expressions for the so called T-stresses are required
as well. Based on the damage induced anisotropy due to a growing elliptical crack, in
a local sense, a thermodynamically consistent continuum damage model for brittle ma-
terials is proposed, which is based on the reduction of stiffness due to the kinking and
growth of elliptical microcracks. The model is formulated consistently in a fully ana-
lytical way and degradation of the elastic properties is associated with the irreversible
process of crack kinking and growth. Combining the local damage due to the kinking of
microcracks, with a power law model for fatigue crack growth in fracture mechanics and
an appropriate fracture criterion yields a consistent damage evolution model for predict-
ing the failure of structures and mechanical components subjected to fatigue conditions,
independent of the type of loading. A variety of numerical examples is presented to il-
lustrate the proposed damage model in more details, and to show its applicability to real
mechanical components subjected to sequential loads.

Finally, the thesis is summarized and concluded in chapter 6. Some remarks concerning
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the implementation of the proposed continuum damage model in an incremental scheme
are given, and the report is closed with introducing the possible extensions of the model
and some modifications to account for other dissipative mechanisms, such as friction.
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19th March 1830, Great Britain; about 700 persons assembled on the Montrose sus-
pension bridge to witness a boat race, when one of the main chains broke and caused
considerable loss of life.

This is one of the earliest recorded brittle fractures in a major structure. Since then,
there have been a number of catastrophic bridge failures, including the cases of the Hus-
selt Bridge over the Albert Canal in Belgium (1938), King’s Bridge in Melbourne, Aus-
tralia (1962) and Point Pleasant Bridge in West Virginia (1967). Through the 19th cen-
tury, railway accidents due to fracture in axles, rails and wheels were relatively common.
During the decade 1860-1870, the number of people who died in railway accidents in
Great Britain alone was in the order of two hundred per year. Among typical storage tank
failures, one may mention the molasses tank accident in Boston. On January 19 1919,
without an instant waming the top of the tank was blown into the air and the sides were
burst apart, collapsing a number of buildings and part of the elevated railway structure
and causing 12 deaths and forty injuries. Another typical pressure boundary failure has
been the fracture propagation in natural gas transmission lines.

The structural failures that attracted the attention of mechanics and materials commu-
nities most were two systematic events in the 1940s and 1950s, namely the failures of
welded ships and commercial jet airplanes. Starting in 1943, over 4000 Liberty type
cargo ships and 530 T2 type tankers were built in various shipyards in the United States
and Canada. Among these, over 1200 experienced brittle fracture of the hull, 233 of which
were catastrophic and lead to loss of service and 16 broke in half. Subsequent research
performed in the United States and Great Britain, mostly by the materials community,
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identified notch brittleness as one of the major causes of these fractures. The concept of
notch brittleness was, of course, not new and was known since 1885. What came out of
these studies was, however, the concept of brittle-ductile transition temperature. Because
of the presence of cyclic loading combined with occasional peak loads, low temperatures
and a highly corrosive environment, marine vessels are particularly prone to brittle frac-
ture and catastrophic failures continue to occur. Another case happened on January 16
1998 as a freighter, on its way from Rotterdam to Montreal, broke in half for unknown
reasons and sank near the south coast of Newfoundland.

The second important incident was the loss of the Comet I airplanes. On January
10 1954, the world’s first jet-propelled passenger aircraft entering the passenger service
disintegrated in the air at approximately 30,000 feet and crashed into the Mediterranean
Sea after 1286 pressurized flights. On January 11 1954, the Comets were removed from
service and, after some modifications, they resumed to service on March 23 1954. Shortly
after, on April 8 1954, another Comet disintegrated in the air at 35,000 feet and crashed
into the Mediterranean near Naples. On April 12 1954, the certificate of airworthiness for
the Comets was withdrawn. To determine the cause of the accidents, an aircraft which
had accumulated 1230 flights was subjected to cyclic loading under water simulating
pressurized flights and to 33% overload at approximately 1000 cycle intervals. It was
under one of these proof tests, after 1830 further pressurization in the test facility, that the
cabin failed. The fracture initiated at the corner of a passenger window. Examination of
the failure indicated evidence of fatigue. Further investigation of the first failed aircraft
recovered near Elba confirmed that the primary cause of the accident was pressure cabin
failure due to fatigue.

In all these accidents resulting from brittle fracture, it appears that in each case the
then existing design rules were fully followed and yet catastrophic failures continued to
occur. It was, therefore, becoming very difficult to attribute the causes of the failures to
material defects only, as was routinely done prior to the 1940s. Thus, the large scale ship
failures during the 1940s and the failures in a highly critical industry of jet transportation
in the 1950s were responsible not only for the recognition of brittle fracture as a serious
problem but, to a great extent, for the extensive research that followed to find its causes
and to develop methods for its control.

In designing structural or machine components, an important step is the identification of
the most likely mode of failure and the application of a suitable failure criterion. Fracture
characterized as the formation of new surfaces in the material is one such mode of me-
chanical failure. At the most basic level the essential feature of the process is breaking of
interatomic bonds in the solid. From a macroscopic standpoint, however, fracture may be
viewed as the rupture separation of the structural component into two or more pieces due
to the propagation of cracks. In between the process involves the nucleation, growth and
coalescence of microvoids and cracks in the material. Thus, in studying the fracture and
damage of solids ideally one would have to consider such widely diverse factors as the mi-
croscopic phenomena taking place at various length scales, and the macroscopic aspects
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regarding the loading, environmental conditions, and the geometry of the medium. Due
to this highly complex nature of the phenomenon, at the present time there seems to be no
single theory dealing satisfactorily with all its relevant aspects. Quite naturally, then, the
theories developed to study the fracture of solids tend to treat the subject generally from
one of the three major points of view, namely microscopic or atomic, micro-structural,
and macroscopic or continuum mechanics.

From the standpoint of engineering applications, it has been the macroscopic theories
based on the notions of continuum solid mechanics and classical thermodynamics that
have provided the quantitative working tools in dealing with the fracture of structural ma-
terials. In the macroscopic approach to fracture, it is generally assumed that the material
contains some flaws which may act as fracture nuclei and that the medium is a homo-
geneous continuum in the sense that the size of a dominant flaw is large in comparison
with the characteristic micro-structural dimension of the material. The problem is, then,
to study the influence of the applied loads, the flaw geometry, environmental conditions
and material behavior on the fracture process in the solid, a subject which has come to be
known as fracture mechanics.

The phenomenon of damage also represents surface discontinuities in the form of mi-
crocracks and volume discontinuities in the form of microvoids and microcavities, which
at the mesoscale level the coalescence of these microdefects initiate one or more cracks.
At the macroscale level, damage is concerned with the growth of cracks and defects. The
first two stages of damage may be studied by means of damage variables of the mechan-
ics of continuous media defined at the mesoscale level. The third stage is usually studied
using fracture mechanics with variables defined at the macroscale level.

Fracture is only one way by which damage accumulation and mechanical failure can
occur. Other types of processes leading to failure of structures are corrosion, wear and
plastic collapse, which do not belong to the scope of this thesis. Closely related to frac-
ture mechanics, however, is the plastic collapse. Fracture mechanics is rather a young
discipline. Even though the interest in fracture prediction goes back to stone age, the
systematic approach to tackle problems concerning cracks and crack growth and coales-
cence and the corresponding damage is typically the concept of the recent half century’s
research. Over the past few decades, the field of fracture mechanics has undoubtedly
prevented a substantial number of structural failures.

1.1 History of the field

The early strength theories of solids were based on the maximum stress. However, it ap-
pears that the so called size effect, which plays a rather important role in fracture, was
known before the introduction of the concept of stress to study the strength of solids.
In one of his sketch books, Leonardo da Vinci describes his experiments on breaking
iron wires and how the weight required to break the wire increases as its length is cut



4 1 Principles of Fracture Mechanics

in half in successive tests (TIMOSHENKO 1953). The trend was substantially verified
later by Griffith’s experiments on glass fibers (GRIFFITH 1921). Early studies showed
that the strength was also dependent on surface quality and, particularly, on surface
notches. This was observed by WOHLER (1860) in his fatigue studies and later on by
KOoMMERS (1912). These and similar investigations showed that surface polishing could
increase the strength of the machined specimens by as much as 20 to 50 percent.

It appears that the first elasticity solution in which the existence of stress singularity
was recognized is due to WIEGHARDT (1907). In a remarkable, but little known, article,
he essentially provided the solution for a linear elastic wedge subjected to an arbitrary
concentrated force applied to one of the wedge boundaries. The solution includes the
analysis of the asymptotic behavior of the stress state near the wedge apex and the special
case of the crack problem in considerable detail. Its correct form of v was obtained (r
being the distance from the wedge apex and A is the so called degree of singularity), and
the dependence of A on the wedge angle and on the symmetry of loading was demon-
strated. However, since he did not question the validity of the maximum stress criterion
for fracture, he was faced with a paradox. At the crack tip, where the stress becomes infi-
nite for any arbitrarily small force and yet the experience shows that the material fractures
only if the applied force is raised to a critical value.

To study the difference between the theoretical strength and the bulk strength of solids,
Griffith simulated the defects with an elliptical hole, the solution for which was previ-
ously given by INGLIS (1913). The results showed that the calculated maximum stress
is independent of the absolute size of the flaw and depends only on the ratio of the semi-
axes of the ellipse. These findings were in apparent conflict with the test results and
led Griffith to conclude that the maximum stress may not be an appropriate strength cri-
terion and an alternative theory was needed (GRIFFITH 1921), (GRIFFITH 1924). The
basic concept underlying Griffith’s new theory was that, similar to liquids, solids possess
surface energy and, in order to propagate a crack (or increase its surface area), the corre-
sponding surface energy must be compensated through the externally added or internally
released energy. For a linear elastic solid, this input energy which is needed to extend the
crack may be calculated from the solution of the corresponding crack problem. Using the
solution of INGLIS (1913) for a uniformly loaded plate with an elliptical hole, Griffith
calculated the increase in strain energy and, from the energy balance, obtained the stress
corresponding to fracture. Griffith’s major contributions, regarding the fracture of brittle
solids, were that he was able to resolve the infinite stress paradox recognized earlier by
WIEGHARDT (1907) and to show that the fracture stress is dependent on the flaw size.
He also verified his hypothesis by performing some carefully designed experiments on
pressurized glass tubes and spherical bulbs containing cracks of various sizes. However,
Griffith’s work was largely ignored by the engineering community until the early 1950s.

In the early 1950s, the energy balance theory was also reconsidered by researchers
who were primarily interested in catastrophic failure of large scale metallic structures.
The X-ray studies conducted earlier by OROWAN (1948) showed that even in materials
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fracturing in a purely brittle manner, there was evidence of extensive plastic deformation
on the crack surfaces. This led IRWIN (1948) and OROWAN (1948) independently to
conclude that the plastic work at the crack front must also be considered as dissipative
energy in the surface energy model proposed by GRIFFITH (1921).

Irwin’s second important contribution was the development of a universal method for
calculating the rate of the energy available to fracture a solid. For this, the continuum
elasticity solution for each crack geometry and loading condition is needed. Griffith’s
work showed only too well how difficult this task could be. During this period, the timely
analytical results appear to be the work of SNEDDON (1946) on plane and axisymmet-
ric crack problems. By using the solution proposed by WESTERGAARD (1939) for plane
problems and by solving the circular crack problem, Sneddon obtained the correct asymp-
totic behavior of the stress field near the crack tip and showed that the results for the two
cases differ only by a numerical factor of 2/7. For the circular crack, he also obtained the
correct expression of Griffith’s energy balance equation. However, Sneddon seemed to
have failed to recognize the universal nature of the crack tip stress field by stating (incor-
rectly) that the tangential stress component which appears in the axisymmetric problem
has no analog in the plane problem. As later pointed out by IRWIN (1957), asymptoti-
cally, the stress state around the border of circular crack is one of plane strain and the iden-
tification of the numerical factor observed by SNEDDON (1946) is a key factor in general-
izing the results. One of Irwin’s major contributions, thus, was his recognition of the uni-
versal nature of asymptotic stress and displacement fields around the crack front in a linear
elastic solid. He observed that the symmetric crack solutions given by SNEDDON (1946)
and WESTERGAARD (1939) may be generalized to include the asymptotic expressions
for all crack problems and, for a small distance r from the crack tip, the stresses may
be expressed as oy ~ Ko/ V277 fff, where ff} are the functions previously obtained by
WIEGHARDT (1907), WESTERGAARD (1939) and SNEDDON (1946) for specific crack
geometries and loading conditions. Irwin called the coefficient of the singular stress term
(K ) the stress intensity factor.

To calculate the energy available for fracture, IRWIN (1957) then interpreted the fixed-
grip strain energy release rate involving the entire solid in terms of the rate of crack
closure energy, which can be calculated by using the local asymptotic expressions for the
crack surface displacement and the corresponding cleavage stress only. For the symmetric
loading of a planar crack, he then evaluated the energy release rate as K2/E and designated
it by G, where E = E/(1 —«v2) in case of plane strain condition. Subsequently, by
using Westergaard’s solution he showed that the stresses and displacements in the close
neighborhood of the smooth internal boundary of a planar crack in a linearly elastic solid
under most general loading conditions may be expressed in terms of three stress intensity
factors K|, Ky and Ky (and three sets of related universal angular functions) associated
with the symmetric opening, in-plane shear and anti-plane shear modes of deformation,
respectively (WESTERGAARD 1939). He also evaluated the corresponding strain energy
release rates Gy, Gy and Gy and their sum G for the general co-planar crack growth
problem.
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To make the energy balance theory, as modified by IRWIN (1957), an effective design
tool, the concept of a realistic single parameter characterization of the material’s resis-
tance to fracture also needed to be developed. This required the additional assumption
that, in solids fracturing in a brittle manner, the size and shape of the fracture process (or
the energy dissipation) zone remain essentially constant as the crack propagates, leading
to the hypothesis that in such solids the energy needed to create 2 unit fracture surface is
a material constant. Irwin designated this fracture resistance energy as the fracture tough-
ness, Gyc. Thus, by the middle of the 1950s, nearly all pieces of a new field called fracture
mechanics were in place and, by the late 1950s, the field was ready for rapid expansion.

During the 1950s and early 1960s, the immediate concern in applications was brit-
tle fracture and fatigue crack growth. It turned out that the stress intensity factor could
be used as an extremely effective correlation parameter to model both of these phenom-
ena. Since the stress intensity factor is a product of linear elasticity solutions of crack
problems, the initial efforts in fracture mechanics research were concentrated on de-
veloping and adapting methods for solving such problems. A fairly thorough descrip-
tion of the methods used in solving elastic crack problems may be found in various
articles by ERDOGAN (1978), LIEBOWITZ (1968), SIH (1973) and ATLURI (1986).
There are two major methods of solving the mixed boundary value problems in elas-
ticity that arise from the formulation of the crack problems, namely the complex func-
tion theory and the integral transforms. The complex potentials were first introduced by
GOURSAT (1898) to represent the biharmonic function. Their applications to problems in
elasticity were, however, developed in detail by a school of Georgian mathematicians led
by MUSKHELISHVILI (1933). The method is nearly indispensable for the examination of
the singular nature of stresses at the crack tips, particularly in problems involving bonded
dissimilar materials. However, the shortcoming of the method is that it is restricted to
two-dimensional problems. There are a number of techniques used in the solution of
two-dimensional crack problems which are also based on the complex function theory.
Among these, one may mention conformal mapping, Laurent series expansion, boundary
collocation method and certain applications of the Wiener-Hopf method. The method of
integral transforms is one of the most widely used techniques in the formulation of the
boundary value problems in mechanics. Depending on the crack geometry and the coor-
dinate system, the most often used transforms are Fourier, Mellin and Hankel transforms.
In simpler cases, the problem can very often be reduced to an Abel’s equation and solved
directly. In many cases, however, it may be necessary to reduce the resulting dual series or
dual integral equations to singular integral equations, using the complex function theory
to obtain the fundamental function and solving the problem numerically by taking ad-
vantage of the properties of the related orthogonal polynomials. Among other analytical
methods used for solving linear elastic crack problems, one may also mention the method
of eigenfunction expansion and the alternating method.

Theoretical methods are essential for solving crack problems for two main reasons.
First, they provide the correct form of singularities and asymptotic results that may be
needed to analyze and interpret the experimental results and to use for improving the
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accuracy of purely numerical solutions. Secondly, they provide accurate solutions for rel-
atively simple part/crack geometries and for certain idealized material behavior that could
be used as benchmarks for numerical and approximate procedures. However, in practical
applications, the geometry of the medium is seldom simple and realistic material models
seldom lead to analytically tractable formulations. It is therefore necessary to develop
purely numerical methods that can accommodate complicated part/crack geometries and
material models. The finite element method, which is another major contribution of the
solid mechanics community to the science and art of engineering within the past fifty
years, appears to be ideal for this purpose and is widely used in fracture mechanics. One
may also note that in certain problems, such experimental techniques as photoelasticity,
moire interferometry and the method of caustics may prove to be very effective in es-
timating the stress intensity factors. In particular, the three-dimensional photoelasticity
using frozen fringe technique was shown to be very useful in studying cracked structural
components with relatively complex geometries.

Under operating temperatures and relatively high loads, most engineering materials ex-
hibit some form of inelastic behavior. The main feature of the fracture process in such
materials is that the characteristic length parameter of the inelastic region around the crack
front, where the energy dissipation takes place, is generally of the same order of magni-
tude as the crack size. In elastic-plastic materials, the size of the plastic zone itself is very
heavily dependent on the constraint conditions along the crack front. Thus, in relatively
thick specimens, the interior region would be under plane strain conditions, whereas, near
the surfaces, due to lack of constraints, there would be a transition to plane stress con-
ditions, accompanied by greater plastic zone size and higher resistance to fracture. One
would then observe a low energy flat fracture in the interior and shear lip formation and
high energy ductile fracture near the surfaces. Very often, the terminology G used for
fracture toughness in practice implies plane strain value of G, the critical strain energy
release rate. The latter is rather heavily dependent on specimen constraints, particularly
on thickness. Furthermore, the size of the plastic region around the crack front varies with
growing crack size, generally increasing with the increasing crack size. This implies that
a material’s resistance to fracture would also increase with increasing crack size.

For ductile crack propagation, it appears that two essential conditions need to be satis-
fied. The first is a local condition needed for crack growth initiation. The mechanism for
crack initiation may be the nucleation, growth and coalescence of voids or microcracks,
or simply decohesion taking place at the crack tip. For this, in a small region ahead of the
crack front, the mechanical conditions must reach a critical state regardless of what goes
on in the surrounding plastic region. The initiation of crack growth can thus be character-
ized by a single strength parameter such as critical crack tip opening displacement, critical
crack opening angle or work of separation. On the other hand, for further crack growth
or unstable fracture, the condition of global energy balance must be satisfied. Since the
material’s resistance to ductile fracture is highly dependent on the crack size and the ge-
ometry of the medium, this second condition cannot be characterized by a single strength
parameter.
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The first important attempt at modeling the ductile fracture process, too, seems to have
been made by Irwin and his associates. By recognizing the increase in fracture resistance
with growing crack size, they introduced the concept of the crack extension resistance
curve (R-curve), which consists of the plot of total energy dissipation rate (including the
work of separation) as a function of the crack size. The fracture resistance is represented
by energy (Gg, R, Jr) or sometimes by the equivalent stress intensity factor. The R-curve
is thus a continuously distributed parameter characterization of ductile fracture growth.
By including the crack driving force G or the stress intensity factors K in the same plot,
the concept provides an effective tool to examine the processes of slow stable crack growth
and fracture instability.

Even though it is based on a very sound physical concept, initially the R-curve was not
widely used in applications. The main reasons for this are that it is generally dependent
on the geometry of the component and the corresponding crack driving force is difficult
to calculate. However, starting in the early 1970s, practicing engineers began to use the
R-curve technique rather extensively. There seems to be a number of factors influencing
this trend. It was during this period that fracture mechanics was becoming not only an
interesting field to study but also an acceptable and effective design tool. There were
some highly critical safety issues involving nuclear pressure vessels and other pressurized
containers that needed a closer examination by a more rational technique. There were
also some experimental studies indicating that, at least for some materials, the R-curve
may indeed be the universal signature of the material’s ductile fracture resistance. Fi-
nally, there was the very timely appearance of Rice’s work on the so called J-integral
(RICE 1968B).

The theoretical basis of the J-integral may be found in certain conservation laws pre-
viously studied by ESHELBY (1920) and GUNTHER (1962). Also, physical concepts
similar to that of the J-integral regarding the energy release rate were described earlier by
SANDERS (1960) and CHEREPANOV (1968). However, for two-dimensional notch and
crack problems in nonlinear elastic solids, RICE (1968B) have developed the concept of
the path independent J-integral independently. Rice showed that in a general nonlinear
elastic solid, the line integral encircling the crack tip is path independent and its value J
represents the energy release rate for coplanar crack growth. Since nonlinear elasticity
is equivalent to the deformation theory of plasticity (provided there is no unloading) and
since the path integral can be calculated in a straightforward manner by using, for exam-
ple, the finite element technique, J-integral gradually became an attractive alternative to
G or K in studying elastic-plastic fracture.

It was also at this time that HUTCHINSON (1968) and RICE & ROSENGREN (1968)
worked out the details of the singular behavior of stresses, strains and deformations
around the crack tip for a particular nonlinear solid and showed that J is a measure of
the strength of this so called HRR singularity. Even though the concept of J-integral is
not valid in the plastic zone near the crack tip where loading is non-proportional, J would
give a reasonably good approximation to the energy release rate, provided the charac-
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Figure 1.1: intergranular and transgranular spreading of brittle fracture

teristic size of the plastic zone with non-proportional loading is small compared to the
size of the J-controlled region. This is somewhat analogous to the fracture process zone
and K-controlled region in linear elastic fracture mechanics and provides further analyt-
ical justification for selectively using J-integral as the measure of crack driving force in
certain elastic-plastic fracture problems.

Prior to the 1960s, the primary failure criteria used in mechanical design were tensile
strength for brittle fracture, von Mises or Tresca criterion for yielding, energy absorption
or toughness for impact and various versions of the Wohler diagram for fatigue. Since, in
most cases, the loading has a cyclic nature, fatigue has always been a major consideration
in design. Thus, until the 1960s, the universally accepted criterion for design was the
safe life criterion which required that time for crack initiation be longer than the expected
operational life of the structure. In bulky components, nearly 95% of the life is consumed
by the initiation of a detectable crack. Therefore, despite the heavy reliance on safety
factors necessitated by large scale variabilities in observations, the technique is still used
rather widely in conventional design. However, in some very highly critical application
such as (civilian and military) aircraft components, nuclear pressure vessels, steel bridges
and certain microelectronics devices, the existence of initial defects that may form the
nuclei of fatigue cracking is practically unavoidable. The assumption then must be that
the crack is always there and is growing and it becomes detectable only when it reaches a
certain size. Consequently, in these structures a very significant part of the service life is
consumed by subcritical crack propagation. It turns out that by using the stress intensity
factor as the load parameter, the subcritical crack growth rate can be correlated much
more tightly and hence, the service life can be estimated with much less uncertainty.

1.2 Process of fracture and crack growth

This section provides some elementary information about the various fracture mecha-
nisms, which is an essential background for the study of fracture mechanics and the
comprchension of the basic ideas and the limitations. Basically, there are two princi-
pal fracture mechanisms, namely cleavage fracture and ductile fracture. Cracking alone
does not necessarily lead to fracture. When a crack due to propagation mechanisms such
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Figure 1.2: cleavage fracture left, and ductile fracture right, both initiated by fatigue crack

as fatigue, stress corrosion and hydrogen cracking has developed to a certain size, final
fracture will take place by cleavage or by ductile fracture. Since a cleavage fracture is
usually associated with liftle plastic deformation, it is called brittle fracture. But the term
brittle fracture is often generalized to all fractures with little plastic deformation, although
the final separation occurs in a ductile manner (BROEK 1974).

1.2.1 cleavage fracture and ductile fracture

Toughness is the term used to describe the ability of a material to deform plastically and to
absorb energy before and during rupture. The adjectives brittle and ductile are used to dis-
tinguish failures of materials characterized by low and high toughness. Cleavage fracture
is the most brittle form of fracture that can occur in crystalline materials. The likelihood
of encountering cleavage fracture is increased by lower temperatures and higher strain
rates as is illustrated by the well known ductile-brittle transition.

Cleavage fracture of metals occurs by direct separation along crystallographic planes
due to a simple breaking of atomic bonds. Its main characteristic is that it is usually
associated with a particular crystallographic plane. Iron for example cleaves along the
cube planes (100) of its unit cell. This causes the relative flatness of a cleavage crack
within one grain, as indicated in figure 1.1. Since neighboring grains will have slightly
different orientations, the cleavage crack changes direction at a grain boundary to continue
propagation on the preferred cleavage plane. The flat cleavage facets through the grains
have a high reflectivity, giving the cleavage fracture a bright shiny appearance.

Fracture occurring under the single application of a continuously increasing load can
either be brittle cleavage fracture or fracture associated with plastic deformation, which
is essentially ductile. For the latter the amount of plastic deformation required to produce
fracture may be so limited in certain cases, that relatively little energy is consumed. Then
the fracture is still brittle in an engineering sense and can be initiated at a sharp notch
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Figure 1.3: sheared single crystals of pure copper

or crack at a comparatively low nominal stress, particularly when a state of plane strain
reduces the possibilities for plastic deformation.

The most familiar type of ductile fracture is by overload in tension, which produces
the classic cup and cone fracture. After the maximum load has been reached the plastic
clongation of a prismatic-tensile coupon becomes inhomogeneous and concentrates in
a small portion of the specimen such that necking occurs. In extremely pure metals,
which are virtually free of second phase particles, it is possible for plastic deformation on
conjugate slip planes to continue until the specimen has necked down to an arrow point
by 100 percent reduction of area. Such a failure is a geometric consequence of the slip
deformations. As an example, figure 1.3 shows a single crystallin material that has almost
failed by shear on a single slip plane.

Engineering materials always contain large amounts of second phase particles. Three
types of particles can be distinguished. The first type are Large particles, visible under
the optical microscope. Their size may vary from 1-20 um. They usually consist of
complicated compounds of the various alloying elements. The alloying elements may be
added to improve castability or some other mechanical properties. Sometimes, however,
particles of this size may be produced on purpose, as in the case of carbides in certain
steels. The second type of particles are Infermediate particles which are only visible by
means of the electron microscope. Their size is in the order of 500-5000 Angstrom units.
These particles may also consist of complex compounds of the various alloying elements.
Sometimes particles of this size are essential for the propertics of the material, as in the
case of dispersion strengthened metals (such as Ni-ThO;,) and in the case of steels were
carbides of this size are intentionally developed. The third type of particles are Precipitate
particles which are in certain cases visible by means of the electron microscope. Their
size is in the order of 50-500 Angstrem units. They are purposely developed by means
of solution heat treatment and ageing, and they serve to give the alloy its required yield
strength.

The large particles are often very brittle and therefore they cannot accommodate the
plastic deformation of the surrounding matrix. As a result they fail early on, when the
matrix has undergone only a small amount of plastic deformation. This means that voids
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Figure 1.4: dimples initiated at intermediate size particles (arrows). Aluminium-alloy

are formed. The large inclusions visible in the optical microscope can determine the
instant and location of ductile fracture and decrease the ductility of the material, but they
do not play a role in the process of ductile fracture itself.

Fracture is induced by the much smaller intermediate particles of the sub-micron size.
Since these particles cannot deform as easily as the matrix, they lose coherence with the
matrix when extensive plastic flow takes place in their vicinity. In this way tiny voids are
formed, which grow by slip, the material between the voids necks down to the full 100
percent in the same way as in figure 1.3. This necking takes place at a micro-scale and
the resulting total elongation remains small.

The mechanism of initiation, growth and coalescence of microvoids gives rise to char-
acteristic fractographic features. When observed in the electron microscope the fracture
surface consists of small dimples which represent the coalesced voids (figure 1.4). In most
of the dimples the small particle that initiated the void can easily be recognized. Dimples
always have an irregular shape, due to the random occurrence of voids, and their pro-
file gives an impression of the process of void growth and coalescence. Dimples can be
roughly divided into two categories according to their apparent shape, namely equi-axed
and parabolic. The shape in which the dimples appear in the microscope depends upon the
stress systems that were active during their formation, and upon the angle of observation
in the microscope. Equi-axed dimples may be formed if the stresses are predominantly
tensile, and elongated dimples occur in the shear or tear mode.

Contrary to cleavage where the action of a tensile stress is sufficient for the separa-
tion, ductile fracture cannot occur without plastic deformation. The mechanism of final
separation is a direct consequence of dislocation movements and slip displacements nec-
essary for the growth and coalescence of voids. Apart from a stress to induce dislocation
movement a certain plastic strain is required for ductile separation to occur. This plastic
deformation may be confined to a small volume of material through which the fracture
passes. Then failure occurs with relatively little plastic deformation on a macroscale,
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Figure 1.5: striations on fatigue crack surface of Al-Cu-Mg alloy

requiring only little energy. The fracture is brittle in an engineering sense. Fractures
induced by cracks in high strength materials are usually of this type.

1.2.2 fatigue cracking

Under the action of cyclic loads, cracks can be initiated as a result of cyclic plastic defor-
mation. Even if the nominal stresses are well below the elastic limit, locally the stresses
may be above yield due to stress concentrations at inclusions or mechanical notches.
Consequently, plastic deformation occurs locally on a microscale, but it is insufficient to
show in engineering terms. Several equivalent models have been proposed to explain the
initiation of fatigue cracks by local plastic deformation, for example the slip mechanism
proposed by Woob (1958) which is followed by an extrusion or an intrusion in the metal
surface (see also COTTRELL & HULL (1957) and (MOTT 1958)). A fatigue crack, once
started, can also grow by a mechanism of reversed slip.

A sharp crack in a tension field causes a large stress concentration at its tip where slip
can occur fairly easily. The material above the crack may slip along a favorable slip plane
in the direction of maximum shear stress. Due to that slip the crack opens, but it also
extends in length. Slip can now occur on another plane. Work hardening and increasing
stress state will finally activate other parallel slip planes, which lead to a blunt crack tip.
During the rising load part of the cycle the crack propagates by a certain amount and
plastic deformation occurs in a small region which is embedded in elastic surroundings.
During load release the elastic surroundings will contract and the plastically deformed
region, which has become too large, does not fit any more in its surroundings. In order to
make it fit, the elastic material will exert compressive stresses on the plastic region during
the decreasing part of the cycle. These compressive stresses will be above yield again, at
least locally at the crack tip. This means that reversed plastic deformation occurs, which
will close and resharpen the crack tip.

The cyclic opening and closing of the crack will develop a typical pattern of ripples,
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Figure 1.6: large cracked particle in fatigue crack surface at low fatigue crack growth rate
in 2024-T3 aluminium alloy

every new cycle adding a new ripple. These ripples show up on the fracture surface in
the electron microscope, and they are called fatigue striations. Figure (1.5) shows fatigue
striations in a commercial Al-Cu-Mg alloy. In contrast, a mechanism of cleavage may
sometimes be involved in fatigue crack propagation. This gives way to the formation of
brittle striations as opposed to the ductile striations discussed above.

The question arises whether inclusions and second phase particles have an influence on
fatigue cracking. As far as initiation of fatigue cracks is concerned they must be expected
to have an influence. In the case of smooth specimens the inclusions are sites of stress
concentration. At such locations, the required plastic deformation can occur. Fatigue
cracking initiated at such particles was reported by GROSSKREUTZ & SHAW (1969),
BOWLES & SCHIJVE (1973) and MCEVILY & BOETTNER (1963). If stress concentra-
tions exist at mechanical notches it may be expected that particles are not strictly required
for the initiation of a crack, since the extra stress concentration due to a particle is of
limited importance. For the same reason it must be expected that particles have little in-
fluence on fatigue crack propagation. Indeed, at low crack rates their influence is very
limited, figure (1.6).

The situation is completely different at high crack propagation rates in the order of 1
micron per cycle and above. High growth rates are a result of a high stress intensity at the
crack tip. Due to the higher stress concentration, particles in front of the crack tip may
cleave or lose coherence with the matrix, thus initiating a (large) void. The remaining
material between the void and the crack tip now may rupture by ductile tearing, thus
producing a local jump of the crack front. This is obvious from the areas with dimples
in figure (1.7), which are evidence of a mechanism of void coalescence during ductile
rupture. The influence of particles on fatigue crack propagation is limited to high crack
propagation rates. This means that it is limited to the very last and small part of the crack
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Figure 1.7: dimples around cracked large particles among fatigue striations at high fatigue
crack growth rate in Aluminium-alloy

propagation life. Consequently, it is not very important technically. This is confirmed by
tests on materials with very low particle content (EL-SOUDANI & PELLOUX 1973).

1.2.3 environment assisted cracking

Another way in which cracks can be initiated and grow at low stress levels is environ-
mental cracking. A liquid metal environment may cause cracking even under zero stress.
A corrosive environment, which would not normally attack the metal, may cause crack-
ing under the assistance of mechanical stresses. Several theories have been put forward
to explain this stress corrosion cracking, yet its mechanism is far from well understood.
In particular, the role of the mechanical stresses is difficult to comprehend. It seems
inconceivable that any single theory is likely to explain all observations and it seems
reasonable that different mechanisms operate under different conditions and in different
materials. In view of this, the discussion of stress corrosion cracking will be limited to it
being mentioned as a mechanism for cracking. In many materials stress corrosion cracks
are intergranular, which may be due to a potential difference between the grain boundary
and the interior of the grains as a result of a segregation of the solute. Alternatively, it
may be attributed to the presence of second phase particles at the grain boundaries.

There is some concurrence of opinion as to whether the hydrogen produced during
corrosion in some cases may be the cause of stress corrosion cracking. The presence of
hydrogen in steels can cause cracking even during processing. Hydrogen can also cause
cracking of high strength steel after a considerable period of sustained loading known
as static fatigue. Hydrogen cracking is usually intergranular, similar to stress corrosion
cracking in steels. Other materials than steels can also be embrittled by hydrogen, but this
embrittlement is often caused by the formation of brittle hydride particles. This means
that the material has a low toughness, whereas in the case of steels the hydrogen serves
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as a mechanism to produce a crack of sufficient length that the given toughness of the
material will cause it to fail at the applied stress.

1.3 Crack and fracture mechanics

The linear fracture mechanics is based on the elastic analysis of the stress field
for small deformations. It gives excellent results for brittle elastic materials, such
as high strength steel, ceramic, glass and to a lesser extent, concrete and wood
(LEMAITRE & CHABOCHE 1990). The crucial value of the energy release rate, the stress
intensity factors, or the J-integral represents a precise condition of fracture by instability
of the cracked medium. Similarly the fatigue model of PARIS (1962) and its derivatives,
which express the crack growth rate per load cycle as a function of the amplitude of one
of the above three variables, can be used to predict the propagation of cracks in structures
subjected to periodic loading.

The case of plasticity or viscoplasticity are studied with the help of nonlinear fracture
mechanics. This is the case for ductile materials like low carbon steel, stainless steel,
certain aluminium alloys and polymers. The plasticity manifests itself into two ways: at
the level of the plastic zone ahead of the crack tip (crack front in three-dimensional crack
problems), being the source of history effect by virtue of the development of residual
stresses, and at the level of the mechanisms of crack propagation. As long as the load is
low enough, whether monotonically increasing or in a periodic manner, these effects can
be neglected and linear fracture mechanics provides a good approximation to the physical
problem. In contrast, for large and highly variable loads, the stable progression of ductile
fracture cracks and the history effects due to overloads can be modeled only by taking
plasticity into account. Average and high temperatures induce creep-fatigue interaction
effects.

Dynamic effects become significant in two groups of crack problems, namely solids
with a stationary crack under impact loading, and solids with a crack propagating at a
sufficiently high velocity. In the former, the asymptotic stress field near the crack tip is
identical to that of the corresponding elastostatic crack problem and there is generally an
overshoot in the stress intensity factor. In the latter, the asymptotic crack tip behavior
is dependent on the instantaneous crack velocity only (FREUND 1990). An important
application of elastodynamics is in the area of nondestructive evaluation (NDE) of struc-
tural components, which generally involves the determination of the type, size, location
and orientation of flaws in the medium using ultrasonic and acoustic emission test results
(ACHENBACH 1973).

The next sections provide the fundamentals required for the following chapters of
the thesis. For further details on nonlinear crack mechanics, elastodynamic crack me-
chanics and the related topics, the interested reader is referred to the pertinent liter-
ature by IRWIN (1948), RAVI-CHANDAR (1982), FREUND (1990), MAUGIN (1992),
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B 4

Figure 1.8: V-notch geometry and mathematical crack

BETEGON & HANCOCK (1991) and the works cited there.

1.3.1 linear elastostatic stress field of a crack

This section presents the asymptotic stress field of a V-notch. This field is due to
WILLIAMS (1957) and can be reduced to the one of a traction free crack with a sharp
tip. Figure 1.8-left shows a V-notch with traction free faces separated by an angle 2.
The solution for a mathematical crack can be obtained from the one for the V-notch prob-
lem in the limit case as v — 0, figure 1.8-right. The origin of the coordinates is taken
at the tip of the notch as shown in in figure 1.8. Neglecting the body forces, the solution
of this problem is reduced to finding the Airy stress function satisfying the biharmonic
equation, both for plane stress and plane strain problems. This can be formulated in Polar
coordinates as

02 10 1 92 02 10 1 92
M= —F-—F =" . | —=F+——+=—]|D= 1
£ (aﬁ- +T6r+r3 692) (arz * T 6r+r2692) 0, (1.1)

where the stress components in terms of the Airy stress function arc

190 129%0

O = oy T e =
o'

Ogo = R

by 0 (100
T or\voe /)

For this problem, the stress function can be written as
@ = d(r,0,A) = e(e), (1.3)
where A is a, as yet unknown, number. Substituting equation (1.3) into (1.1) gives

eV 4+2At+1)0"+(A*-1)26 =0, (1.4)
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Figure 1.9: variation of the eigenvalues with notch angle

which is an ordinary differential equation (Euler equation). The general solution for this
differential equation with A # 0 and A # +1 is of the form

©(08) = ¢y cos(A+ 1)8 + ¢z cos(A — 1)0 + ¢3 sin(A + 1)0 4 ¢4 sin(A —1)0,
(1.5)
where ci’s (i = 1..4) are the solution constants to be determined from the boundary
conditions. Considering the relations (1.2) and prescribing the traction free boundary

conditions on the notch faces, i.e 0gg = oyg = 0 at 0 = +a, leads to the following set of
algebraic equation

(7\ + ])e+t(7\+llu (7‘ + ])e-((M-l)u (A + ])eﬁ()\-l)a (}‘ + 1)e—i(A-I)a ¢ 0
(}\ + ])e—i(M-l]u (A + ])e+((7\+lla (A + ])e—\lh-l)a (}\ + 1)e+llh—l)a (CZ) _ (0)
=10l
0

—i(A+ 1)eHO+= () 4 1)emtlx () _ 1)etid-Nx j(} _1)e~tA-Na | | ¢5
—i(A+ 1)e-t(7\+l)a iA+ ])e+l(z\+1]a —i(A — ])e—l[l\-l)a iA-1 )e+t(1\-l)a C4
(1.6)
where 1 = v/—1 is the imaginary unit of a complex number.
Obtaining the nontrivial solutions requires a singular coefficient matrix
A% (1 —cos(4x)) +cos(4axA)—1=0, 1.7

= sin(20A) X Asin(2a) =0.

It is worth noting that if A is a solution of (1.7) then —A is also a solution, however, the
only admissible solutions are those that lead to a finite strain energy (Re(A) > 0). Let A,
and &, respectively be the eigenvalues for the symmetric and the antisymmetric loadings,
which are complex numbers and have a real part > 1. The eigenvalues A and £, are real
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Figure 1.10: modes of crack deformation

formt< o < m/2andare 0.5 < Ay < 1and 0.5 < &; < 2. This indicates that the stresses
in equation (1.2) are singular at the notch tip, and the order of singularity is A — 1. Figure
1.9 shows the variation of A; and &, with respect to the notch angle y. It can be seen that

for a crack v = 0, the order of singularity for symmetric and antisymmetric loading is
—0.5.

For the case of a mathematical crack, the asymptotic stress field in the cartesian coor-
dinates is

Ki 0 .. 8,30
an = o Bl e 1.8
(i — cos > (1 sin 3 sin > ) (1.8)

K 0 0 30
2;_1" sin-i (2+cosicos 7) +0(1),

0 - )
cos— | 1+ sin—sin

S ( _9)
W 2nr 2 2 2

. 0 0 30
+42; snnicosic057+0(ﬁ],

0 .. 0. . 360
cos 5 (1 —sin 5 sin 7) + 0(+/7),

e o V(o + Oyy) plane strain
= 0 plane stress .

The solution for the anti-plane shear is particularly simple to analyze, because the dis-
placement vector is everywhere parallel to the crack edge (BROBERG 1999). The stress
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field for mode III reads
K in 9
Oz = \/i (1.9)
dn 0
,/ 053

The coefficients Ky, Ki1 and Kjp;, which represent the magnitude of the stress field
singularities, are the so called stress intensity factors (IRWIN 1957), corresponding to
different modes of crack deformation as presented in figure 1.10. The stress intensity
factors indicate that the stresses near the crack tip increase proportional to K. Moreover,
the stress intensity factors completely define the crack tip conditions. i.e. if they are
known, it is possible to solve for all components of stress, strain and displacement as
functions of v and 6. This single parameter description of crack tip conditions turns out
to be one of the most important concept in fracture mechanics.

1.3.2 asymptotic stress field of an arbitrarily shaped 3-D crack

The stress expansion near the tip of a two-dimensional straight crack, given in section
1.3.1, is well known from the famous work of WILLIAMS (1957). The expansion formula
near the tip of a curved crack in two-dimensions has been completed by TING (1985) who
studied the general case of an arbitrary shaped crack. In three-dimensional crack prob-
lems, the stress expansion near the front is known to have the same form as in the two-
dimensions. However, higher order terms of the expansion are involved in such questions
as the crack tip plasticity, the path followed by a propagating crack or stability of such
a path (RICE 1974), (LARSSON & CARLSSON 1973), (COTTERELL & RICE 1980),
(LEBLOND 1989), (AYATOLLAHI, PAVIER & SMITH 1998).

LEBLOND & TORLAI (1992) have addressed the stress expansion formula in the most
general three-dimensional arbitrary shaped crack with an arbitrary curved front, which
lips are assumed to be free from traction (figure 1.11) up to the third order term, i.e. terms

projection of the front on the tangent plane

Figure 1.11: arbitrarily shaped crack
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proportional to 7~'/2, 19 and r'/2.

05 =Ko f5(0) 7"/ + T, g§(8) + (Bw h{;(6) (1.10)
KL 15(6) + CruKam§™(6) + T Kengi(6) ) r'/? +O(r),

where 1, 0 correspond to the local polar coordinates measured from the periphery of the
crack front in the plane perpendicular to it, and the summation convention is employed
for the index o that takes the values I, II and III, denoting the three crack deformation
modes, i.e. opening, sliding and tearing, respectively. The constants Kj, Ky and Ky
are the stress intensity factors corresponding to each mode, and T, Ty; and Ty are the
constant non-singular terms in the stress expansion, the so called T-stresses. T; represents
a uniform o stress and a uniform o33 stress equal to v oy (plane strain solution), Ty
a uniform o3 stress (anti-plane solution), and Tyj; a uniform o33 stress. The coefficients
Bi, By and By have no special names , and K, = dK,/ds are the derivatives of the
stress intensity factors along the crack front at point O. f{’;’s, g{’;’s, hy’s, 1§’s, mf;""’s,
and n¥’s are universal functions of 6, and are recalled in the appendix for completeness.
Cau, Where A and p take the values 1 and 3 are the components of the curvature tensor,
and T is the curvature of the projected crack front to the tangent plane at point O. The
terms K,’xl%(e), C;\,‘Kam;"”(e) and T Kan{(8) are corrections to the stress expansion
at the front of a plane crack (figure 1.11), arising from the non-uniformity of the stress
intensity factors along the crack front, plus the curvatures of the surface and front of the
crack. The point O is an arbitrary point on the crack front, so this expansion formula is
valid in all planes perpendicular to the crack front. The stress expansion after kinking
and propagation of the crack is of the same type, provided of course that the crack front
is shifted to its new position and all coordinates and geometric parameters are changed
accordingly.

Stress intensity factors are known to be sufficient parameters to describe
the whole asymptotic stress and strain fields, but it is proved that beside
the stress intensity factors, the non-singular constant terms in the stress ex-
pansion formula play also an important role in the subjects related to frac-
ture mechanics and plasticity (LARSSON & CARLSSON 1973), (RICE 1974),
(AYATOLLAHI, PAVIER & SMITH 1998). The analytical expressions for the stress
intensity factors are given for many two-dimensional and three-dimensional crack
problems (MURAKAMI 1987), but solutions for the T-stresses are available mostly
for two-dimensional crack problems, and very limited solutions in three-dimensional
case are available so far (WANG 2004), (SCHUTTE & MOLLA-ABBASI 2007B),
(MoOLLA-ABBASI & SCHUTTE 2008).

1.3.3 material force, and J-integral concept

On subjecting an elastic crystal containing dislocations to an appropriate external loading,
some of the atoms will move and the dislocation line will move in the opposite direction
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Figure 1.12: material force at a crack tip

(MAUGIN 1993). By virtue of the fundamental duality of mechanics, there is thus a
force associated with this displacement via the space rate of change in the total energy of
the system. This is not a force in the usual physical sense, and is called a material force.
Material forces provide the basis for the study of inhomogeneities of continuous media.

Material forces acting on elastic singularities and inhomogeneities have been intro-
duced in an elegant framework by ESHELBY (1951), who remarked that this kind of
force, in a sense fictitious, is introduced to give a picturesque description of energy
changes

sr:J u.ndF:J VudA, p=Wl-uV.o, (1.11)
r A

where p is called the Eshelby’s stress tensor in honor of ESHELBY (1951) who first intro-
duced it as the Maxwell tensor of elasticity. Eshelby’s stress tensor plays a fundamental
role in the formulation of configurational or material forces, both for defects and material
inhomogeneities. [" is the contour encircling the inhomogeneity in the counter-clockwise
sense, n the normal to the contour, u the displacement vectors, W¥¢ is the strain energy
density, dI" and dA represent the length element and the area element, respectively.

Considering a two-dimensional traction free sharp crack (figure 1.12), the tip of the
crack qualifies as a defect. In the considered local Cartesian coordinates at the crack tip,
the following scalar material force is resulting

T=J (Wen, —u,.on)dl, (1.12)
r

where N, = n.e,. It can be proved that this integral is independent of the path in the xy
plane, so that the limit ' — O can be taken. The force F in the limit case

=0

I= limj (Wen, —uy.o.n) dT, (1.13)
r

is also called the Rice’s J-integral after the work of RICE (1968B). This result were
preceded by Eshelby’s idea, and other works of deep insight by CHEREPANOV (1968),
so it is also known as the Eshelby-Cherepanov-Rice’s J-integral.
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Following the reasoning of RICE (1968B), a virtual propagation da of crack in the
direction of n,, generates a material force G per unit length of the straight crack via an
infinitesimal variation in the total potential energy. As the crack cannot repair, so the
expenditure in potential energy goes into dissipation, and it can be shown

5 = —5E = Gba, (1.14)

where G = J. The quantity G (dimensionally force per unit length or energy per unit
area), the so called energy release rate, is indeed the thermodynamical dual of da.

Comparing the computed value of G or J to a characteristic parameter G, of the mate-
rial, e.g. the surface energy proposed by GRIFFITH (1921), may state if the crack growth
is possible. For further details on material inhomogeneities and the corresponding mate-
rial forces in elasticity, interested readers are referred to the work of MAUGIN (1993).

1.3.4 path independent integrals in linear elasticity

The study of path independent integrals and their application to fracture mechanics is
known by the concept of J-integral derived by ESHELBY (1951), CHEREPANOV (1967)
and RICE (1968B) as a direct consequence of the application of the theory proposed
by NOTHER (1918) for material dilatation. Other material balance laws were deduced
either directly or from Néther’s theorem for material dilatation and rotations. Ad-
ditional material balance laws in elastostatics were introduced by GUNTHER (1962),
KNOWLES & STERNBERG (1972) and FLETCHER (1976) for homogeneous bodies in
general, but BUDIANISKY & RICE (1973) were the first ones who have associated
these balance laws with invariants of defect mechanics, called L- and M- integrals,
respectively. The small strain assumption for these relations were established by
EISCHEN & HERMANN (1987) by a direct calculation. RICE (1985) have discussed
several applications of the J- and the M-integrals.

An extension of the J-integral to a path independent integral for a plate subjected to
in-plane loading was given by BROBERG (1979) (see also BROBERG (1987)). This in-
tegral, known as the P-integral, is given by

P=j(w:vdy—(ua,xcrﬁ.m)w)dr, (i=123,ad j=12), (115
r

where the notations are the same as for the J-integral, and the subscript e, indicates the
average over the plate thickness. This integral for a general non-closed path has a non-
zero value and for a closed path vanishes. It also takes on the same value for any path
encircling the dissipative region at a crack tip.

Following the same methodology, the path independent M-integral, established by
GUNTHER (1962) and later by KNOWLES & STERNBERG (1972), is given by

M= J (W“ nx—uVv.o.nx— %n.o‘.u) dr. (1.16)
r
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Even though the M-integral vanishes for a closed path encircling a traction free crack
tip, irrespective of the position of the coordinate system’s origin, the value of the M-
integral for a non-closed path depends on the position of the chosen coordinate sys-
tem. The M-integral is used for expedient determination of the energy flux into the edge
of an advancing crack, and thereby the stress intensity factors (see also the works by
ESHELBY (1974) and FREUND (1978)).

KNOWLES & STERNBERG (1972) have shown that the L-integral is given as a vector
by

L =J [(Wén—uV.o.n) xx+ (o.n) x u] dI". (1.17)
r

It can be proved that the L-integral is a path-independent integral and is independent of
the selection of the coordinate system. BUDIANISKY & RICE (1973) have interpreted J-,
L- and M-integrals as being the energy release rates when a cavity is translated, is rotated,
and is expanded uniformly. In defect mechanics the integrals 1.16 and 1.17 can be asso-
ciated with energy release rates in rigid rotation and in uniform (self similar) expansion
such as the growth of cavities.

The path independent J-integral, presented in section 1.3.3, is indeed the first compo-
nent of the J-integral vector (J1, J2, J3), parallel to the crack plane and perpendicular to the
crack front. KNOWLES & STERNBERG (1972) deduced that the Eshelby-Cherepanov-
Rice’s J-integral was actually a vector component of a more general conservation law,
and found two additional laws which were subsequently associated with the Ly~ and M-
integrals of defect mechanics by BUDIANISKY & RICE (1973). The general form of the
J-integral vector is given by

J=J wndlh, or (1.18)
r
= jr (Weny — ik oymy) d,

in the component notation. As mentioned, the path independency of J; holds true for
traction free crack faces and a closed path encircling the crack tip. The same holds for
J2 and J;, but it should be noted that the chosen path must necessarily include the crack
faces and form a closed one, otherwise the path independency of these components is lost.
For plane strain linear elastostatic crack problems, considering the linear elastic stress and
displacement fields along with the definition of the J-integral, it can be shown

1 —~2 1
h= (Kf + K34+ mKﬁ) , 1.19)

E

_—(1=+?})
= 3 Ki K,

J3=0,
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Figure 1.13: cyclic tension-compression test for low cycle fatigue of A316L stainless steel

and substituting E/(1 —v?) with E, the same relations are applicable for the plane stress
case.

For small scale and contained yielding, a path independent J-integral can be computed
outside the plastic zone. This means that the path I has to be large enough to encircle
the plastic zone and pass through the elastic region only. In gross plasticity, this is not
possible, and some more or less pronounced path dependency will always occur.

1.3.5 fatigue crack growth and fracture mechanics

When materials are subjected to a cyclic loading, above a certain level of stress or strain,
damage develops, in some cases together with cyclic plastic strain, proceeding the phases
of nucleation and propagation of microcracks. Low cycle fatigue is characterized by a low
number of loading cycles to rupture (Ng < 10,000). This is mainly due to the high stress
levels. In contrast, when a material is loaded with a lower value of stress state, the plastic
strain at the mesoscale level remains small and is often negligible. In this case, the number
of loading cycles to failure may be very large (Ng > 100,000). As a consequence, the
localization of damage is very high.

Characterization of fatigue crack propagation in engineering materials, with metals and
polymers being of primary concern, has been a topic of rather extensive investigation dur-
ing the past five decades. This has resulted in a substantial number of laws developed for
analyzing fatigue crack propagation in terms of crack length, number of loading cycles,
and variation of the stress intensity factors in a cycle. As already mentioned, stress inten-
sity factors are sufficient parameters to describe the whole lincar elastic stress and strain
fields of the crack tip region. This is still meaningful if the size of the plastic zone at
the crack tip is small, fulfilling the so called small scale yielding condition (RICE 1974).
Then the rate of fatigue crack propagation per cycle may be determined by the stress
intensity factors in the following form

22 = H(AK) = f(Knnax — Knin), (1.20)

where Kmax and Kin are the maximum and the minimum stress intensity factors in a
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Figure 1.14: cyclic tension-compression test for high cycle fatigue of A316 stainless steel

cycle.

PARIS (1962) and PARIS, GOMEZ & ANDERSON (1961) were the first ones to point
this out. Equation (1.20) is sometimes assumed to be a simple power function, known as
Paris’ law

da n

N C (aK), (1.21)
where C and 1 are supposed to be material constants. Despite popular acceptance of
equation (1.21), too much emphasis should nevertheless not be placed on its merit as a
satisfactory empirical representation of the test data. First of all, a single parameter AK is
obviously insufficient for a complete characterization of crack tip fatigue response. Sec-
ondly, magnitudes of the so called material parameters, C and 1, are noticeably influenced
by changes in the operational conditions, such as specimen geometry and size, load his-
tory and stress level, Based on the mentioned points and the experimental observations, C
and 1) cannot be viewed as material constants. Several researchers came to the realization
that fatigue crack growth rate exhibits also a dependency on other parameters, such as the
cycle ratio R = Kiin/Kmax. Several investigators have tried to establish empirical rela-
tions which attempt to incorporate the effect of the cycle ratio such that all data could be
condensed to a single curve. BROEK & SCHIJVE (1963) proposed the following law

:—; =CK2, AK, 1.22)

and a similar equation was given by ERDOGAN (1967).
WALKER (1969) proposed a more general equation

de _cx

7 = C K (AK)™. (1.23)

FORMAN, KEARNEY & ENGLE (1967) argued that da/dN should become infinite
when the crack reaches a critical size, e.g. when Kyqx reaches the fracture toughness
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of the material (Ki). With this argument, they suggested the following law
da _ c(ak) _ C (AK)"
dN (1 -R)Kie—AK (1 = R)(Kic — Kmax) °

The differences among these expressions are not large, and none of them has a gen-
eral applicability. Each one may be found reasonably satisfactory in a limited region or
for limited sets of data. The success of the application of fracture mechanics principles
to arrive at a fracture safe design depends largely upon the reliability of fatigue crack
growth predictions. In the case of constant amplitude fatigue loading, predictions can be
made on the basis of empirical data, provided that safety factors are used to account for
frequency and environmental effects. However, an improved crack growth theory that can
be quantified is certainly needed to obtain a better appreciation of the factors affecting
crack growth. In the case of variable amplitude fatigue loading, the prediction of retarda-
tion effects has to be based on a unified model of fatigue crack growth by plastic crack tip
opening due to cyclic slip, in which crack closure by residual compressive stresses can be
incorporated quantitatively.

(1.24)

The K-based empirical formulation of the fatigue crack growth does not deliver a com-
pelled agreement with test results. One of the disadvantages of the fatigue evolution laws
formulated in terms of the stress intensity factors is that the effect of the material param-
eters such as the Young’s modulus and the Poisson’s ratio are not taken into account. In
experimental observations by JOHNSON & PARIS (1968), it has been stated that if AK
is divided by the Young’s modulus, the mid range fatigue data for various metals with
diversified mechanical properties tend to congregate together within a relatively narrow
scatter band. Another weakness of this formulation is that analyzing the fatigue crack
growth using a K-based law is mathematically untraceable, since it is almost impossible
to derive analytical solutions for the stress intensity factors of a crack propagated to an
arbitrary shape.

To overcome the mentioned difficulties and to formulate the evolution equation in a
more realistic manner considering the thermodynamics of the irreversible process of crack
propagation, strain energy release rate or driving force seem to be the best choices. In this
regard, instead of using stress intensity factors as a leading parameter for fatigue charac-
terization, SUTTON (1974) and ARAD, RADON & CULVER (1974) have analyzed crack
growth data for different polymers with respect to the strain energy release rate

da _
N

With this formulation varying degrees of success were achieved provided that the test
data for different materials were analyzed separately. As in the case of K-based formu-
lation, the absence of fracture toughness Gjc seems to be the major weakness of this
formulation. This was modified by W00 & CHOW (1984) as

da _ C(AG)
dN Glc - Grnax ’

C(aG). (1.25)

(1.26)
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and later on another law was suggested by CHOW & LU (1990) in order to extend the

applicability of the equation to cover wider range of materials, in the following form
da _ C(AI"
dN J - Jmnx !

where G and J represent the energy release rate and the J-integral, respectively, and J. is
the critical value associated to the J-integral (RICE 1968B).

In this respect, another formulation was proposed by LEMAITRE & CHABOCHE (1990)
in the form

T =C(Vena—vG)", (128)

with G and G, representing the strain energy release rate and its threshold value, respec-
tively.

(1.27)

Considering the variational principle of a cracked body in equilibrium,
SCHUTTE (2001) extended equation (1.29) to take into account the effect of crack kink-
ing

= (Ve - VG, (1.29)

where G* represents the maximum driving force acting at the kinked crack tip.

Using the concept of energy release rate enables overcoming the dependency of the
formulation on specimen geometry and size, crack configuration and size, and loading
condition as well, and there is no need to calculate the stress intensity factors, since cal-
culating the energy released during crack propagation requires nevertheless no stress field
solution at the crack tip, and hence makes it applicable to any specimen with arbitrary
crack shapes and loading conditions. The most important advantage of using a G-based
evolution law is that the rate of crack propagation da/dN is given in terms of its ther-
modynamical dual G. This is best illustrated by considering the irreversible nature of the
crack propagation process, where according to the continuum thermodynamics, there is
an entropy production rate associated with this irreversibility. Thus introducing the crack
propagation rate as a new internal variable, the driving force is considered as its thermo-
dynamic conjugate force (thermodynamic dual) and the rate of the entropy production is
given by G - @, and finally, with this kind of formulation the effect of the Young’s modulus
and the Poisson’s ratio are automatically taken into account.
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Natural cracks occurring in practice in the engineering structures posses often irregu-
lar geometrical shapes, however the geometry of elliptical and circular cracks are good
approximations for the shape of a flaw in many engineering materials, hence they are im-
portant in the analysis. Indeed they represent idealization of the shape of internal flaws
that are inherent in many engineering materials.

In this chapter, analytical expressions for the elastic constant stress terms of
the asymptotic field, the so called T-stresses , for internal mixed-mode ellip-
tical cracks in infinitt homogeneous and isotropic elastic solids are addressed
(MOLLA-ABBASI & SCHUTTE 2008). Based on these results, the T-stresses for
internal mixed-mode circular cracks are resuiting and compared to the results in
(SCHUTTE & MOLLA-ABBASI 2007B). To solve the problem the mixed-mode crack
problem is divided into sub-problems using the superposition method, and each sub-
problem is then solved for the asymptotic stress field. Considering the expansion of the
local stress field at the crack front, the elastic T-stress terms are derived for each sub-
problem. The results are superimposed to give the analytical expressions of the so far
missing elastic T-stresses for mixed-mode elliptical cracks.

The effect of the T-stresses on the size and shape of the plastic zone at the crack tip is
discussed, and analytical results are compared to the ones from finite element analyses,
both for the T-stress components and the size of the plastic zone. It is shown that for an
accurate prediction of the plastic zone all singular and constant terms (T-stresses) in the
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stress expansion formulae should be considered. It is observed that negative T-stresses
increase the size of the plastic zone, while positive ones reduce it.

2.1 Introduction

The asymptotic stress expansion formula for the most general three-dimensional case of
an arbitrary shaped crack with an arbitrary curved front was presented in chapter 1 as
(LEBLOND & TORLAI 1992)

05 =Ka 15(8) 772 4+ Ty 6§(8) + (Ba hi(6) @1)
+KL15(6) + CauKam?™(6) + T'Kan§(6)) 72 + O(r),

where 1, 6 correspond to the local polar coordinates measured from the periphery of the
crack front in the plane perpendicular to it, and the summation convention is employed
for the index « that takes the values I, II and III, denoting the three crack deformation
modes, i.e. opening, sliding and tearing, respectively. The constants K;, Kj; and Ky
are the stress intensity factors corresponding to each mode, and Tj, Ty; and Tyy; are the
constant non-singular terms in the stress expansion, the so called T-stresses. Tj represents
a uniform o7y stress and a uniform o733 stress equal to v oy (plane strain solution), Ty
a uniform o013 stress (anti-plane solution), and Tj;; a uniform o733 stress. The coefficients
B1, By and Byy; have no special names , and K], = dK./ds are the derivatives of the
stress intensity factors along the crack front at point O. f’s, g5’s, hij’s, 1i’s, m s,
and nj’s are universal functions of 6, and are recalled in the appendix for completeness
Cans where A and p take the values 1 and 3 are the components of the curvature tensor,
and " is the curvature of the projected crack front to the tangent plane at point O. The
terms K; 1£(0), CanKamy (9 and I'Kang(0) are corrections to the stress expansion
at the front of a plane crack (figure 1.11), arising from the non-uniformity of the stress
intensity factors along the crack front, plus the curvatures of the surface and front of the
crack. The point O is an arbitrary point on the crack front, so this expansion formula is
valid in all planes perpendicular to the crack front. The stress expansion after kinking
and propagation of the crack is of the same type, provided of course that the crack front
is shifted to its new position and all coordinates and geometric parameters are changed
accordingly.

The T-stresses can be determined using the first two terms of the stress expansion,
proportional to t='/2 and 7 = 1. All remaining terms will have no contribution to the
T-stresses, since they vanish on the crack front (r — 0). The T-stresses are directly pro-
portional to the loads applied to the cracked structure, crack length and overall geometry,
and are depending on the material parameter v, the Poisson’s ratio of the material. For
two-dimensional crack problems, they depend also on the thickness of the cracked solid.
In the context of three-dimensional problems, the T-stresses depend on the crack front

shape as well.
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Sign of the first component of the T-stresses (Ty) is known to influence the stability of
planar crack path under mode-I loading condition. This component is the well known
T-stress (T) which has been considered by many authors to study its effect on the crack
path stability, and to characterize the near tip elastic-plastic ficlds of two-dimensional
and three-dimensional crack problems. COTTERELL & RICE (1980) have studied the
stability of an initially straight crack under tensile loading (mode-I). They have shown
that introducing a small shear perturbation, when T; is positive the perturbation would
be amplified and the departure from straight crack growth increases, while a negative T;
tends to stabilize the straight crack growth. LEBLOND & FRELAT (2000) have extended
the Cotterell-Rice stability analysis to two-dimensional straight cracks under compressive
loading. They have found that regardless of the sign of Ky, in the absence of Ty, cracks
tend to further deviate from the initial direction if T; is positive, and to come back to it
if Ty is negative. For vanishing T; and negative Ty (necessary for the crack to be initially
closed), cracks tend to leave the initial direction. LEBLOND (1993) has shown that the T-
stress stability criterion is also valid for three-dimensional internal crack problems under
mode-I conditions.

SMITH, AYATOLLAHI & PAVIER (2001) have considered the effect of T; in addi-
tion to K; and Kjj in their study to predict the fracture initiation of two-dimensional
mixed-mode cracks. They have shown that for linear elastic materials, a nega-
tive T; increases the apparent fracture toughness while a positive one decreases it.
AYATOLLAHI, PAVIER & SMITH (1998) studied the influence of T; on the fracture
toughness of pure mode-II crack problems. AYATOLLAHI, PAVIER & SMITH (2002)
have analyzed the growth of mode-I cracks subjected to large T, considering the max-
imum tensile stress criterion for linear elastic and moderate scale yielding. They have
found that for both cases, beyond a critical value of T, cracks tend to deviate from
the initial direction, for which a significant drop in the fracture toughness is pre-
dicted. Their results are in good agreement with the experimental findings. Recently,
TIAN & CuI (2006) have studied the effect of T on fracture toughness of power-law
hardening elastic-plastic materials, by deriving a critical value of J-integral in terms of
Ti.

The first term of the elastic T-stresses has also been proved to be an impor-
tant parameter to characterize the near tip elastic-plastic fields of two-dimensional
and three-dimensional crack problems (SCHUTTE & MOLLA-ABBASI 2007C).
LARSSON & CARLSSON (1973) and RICE (1974) have shown that for two-dimensional
problems the sign and magnitude of T; substantially change the size and shape of the crack
tip plastic zone at finite load levels. BILBY, CARDEW, GOLDTHORPE & HOWARD (1986)
have shown that the Tj can strongly affect the magnitude of the hydrostatic triaxiality in
the near crack tip elastic-plastic fields. The important feature resulting from these works
is that the sign and magnitude of T; can strongly alter the level of the crack tip stress
triaxiality, hence influence the crack tip constraint. A positive T; strengthens the level
of the crack tip stress triaxiality and leads to a high crack tip constraint, while a neg-
ative one reduces the crack tip stress triaxiality and leads to the loss of the crack tip
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constraint. WANG (1993), BETEGON & HANCOCK (1991), DU & HANCOCK (1991),
and O’DowD & SHIH (1991) have studied the elastic-plastic crack tip fields for differ-
ent two-dimensional and three-dimensional crack problems using T; in addition to the
J-integral.

To be able to include the effect of the T-stresses in fracture mechanics studies, the
analytical expressions for the T-stress components are to be addressed. The analytical
expressions for the stress intensity factors are given for many two-dimensional and three-
dimensional crack problems, but solutions for the T-stresses are available mostly for two-
dimensional crack problems, and very limited solutions in three-dimensional case are
available (MURAKAMI 1987).

In this chapter the complete set of the elastic T-stress terms for internal elliptical cracks
under general mixed-mode loading are addressed. Many of the internal flaws in materials
possess irregular geometrical shapes and many deviate substantially from being circular
in profile. The elliptical boundary may be used as a good approximation to the shape of an
actual internal crack. SCHUTTE & MOLLA-ABBASI (2007B), recently, have addressed
the complete set of the T-stress terms for mixed-mode internal circular cracks. Using
the potential method and transformation technique, asymptotic solution for the stress
components are derived (see also BENTHEM & KOITER (1973), KASSIR & SIH (1966),
WANG (2004)), from which the T-stress terms are resulting.

To derive the elastic T-stresses of internal mixed-mode elliptical cracks, the problem
is first decomposed into sub-problems, in which the internal crack is subjected to either
pure shear loading or pure tensile loading. Solving for the asymptotic stress field for each
individual sup-problem, and considering the stress expansion in the most general three-
dimensional case (LEBLOND 1993), and with the help of the superposition technique, the
complete set of the elastic T-stress terms for a mixed-mode internal elliptical crack in an
infinite isotropic elastic solid are derived.

The impact of the T-stresses on the size and shape of the plastic zone at the crack tip
is studied using the von Mises yield criterion. It is shown that the results are different

X

AZ

Figure 2.1: mixed-mode internal elliptical crack
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Figure 2.2: sub-problems of the mixed-mode internal elliptical crack

from the ones either neglecting all T-stress components or just considering the effect of T
(which has been considered by most authors). Analytical results for the T-stress terms and
their effect on the size and shape of the plastic zone are compared to the ones obtained
from the finite element analysis for different mode-mixities.

2.2 Mixed-mode internal elliptical crack

Consider an intemal elliptical crack in an infinite isotropic elastic solid under remote
uniaxial traction, loading the crack in a mixed-mode manner (figure 2.1). Using the su-
perposition technique, this problem can be divided into six sub-problems (figure 2.2),
where the internal elliptical crack is located in the center of the xy-plane of an infinite
unit cell subjected to either simple tension or simple shear, i.e. Pxx, Pyys Pzz and Pxy, Pyz,
Pxz, respectively (the py;’s are the projections of the remote loading into the rotated local
coordinates at the center of the crack).

For this set of sub-problems, asymptotic expressions of the local stress field can be
derived analytically. The formulation of this boundary-value problem can be expressed
most conveniently using the cartesian coordinates (x, y, z) and the polar coordinates
(r, 9, t) in conjugation with the symmetrical form of the ellipsoidal coordinates (£, n,
). The connection between these coordinate systems are known (KASSIR & SIH 1966),
(WHITTAKER & WATSON 1962). The relation between different coordinate systems is
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addressed in section 2.2.1.

Figure 2.3 shows a schematic of the elliptical crack geometry, with the crack centered
at the origin of the cartesian coordinate system. The semi-major and semi-minor axes
of the ellipse are denoted by « and B, respectively and points on the crack surfaces are
described by the relations

2 2

LA

?-I-FS], Z=:i:0, (2.2)
while points on the crack boundary are defined by the parametric relations

X2 2

?+%=l, z=240 and @3)

x=0cos@, Yy=psing.

In the cartesian frame of reference, the components of the displacement vector are
designated by (u,, wy, 1;) and those of the stress tensor by (0xx, Oyy, 02z, Oxy, Oyz, Oxz).
The local stress field can be found by introducing a local triply orthogonal system of
coordinates (n, t, z) with its origin at an arbitrary point along the crack front (figure 2.3).
The system (n, t, z) forms a trihedral in such a way that the axes n, t, z are always directed
along the principle normal, tangent and bi-normal of the crack front. The projection of
the displacement vector and the stress tensor along this local axes are designated by (u,,
W4, Uz) and (Onn, O, Ozz, Ont, Otz, Onz), respectively.

Considering the first two terms of equation (2.1), i.e. terms proportional to 7~'/2 and
19, for the points on the plane of the crack and outside the crack periphery (6 = 0 and
1 = 0) the stress field components in the local coordinates (n, t, z) are

Kl KI K[

Onn = +Th, ou=2v +vTi+ T, 0p=——, 24
wE oy T =Nt Vit T, oa =, 24)
K Kn
U'nt=TIl’ Otz = 27‘[1" Onz = 27‘[1"

In the following sections, for each individual sub-problem the asymptotic stress field
will be derived from which with the help of equations (2.4) the T-stress terms will be
extracted.

2.2.1 coordinate systems
Ellipsoidal-Cartesian coordinate systems

Consider an ellipse located in the center of the xy-plane with semi-major and semi-
minor axes o« and {3, respectively. The cartesian axes (x, Yy, z) are determined
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Figure 2.3: coordinate systems

in terms of the ellipsoidal axes (£, 1, ) and vice versa by using the relations
(WHITTAKER & WATSON 1962)

o (o? — B2)x% = (o2 + E)(o? +m) (o + ), (2.5)
BA(B? — o®)y? = (B> + &) (B2 +n) (B2 + T),
o2 B =Eng,

where —a? < { < —p% <1 <0 < & < oo. In the plane of the crack (z = 0), §{, =0
corresponds to the points inside the ellipse, and n = 0 to the points outside the ellipse.
The points on the periphery of the ellipse are identified by setting £ =n = 0.

Ellipsoidal-Cylindrical coordinate systems

The derivation of the stress state around the border of an elliptical crack depends upon
a knowledge of the limiting forms of the ellipsoidal coordinates (£, 1, {) and the cylin-
drical coordinates (+, 8). It is observed from figure 2.3 that the coordinates of any point
P(x, v, z) can be expressed by

X =0 cos@ + T cosB cosdy, (2.6)
y=Ppsing+1cosO sindy,,
z=rsinb,

Figure 2.4: three coordinate systems in the plane of the crack
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where 9, is the angle between the outward unit normal vector to the crack border and the
x-axis, figure 2.4. The angle 9, is related to the parametric equations of an ellipse by

o sin @ = (a? sin? @ + B2 cos? (p)]/z sindn, @7
B cos @ = (o sin? ¢ + B cos? <p)]/Z cos By, .

Upon adding, equations (2.5) give

X4+yr+22 =E+n+(+o? + B2, (2.8)
and from (2.6) it follows that
E+1+ ¢ =—(« sin’ ¢ + % cos? ) 2.9
2ap cosO
r+12.

(o2 sin® @ + B2 cos? (p)]/z

On the plane z = 0 (plane of the ellipse) for the points on the periphery of the ellipse,
i.e. = 0and § =n = 0 (figure 2.4), without loss of generality equation (2.9) implies

= — (of sin® ¢ + B2 cos’ @) , (2.10)
and from (2.9) and (2.10)
E4n= 2P cos® T4 12 @.11)

(o2 sin” @ + B2 cos? (p)'/ 2

Combining equations (2.5)3, (2.6)3 and (2.10), a second relation between £ and 1 is
found
— (P sinB)?

&n= (o2 sin® @ + B2 cos? @) v @12)

Solving equations (2.11) and (2.12) for £ and n, the following expressions are result-
ing

2 28
o B cos“ = e
- 2 Tz T +cost 212+ 0(), (2.13)
(a2 sin” @ + B2 cos? @) 2
—2ap sinzg 0
n= 2 T+ sin’ 5 2 4 O(r?),

(o2 sin? @ + B2 cos? @)

where higher order terms have been neglected. Note should be taken that these expres-
sions are asymptotic and are valid in the close vicinity of the crack front.
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2.2.2 sub-problems land Il

Consider an internal elliptical crack in the center of the xy-plane of an infinite unit cell
under remote uniaxial traction pxx or Py, parallel to the plane of the crack (figure 2.2:
sub-problems I and II, respectively).

Evaluating the local stress field along the crack front, the elastic T-stresses are derived
for each sub-problem. The stress field due to the uniaxial traction pxx O Py, is calculated
with the help of the local orthogonal coordinates located at a point (« cos @, B sin @, 0)
on the crack front.

sub-problem |

For Sub-problem I, the non-zero local stress components along the crack front are

B2 cos? @
Onn = , 2.14
nn = P 7 sin? @+ B2 cos? @ @14
e = o? sin® @
P g in? @+p2coslp’
s = — o f sing cos @
™ TP in? @+pB2cos?p’
It is easy to show that K; = Ky = Ky = 0, and from (2.4) the T-stresses are
2 nocl
Ti=p B cos” ¢ 2.15)

™ o2 sin® @ + B2 cos? @’
o sin@ cos @
o? sin @ + B2 cos? @’

T = —Pxx

T =7 o sin® @ —v B2 cos? @
o2 sin’ @ + B2 cos? @
sub-problem il

In an analogous way, the T-stresses for sub-problem II are derived from the local stress
field

o? sin® @
Onn = , 2.16
nn = Puy o? sin’ @ + B2 cos? @ 2.16)
2 002
cos
Ott = Pyy P P

«? sin® @ + B2 cosl @’
« 3 sin @ cos @
o? sin” @ + B2 cos2 @’

Ont = Pyy



38 2 T-stress Solutions for Internal Elliptical and Circular Cracks

y Pzz ?1 Pzz

....

R RN bR

Figure 2.5: internal mode-I elliptical crack

.

and so
2 in2
o? sin® @
Ti= 2.17
1= Pw 2 sin? @ + B2 cos? @’ @17
Tu=p o f3 sin @ cos @
W o2 sinZ o + B2 cos? @’
2 el 2 2
cos? @ —v o? sin
Tm=pygl3 e L

o2 sin’ @ + B2 cos? @
2.2.3 sub-problem lll

Consider an internal elliptical crack in the center of the xy-plane of an infinite unit cell
under remote uniaxial traction p,, normal to the plane of the crack, loading the crack in
pure mode-I (figure 2.2: sub-problem III). This crack problem can be decomposed into
two sub-problems; an un-cracked unit cell under remote tension and an internal elliptical
crack whose faces are subjected to equal and opposite normal traction fields, figure 2.5.

For the first sub-problem all stress components vanish, except 6,, = p,,, which has no
contribution to the T-stresses.

For the second sub-problem, the resulting stress field is symmetric with respect to the
plane of the crack and is associated with mode-I stress intensity factor. Due to symmetry,
this problem (—oo < z < 00) can be reduced to that of a half space (z > 0) with the
following conditions on the plane of the crack (z = 0)

Oxz =0y, =0, at |x| < oo, Jyl < oo, (2.18)
O2z = P2z, at £=0,
u, =0, at n=0.

The solution for the singular stress terms of this problem are presented in
(KASSIR & S1H 1975). Here, a similar method is used to derive the expansion of
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the components of the stress field, including both the singular stress terms and the T-
stresses.

For a three-dimensional problem in elasticity, the displacement field is governed by the
equilibrium equation which in vector form appears as

Vu+

—5= Ve =0, (2.19)

where the displacement vector is u =(u,, Wy, 1), and V is the del-operator and V2 the
Laplace operator

0% 92 @

2
Viesataat ez @20
and e is the dilatation
_ 0w | Ouy | Ou,
e=—-—+ 3y +5, (2:21)

A suitable displacement representation satisfying the field equation (2.19) and the
symmetry requirement (2.18) depends on the knowledge of a single potential function
L(x, v, z) (KASSIR & S1H 1975)

IV 2L
Ux—(]—Z'V)a'l-Z@, (2.22)
ol 0L
uy = (1 —Z'V)E'l'zmr
oL 924
u; ——2(1 —'V)-a—;'l‘Z*ng,
and the expressions for the corresponding stresses are
Oxx _ 0°L %L 3L
o +2v 3y +z 930z (2.23)
Oy _ 020 82L 3L

2n = T a2 T eyt
0. 0% L

FITR R v
o 2L 3L

Xy —
P (1—2v) ox0y tz oxdydz’
Ouz_, 0L
2u oyoz?’
Oxz 9L

2 Zoxezt
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where v and p are the Poisson’s ratio and the shear modulus of the elastic material, re-
spectively, and £ is an ellipsoidal harmonic function. An appropriate solution to this
problem has been given by GREEN & SNEDDON (1950)

AL [P % y? Z ds
L’,—TL (—“2+s+——ﬁ2+s+; 1) weol 2.24)
where
Q(s) = s(a* +s)(B* +s), (2.25)

and the constant A, is evaluated from the boundary conditions (2.18). Application of the
condition (2.18); into equations (2.23)3 and (2.24) results in

P2z 0 B
Ag=——2—"_, 2.26
¢ = "4uE) @26)
The quantity E(k;) is the complete elliptical integral of the second kind, and the fol-
lowing notations are considered hereafter

2 2 2
B=1-F a_B e

ol 2_0(2’ 3 = BZ)
K+ki=1, gki=1.

2.27)

The equations (2.23)-(2.26) give the solution of the stress field. Performing the neces-
sary integration with respect to the ellipsoidal axes (see the appendix), and considering
the limit forms of the ellipsoidal axes, relations (2.10) and (2.13), the expansion of the
stress field is resulting. On the plane z = 0 and outside the crack surface (corresponding
to 8 = 0), the non-zero stress components would be

O _ V2 (2vo? sinf @ + B? cos? @) 1
2uAL Vo3 g3 (a2 sin? @ + B2 cos? (p)S/4 Vr
2((1 —2v) B*K(k1) + (2v o2 — B2)E(Ks))
o B2 — B2)

(2.28)

+ O(V/7),

o __ V2(aFsif@+2vplcos’p) 1

2uhg Vo3 B3 (a2 sin? @ + B2 cos? (p)s/4
((ZV — 1) B*K(k1) + (o = 2v BY)E(k1))

2 P2 —BY) +0(v7),
0 V2 (o sin? @+ p? cos? <p)‘/4 1 2E(k)
Ty v NCTE %-!- B2 + O(v/7),
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Oxy (2v —1) sin 2¢
= + O(vT).
2puAL /7B (o sin @ + B2 cos? @) f

This, however, does not offer a physical interpretation. For a more intuitive knowledge
of the crack front stress field, it is necessary to give the stress field in the local coordinate
system (n, t, z). Upon transformation of the coordinate axes from (x, y, z) to (n, t, 2),
figure 2.3, the stress components Oyx, Oyy, Ozz, Oxy, Oyz, Ox. are combined to give

1 1 .
Onn =35 (Oxx + Oyy) + 3 {(Oxx — Oyy) €08 2@ + Oy, sin 2@, (2.29)

1 1 .
ou =73 (Oxx + Oyy) — 3 {Oxx — Oyy) COS 20 — Oy, sin 2¢,
Ozz = 02z,
1 .
Ont =73 (Oyy — Oxx) sin 2 + Oy cos 29,
Onz == Oy Sin @ + Oy, CO5 @,

Otz = Oyz COS (p — Oy Sin @.

Combination of equations (2.28)) and (2.29) result in the non-zero asymptotic stress
components for a mode-I elliptical crack

cr,m B v/ sin® @ + B2 cos? @ 1
— 2.3
\[ V2E(k1) VT @30)

+Mi(@) {(Z‘V K+ -2v) ES:‘;) sin? @

+ (—2v+k§— (1—-2v)k3 Egk:;) cos tp} +0O(v7),

u _\/E Vo sin’ @ + B2 cos? @ 2v
V2E(ki) VT

+M1(<P){(1—2vk§+(1 —2v )Ezt‘i)sm @

+ (—] +2vkE— (1 —2v)K Egkii) cos (p} + O(v/7),

Oz \/7\/&Zsm @+ p2costo 1 C140(),
Pzz x \/—E (k1) \/-

? —(1 = 27) My () ( kz;"“ + ke 'ES:;) sin2¢ + O(v/7).

2z
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Considering equations (2.4), the T-stresses of an elliptical crack subjected to surface
normal traction field are resulting

T i (am _K ) @31)

2nr
=M (o) {(Zv K+ (1-2v) '282‘;)

+(-2‘v+k§ (1=2v) %Egj‘;)cos <p} ,

E-=Lhm Ont

P2z Pzz 00
1 k2 + k3 Kk .
(1 zwmltw( 12 4+ g ) sinze,

Tw _ 1y (U _ K T)
Pzz  Pzz v—0 " vV2nr !
Mi(o) 212 12 Klka)
=— vk —Kk3) + (2vE+v = 1)k =—— k) + Mz(@)cos2p
where the following simplifications have been considered
uz ‘32

M = , 2.32

o) (o2 — B2) (o2 sin’ @ + P2 cos? ) @32)

2 2 2y K(k1)

Ma(@) =v (K +Kk3)+2(2v*—1) —(2+2 +v—l)(1+k2)E(k)

The well known mode-I stress intensity factor of internal elliptical cracks can also be
resulting from (2.30)3

3/ v2 cinl 2 2
= lim (\/chru) =pu\/-g v Vo s"é("z;' B cos'o (2.33)

The T-stresses of mode-I internal circular cracks (SCHUTTE & MOLLA-ABBASI 2007B)
may also be derived from (2.31). In the limit case where B — «, the T-stresses of the
internal circular cracks are resulting

) 1
(M)eircutar = lim Ty = —= (1 4+ 2v) pz, (2.34)
o 2
(Ti)etrcutar = lim Ty =
o

(T eireutar = lim Ty = (1 =) Tp.
B

which coincide with the results presented by SCHUTTE & MOLLA-ABBASI (2007B).
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Figure 2.6: internal elliptical crack under remote shear tractions

2.2.4 sub-problems IV and V

Sub-problems IV and V present internal elliptical cracks in the center of the xy-plane of
an infinite unit cells under simple shear loading p«. or py, (figures 2.2: sub-problem IV
and V). These two problems can be combined to one in which the unit cell embedding
an internal elliptical crack in the center of the xy-plane is under simple shear q parallel
to the plane of the crack and having a rotation angle w with respect to the semi-major
axis of the ellipse corresponding to the x-axis. In an analogous manner to the previous
section, this combined problem can be decomposed into an un-cracked unit cell under
simple shear and an internal elliptical crack in the xy-plane, whose faces are subjected to
equal and opposite uniform shear loading q, and directed at an angle w to the semi-major
axis of the ellipse.figure 2.6.

The local stress field at a point (¢ cos @, B sin ¢, 0) on the boarder of the ellipse
due to the first problem is derived using the local orthogonal basis. The non-zero stress
components are

Onz =q (o sinw M3(@) + p cos w Ma(o)) , (2.35)
oy =q (—a sinw Mz(@) + B cos w Ms(@)) ,

where the following simplification have been considered
sin @

o sin? @ + B2 cos? @’
cos @

o? sin’ @ + B2 cos? @

Ms(e) =

Ma(o)

(2.36)

These stress components have no contribution to the T-stresses.

For the second problem, the resulting stress field is skew-symmetric with respect to
the plane of the crack and is associated with mode-II and mode-III stress intensity fac-
tors. The problem can be reduced to that of the half space with the following boundary
conditions on the plane of the crack
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a) the entire plane z = 0 is free of normal stresses
=0, for z=0, 2.37)

b) and for the points on the crack surface (inside the ellipse) and exterior to the ellipse
one can write

—_ 2 2
{“"‘_q"f’s‘” for (" BZ<1or£, o) =0, (238)

Oy = q sinw

- 2 2
e =0 for (x 2>lorn 0) ,z=0,
u, =0 B

The solution for the singular stress terms of this problem has been given by
KASSIR & SIH (1975). Here, a similar method is used to derive the complete expan-
sion of the components of the stress field. An appropriate solution to this problem can be
obtained by using a displacement field representation in terms of two harmonic functions
F(x, v, z) and H(x, y, Z)

(]

=-2(1 —'v) ;{ +z aa’°g (239)

u, =—2(1 —'v)¥+z$,
35
u,=—(1 —ZV)9+z$,
and the expressions for the corresponding stress components are
Oxx _ 0%F 03 0%F
Z_P-_ 2(] ]axaz 2v az'l'ZW, (2.40)
Oy 501 0’F 5,08 %F
T 2(1 'v)ayaz 2v + vt
o  0°G
—_— = — ,
2u 0z2
Oxy o0F  oH 92§
=05 (ay + ax) t ooy
Oxe asz 8g , 9§
it Uil ot R TS Tk
Oyz 0§ 329
Zu__“_‘v) "a tz dyoz’
where the function §(x, y, z) designates the abbreviation
0F oK

G=_—" = (2.41)

ox dy
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Similar to the case of the elliptical crack subjected to simple tension, the unknown
functions F and H can be evaluated more expedient by the application of the ellip-
soidal coordinates. An appropriate solution to the present problem has been given by
GREEN & SNEDDON (1950)

FL_1[As) () ¥ v 2 ds
{%}‘E{Aoc”a <a2+s+52+s+‘s‘“) /a6 @4

To evaluate the T-stresses in the asymptotic stress field, we are interested in the stress
components outside the ellipse (n = 0) and on the plane of the crack (z = 0). Considering
equations (2.40)-(2.42) and performing the necessary integration (see the appendix), the
non-zero stress components in the plane of the crack, corresponding to the points both
inside and outside the ellipse are

Oxx _ 4Ag n&(B%+ E)(o? +n)(o? +0)
2p oZB(E—M)(E-Q) o — B2 (243)
+ 4v Ay ng(e? 4+ E)(B2+n)(B*+ )
aB?(E—n)(&—T) B2 — o? ’
Gy _ 4VAs \/&mwa(mnxma
2p o2B(E—m)(E-0) — B2
4 Ag né(o? +£)(Bz+n)(ﬁz+c)
T XEE-ME-0O B2 — o

Gy __ 2(1=v)As \/nC(a2+£)(l32+n)(BZ+c)
2p af(E—-m)E-10) Bz —

2(1—v) Ay \/nC(l32+£)(a2+n)(oc2+C)
B E-—M)E—0) —p? ’

+

Ou _2As(1-v) [ nCyVQ(E)  poon ) oVBtHE
Zn ap?l  \«E(E-ME-0O Y VR +E)
2vAy  /—E(a?+n)(a? + O)(B% +n)(B*+ ()

" ap (o2 —p2) (E—mE-10)

2vAg E(B2+E) (o +n)(a? + ()
F(blky) — E(d|k1) —
M1 e BZ)((“" 1)~ Eldlla) oc\/_Q(E)(E—n)(E—C))
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Oz ZA:K(]—'V)( MV - a\/32+‘a)

2p o B2 aE(E—n)(E—10) VE(x?+E)
__ 2vAy  /=E(e? +m)(e? + Q)(B* +n)(B? + 0)
o (a? — p2) (E—n)(E-10)
2vAx [a B E (o +E)(B*+m)(B*+0)
B -9 (EE("""‘)"EF“""‘"+ 3v/A0 E—(E-0)
a(o?—B2) § )
B VQ@®)’

where the quantity —(B2 + ) is positive definite.

The constants Ay and Ag are derived by applying the boundary conditions (2.38), to
equations (2.43)s5. Performing the necessary integrations as addressed in the appendix
the results would be

_ ap?id
7T 0 =V E(k1) + v KK (K1)

A g cosw, (2.44)

_ « B2k}
(G +vK2) E(k) —vKEK (k)

Ay qsinw.

The quantities E(k;) and K(k;) are the complete elliptical integrals of the second and
first kind, respectively (BYRD & FRIEDMAN 1971). The solution to the problem is done,
however, there remains to verify the conditions (2.37) and (2.38);. Since

aF
0z Ag‘} ® ds

= —_— 2.45
2%t Z{A:u L /5Q(s) @43)
0z

for z = 0, the displacement components u, and u,, (equations (2.39), ;) and the stress
component 0,, (equation (2.40)3) would vanish, and the conditions (2.37) and (2.38);
are all satisfied. Performing the necessary integration, the stress field of the points of an
infinite elastic solid containing an elliptical crack under simple shear is obtained from
equations (2.40).

To find the corresponding T-stresses acting at the crack front, the local stress com-
ponents at the crack front (in the plane of the crack z = 0 and outside of the ellipse
1 = 0) are to be derived. Using equations (2.29), and the application of equations (2.10)
and (2.13) result in the expansion of the local stress components at the crack front. The
non-zero asymptotic stress components are

—(AgpB cosp +Agasing) 1

- V203 B3/ o2 sin® ¢ + B2 cosz(pﬁ-'-o(\/ﬂ’ (2.46)
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_ (v=1)(Agasing — Ay p cosp) 1
V23 B3/ a? sin? @ + B2 cos? @ VT

where Az and Ay are given by (2.44). Superimposing these results to the ones of the
uncracked solid, the solution for stress components in the plane of the crack and outside
the ellipse are resulting.

Considering equations (2.1) it is observed that for this crack problem there is no T-
stresses along the crack front, since the corresponding stress terms are zero

+ O(v71),

tz

=0 2nr

Tu = lim Ont =0,
=0

2v K[

T =}m (Gu— \/M—T—’VTI) =0.

From (2.46), the well known mode-II and mode-III stress intensity factors of internal
elliptical cracks are resulting

Ky = lim (\/anau) (2.48)
T—0
_ =7 (AgP cos @ + Ay sin @)
VBBV sinl @ + B2 cos? @ |

Km = lim (VZ‘TK‘I‘O};)
r—0
_(v=1)ym (Agxsing@ — Ag B cos @)
VBB Yol sid g+ Bcoste

2.2.5 sub-problem Vi

This sub-problem presents an internal elliptical crack in the center of the xy-plane of an
infinite unit cell under remote shear loadings py, (figure 2.2: sub-problem VI). For this
problem, the local stress field along the crack front is

Onn _ o« P sin2g 2.49)
Pxy ol sin @+ B2cost’ ’
O _ —o P sin2¢@

Py o sin’@+ P2cosie’

Ot _ —a? sin? @ + B2 cos? @

Pxy ol sinf @+ B2costo
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It is easy to show that Kj = Kj; = Ky = 0 and considering (2.4), the T-stresses are

T .
L ‘:B sin2e (2.50)
Py o2 sin“ @ + B2 cos? @

Tu _ —o? sin’ @ + B2 cos’ @

P o2 sin @+ P2 cosie

Ty —(1+v)xp sin2

T _ 1 gy = SUE VB sinZe

Pxy o? sin® @ + B2 cos? @

2.2.6 complete set of T-stresses for a mixed-mode elliptical crack

The results of the previous sections can be superimposed to give the complete set of the
T-stresses for internal elliptical cracks under general mixed-mode loading condition

B2 cos? o? sin® @
+ ! 2.51
o? sin® @ + B2 cos? @ Puv o2 in? @+ B2 cos? @ @31

Pz M (@) {(Z‘V K+ (1-2v) IES:;) sin® o+

(—2v+k§— (1-2v)K3 ]é((::;) cosz(p} +

Tl =Pxx

p «f sin2¢
Y o2 sin @ + B2 cos? @’

o3 sin@ cos @ «f sin@ cos @
o? sin® @ + B2 cost@ Y a2 sin® @ + P2 cosl @
k2 +k3 K(k:)

TII =—Pxx

1~2 k. in2
Pz ( v)Mi(o) ( 7 + ka2 E[kl)) sin 2@+
—a? sin @ + B2 cos? @
P "7 in? @+ p2costep
o sin? @ —v 2 cos? 2 cos? @ —v o2 sin?
Tt =P p—vpB P B P 9,

. N T
o2 sin @ + B2 cos? W &2 sin? @ + B2 cos? @

Pas M_lz(“’) {v(kg — k) + (v +v = 1)K %’i‘; + Ma(o) cosltp} -
1
(1+v) P sin2¢
¥ o2 sin* @ 4 B2 cos? @

where the functions M, (@) and M;(@) are given in equation (2.32).

However, p;;’s for each individual problem have to be addressed separately. Consider
an internal elliptical crack in the center of the global xy-plane of an infinite unit cell under
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remote tensile loading (P*°) parallel to the global z-axis. The crack is initially in the plane
z = 0, i.e. perpendicular to the direction of tension (mode-I). To have a general mode-
mixity, the crack is first rotated by an angle vy, about the global y-axis and then rotated 'y
about the rotated x-axis. The components of the projected load in the rotated local axes
(xyz) can be derived with the help of the local orthonormal basis

Pxx Pxy Pxz cos?y,sin’y, —SinYxCosYxsiny, cos?y,sinyycosy,
Pyx Py Pyz | = P® sin®y, siny,cosy.cosy, | . (2.52)

Pzx Pyz Pz sym. cos?y cos?y,

2.3 Mixed-mode internal circular crack

Consider an internal circular crack in an infinite isotropic elastic solid under remote uni-
axial traction, loading the crack in a mixed-mode manner. Using the superposition tech-
nique, this problem can be divided into six sub-problems (figure 2.2), where the internal
circular crack is located in the center of the xy-plane of an infinite unit cell subjected to
either simple tension or simple shear, i.e. Pxx, Pyy,> Pzz and Pxy, Pyz, Pxz, respectively
(the py;’s are the projections of the remote loading into the rotated local coordinates at the
center of the crack).

The complete set of T-stress terms for mixed-mode internal circular cracks in an infinite
isotropic elastic solid have been addressed by SCHUTTE & MOLLA-ABBASI (2007B).
Using the potential method and transformation technique, asymptotic solution for the
stress components are derived (BENTHEM & KOITER 1973), (KASSIR & SIH 1966),
(WANG 2004), from which the T-stress terms are resulting. T-stress terms for internal
circular cracks, however, can be calculated from the ones for an elliptical crack in the
limit case, where & — B. In this regard, the results of the previous sections can be sum-
marized to give the complete set of the T-stress terms of internal circular cracks under the
general mixed mode loading

Ti = Pxx COS% @ —% (14 2v) oz + Pyy Sin? @ — Py sin2¢, (2.53)
Tit = (Pxx — Pyy) Sin @ cos @ + Pxy €OS 20,
Tt = Pax (sin? @ —v cosch)—% (1—=v) (1 +2v) p

+ Pyy (cos? @ —v sin® @) + (1 + V) pyy sin2¢.

For each individual problem, py;’s are derived in an analogous manner as for an ellipti-
cal crack, given in equation (2.52).
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2.4 Impact of T-stresses

2.4.1 numerical evaluation of the T-stresses

In this section, distribution of the T-stresses along the crack front from the analytical
solution and the effect of their magnitude and sign on the size and shape of the plastic
zone at the crack tip are compared to the ones based on the finite element analysis, for
different mode-mixities. Finite element simulations have been performed to determine
the crack tip parameters (K,’s and T,’s) and the size of the plastic zone at the crack tip,
based on the von Mises yield criterion (VON MISES 1913). To simulate the so called non-
interacting crack, the size of the unit cell in the finite element model should be big enough
with respect to the characteristic crack size, so that the crack tip fields are not influenced
by the outer boundaries. To satisfy this condition, the size of the unit cell is taken here
as 75 o, where o is respectively the radius of the circular crack and the semi-major axis
of the elliptical crack, and the matrix of the unit cell is considered to be homogeneous,
isotropic with a linear elastic response.

Hexahedral elements with quadratic displacement behavior are used to mesh the crack
front region, where higher accuracy is needed. For this reason, crack front is embedded
in a torus of radius Rion,s = /20, figure 2.7. Inside this torus relatively fine elements are
generated. The size of the elements in the radial direction is then Rigrus/n = /(201), 10
being the number of elements in the radial direction. The rest of the model is meshed with
quadratic tetrahedral elements which become coarser towards the outer boundaries of the
unit cell. To reach errors of below 3 % for both T,’s and K’s, the number of elements in
the radial direction inside the torus n is chosen as 12, for which in average the maximum
number of generated nodes is approximately 200,000.

To calculate the T-stresses along the crack front, the direct method is used which is
based on the asymptotic stress field. The method is based on rearranging the equation
(2.4) to calculate the local crack tip parameters (T,’s and K, ’s) at a fixed 8. For example,
for © = 0° the T-stresses result from rearranging (2.4)

Ti = Oon — ;’ , Ki = VInro,,, (2.54)
T
T = on, Kii = V2nr oy,
T = Z‘VK[ T _ \/2_
m—Uu—\/T—r—V I K = v2nroy,.

Ka’s and Tg’s for the points along the crack front are evaluated by extrapolating the
resulting nodal stresses back to the crack front in the planes perpendicular to the crack
front for each point. This method is very efficient and fast, and for the considered degree
of mesh refinement the maximum error for both K4’s and T,’s is less than 3% . Since no
crack tip elements are used to mesh the crack front region, the results of the first rows of
elements at the crack front should not be contributed in the calculation of the crack tip
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n

Figure 2.7: clement design along the crack front

parameters. In this study, the results of the first three elements at the crack front in the
radial direction are not considered in the evaluation of the crack tip parameters, i.e. for
calculating the T-stresses and the stress intensity factors, the distance 7 at which the nodal
stresses are extrapolated should be bigger than o/60 = 1.67% ot

Following examples for different values of the rotation vy (see section 2.3) and Pois-
son’s ratio of v = 1/3 are presented (figures 2.8, 2.9 and 2.10)

1. circular crack with a fixed rotation about the x-axis: y, = 30°,
2. elliptical crack with no rotation about the x-axis: v, = 0°,
3. elliptical crack with a fixed rotation about the x-axis: y, = 30°,

where continuous curves represent the analytical results, and finite element results are
shown by cross-symbols. A loading level of P*°/E = 1/100 has been considered, and the
aspect ratio (/o for the elliptical crack is chosen as and 0.5, respectively, where E is the
Young’s modulus.

Figures 2.8, 2.9 and 2.10 show that the results due to the finite element analyses are in
very good agreement with the analytical solution.

2.4.2 effect of the T-stresses on the plastic zone

One of the basic assumptions behind the application of linear fracture mechanics to
elastic-plastic materials is that the plastic deformation at the crack tip is governed by
the intensity of the elastic stress singularities, i.e. the stress intensity factors. This is a
valid argument, if the size of the plastic zone is small compared to other geometric di-
mensions of the problem, such as the crack length. The first order estimate of the size of
the plastic zone, according to the approach of IRWIN (1961), for plane strain situations
ist, = (Ki/ cyiem]z/é'n, where Oyiera is the tensile yield strength of the material. The
shape of the plastic zone predicted by this model is, however, different from the actual
one.

The shape and size of the plastic zone can be estimated by applying a yield criterion.
For isotropic materials, considering von Mises yield criterion, the plastic zone is deter-
mined from the second associated homogeneous invariant of the deviatoric stress tensor
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Figure 2.8: circular crack: T-stresses along the crack front (v, = 30°, and differing -y,

(LEMAITRE & CHABOCHE 1990)
3 12 1
o) = Gou) = (3Tt o' =o- TN, @s9)
where ¢’ is the deviatoric part of the stress tensor ©. The size and shape of the plastic

zone is found from

J2(0) — Oyiea =0. (2.56)

Solving equation (2.56) for , gives an estimate of the radius of the plastic zone as a
function of 6. A literature review shows that so far in the studies concerning the plastic
zone at the crack tip, only the effect of the first component of the T-stresses (T;), which
is well known as the T-stress (LARSSON & CARLSSON 1973), (RICE 1974) has been
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Figure 2.9: elliptical crack: T-stresses along the crack front (v, = 0°, and differing y,)

considered. This, however, does not result in an accurate estimate of the plastic zone.
Here, it is shown that to have accurate results, beside considering the effect of the singular
terms in the stress expansion formulae, the effect of the other components of the T-stresses
should also be taken into account. To compare the effect of different terms on the resulting
plastic zone at the crack tip, following combination of the singular terms and constant
non-singular terms (T,’s) are considered (figures 2.11, 2.12, and 2.13)

case-1: considering the effect of pure singular stress terms (continuous
gray lines)

case-2: considering the effect of the singular stress terms and T (black
dashed lines)

case-3: considering the effect of the singular stress terms and all T-
stresses (continuous black lines).
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Figure 2.10: elliptical crack: T-stresses along the crack front (y, = 30°, and differing y,)

Following examples are presented

1. circular crack rotated 60° about the y-axis (yx = 0° and vy, = 60°),

2. elliptical crack under pure mode-I (yx =y, = 0°)

3. elliptical crack rotated 30° about the y-axis and 30° about the x-axis (yx = vy =
30°),

for which the load level is chosen as P*°/oyieiqa = 1/3, Poisson’s ratio v = 1/3 and
aspect ratio for the considered elliptical cracks is chosen as f/x = 0.5. Since it is difficult
to compare the plastic zones due to different cases in a three-dimensional manner, only
four representing cuts along the crack front are shown (points corresponding to ¢ =
0°, 45°, 90°, 135°).

It is observed that for all examples, the size and shape of the plastic zones from the
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finite element analyses (cross-symbols) are in good agreement with the ones due to case-
3, pointing out the fact that in three-dimensional crack tip plasticity problems, the impact
of all T-stresses should be considered.

Figure 2.11 refers to the results of the penny shaped crack inclined 60° about the y-
axis. At @ = 0°, the plastic zone due to all singular and T-stress terms (case-3) does not
embed the other ones at all ©’s. This is due to the change of the sign of individual T-stress
terms. At points for which case-3 estimates a smaller 1, there are positive T-stresses,
which dominate and reduce 1, and vice versa, at 8°s with dominant negative Ty, effect the
magnitude of T, increases. This behavior is observed in all examples. At ¢ = 90°, the
plastic zones due to all cases are approximately identical. This is due to the fact that at this
point Ty; vanishes, and T; is relatively small. Although Ty at this point is not negligible, it
seems that it does not affect the plastic zone as significantly as the other two terms do.

Figure 2.12 shows that for a mode-I elliptical crack the plastic zone is maximum at
@ = 90° corresponding to the semi-minor axis and is minimum at the semi-major axis
(@ = 0°), because both K; and the non-zero T-stresses are maximum at the point on the
semi-minor axis. The plastic zone due to all singular stress terms and the T-stresses (case-
3) embeds the ones due to case-1 and case-2, showing the importance of considering the
other two terms of the T-stresses, which normally have been neglected. Comparing the
analytical results with the ones from the finite element analysis shows clearly, that only
the solution presented here can correctly predict the size and shape of the plastic zone.
It should also be mentioned that T; and Tyy; for this example are negative along the crack
front and bigger than Ty; which its sign changes from a quarter to the next along the crack
front. Comparing the results due to case-3 with the ones of case-1 and case-2 points out
that negative T-stresses increase the size of the plastic zone.

Figure 2.13 shows the results of the last example (yx = vy = 30°). It is observed that
the plastic zones due to different cases do not have a big difference. This is due to the
point that for this problem T,’s are relatively small all along the crack front compared
to the other examples, so the difference between the plastic zones becomes smaller. The
presented observations suggest that for an accurate estimation of the size of the plastic
zone, the effect of all T-stresses should be taken taken into account.
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Figure 2.11: circular crack with v, = 0°,y, = 60°, normalized plastic zone %
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The prediction of crack paths under general mixed-mode conditions, using the the-
ory of linear elastic fracture mechanics, has been the subject of many investigations,
both in two- and three-dimensions. These include both the theoretical works devoted
to infinitesimal crack extension from a given geometry (COTTERELL & RICE 1980),
(LEBLOND 1989), (AMESTOY & LEBLOND 1992), (LEBLOND & FRELAT 2000),
(SuMi, NEMAT-NASSER & KEER 1983), and numerical studies simulating the propaga-
tion of cracks (ZIENKIEWICZ & TAYLOR 1989), (SUMI 1986), (ALIABADI 1997).

The aim of this chapter is to give the theoretical foundations for the prediction of crack
paths within the theory of quasi-static linear elastic fracture mechanics, both in two-
and three-dimensions, based mainly on the works of LE, STUMPF & WEICHER (1989),
LE, SCHUTTE & STUMPF (1999), LEBLOND (1989), AMESTOY & LEBLOND (1992)
and LEBLOND & FRELAT (2000). In this respect, finite element simulation of two- and
three-dimensional mixed-mode crack propagation is addressed. The models provide a
general framework for mixed-mode linear elastic fracture mechanics, under small strain
assumptions. Central straight cracks in two-dimensional case, and internal circular and
elliptical cracks in three-dimensions with different mode-mixities are modeled in linearly
elastic, homogeneous and isotropic solids, with or without inclusions, subjected to far
field uniform traction field, to show the possible modes of crack propagation. The models
enable us to give the evolution of the stress intensity factors and the T-stresses of mixed-
mode internal cracks, as well (MOLLA-ABBASI & SCHUTTE 2006).
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3.1 Background on the simulation and crack growth criteria

The study of the prediction of crack paths within the theory of quasi-static linear elas-
tic fracture mechanics in three-dimensions begun about two decades ago with the works
of RICE (1985), GAO & RICE (1986), GAO & RICE (1987B), GAO & RICE (19874),
GAO (1988) and RICE (1989) who devoted their research to the question of the stability
of the fundamental configuration of the crack front versus small perturbation within the
crack plane, for semi-infinite, circular and external circular cracks in infinite bodies. Al-
though all three modes were considered, except for the external circular crack geometry,
the conclusions were mainly relevant in the case of pure mode-I, and the hypothesis of
coplanar crack propagation was seldom verified in the presence of mode-II and III. All
these works were based on two essential elements. First, asymptotic expressions of the
stress intensity factors along the front of an arbitrary infinitesimal extension exhibiting the
influence of its length, and second, use of some propagation criterion expressed in terms of
the stress intensity factors. Slight deviations from coplanarity were envisaged in the works
of GAO (1992), XU, BOWER & ORTIZ (1994) and BALL & LARRALDE (1995).

More recent and complete works on this subject are the series of papers by
LEBLOND (1989), AMESTOY & LEBLOND (1992), LEBLOND & FRELAT (2000) and
LEBLOND & FRELAT (2004) (see also the cited works therein), in which they have stud-
ied the theoretical foundation for the prediction of crack paths within the theory of quasi-
static linear elastic fracture mechanics. In two-dimensional case different situations have
been addressed, including the most general plane situation, crack kinking from an ini-
tially closed ordinary or interface crack in the absence or presence of friction. In three-
dimensions, the case of an arbitrary three-dimensional geometry under arbitrary loading
has been considered. LEBLOND (1989) has provided the formulae for the geometri-
cal parameters including the branching angle and the curvature parameters of a crack
propagating in the most general plane situation. Based on dimensional analysis (scale
changes) and the regularity properties (continuity and differentiability) of the stresses
with respect to the crack extension length, he has addressed the general form of the ex-
pansion of the stress intensity factors in powers of the crack extension length. Most
terms of the expansion formulae are universal, in the sense that they depend only on
the parameters characterizing the local geometry of the crack and its extension and the
asymptotic stress field of the initial crack, without any explicit reference to the geometry
of the body nor to the loading imposed on its boundary. LEBLOND & FRELAT (2004)
have studied the crack kinking from an initially closed ordinary or interface crack in the
absence of friction, or in the presence of friction (see also LEBLOND & FRELAT (2000)
and LEBLOND & FRELAT (2001)). In an analogous way, based on the dimensional anal-
ysis and the regularity properties of the stresses with respect to the crack extension length,
expansion formulae for the stress intensity factors in terms of the extension length have
been derived, which in the presence of friction depend on the friction coefficient and for
interface crack problems depends on the Dundurs parameters (DUNDURS 1969), as well.
Using the principle of local symmetry proposed by GOLDSTEIN & SALGANIK (1974) to
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predict the crack path, a theoretical value for the kink angle is derived for each case. In
three-dimensions, LEBLOND (1999) has studied the prediction of crack paths in three-
dimensional elastic solids, under the most general hypotheses of arbitrary geometry and
arbitrary loading. For this, he has derived the expansion of the stress intensity factors
along the crack front after an arbitrary infinitesimal propagation, in terms of the crack
extension length up to the second term.

Numerical simulation of three-dimensional crack growth, especially the propaga-
tion law to determine the direction and growth rate of arbitrary three-dimensional
mixed-mode cracks, are still interesting problems, mainly due to the need for an
efficient modeling strategy to be employed as the crack propagates. A variety of
numerical techniques have been used to establish a solution to this problem, in-
cluding finite difference method (FDM) (LAPIDUS & PINDER 1982), finite element
method (FEM) (ZIENKIEWICZ & TAYLOR 1989), boundary element method (BEM)
(ALIABADI 1997), and boundary integral equation method (BIEM) (R1zz0 1967).
L1, MEAR & XI1AO (1998), and FRANGI, NOVATI, SPRINGHETTI & RoVvIZzI (2002)
have proposed a numerical simulation of crack propagation in three-dimensional lin-
ear elastic bodies by making use of the symmetric Galerkin boundary element method
(SGBEM).

The BEM technique (ALIABADI 1997) involves discretization of the boundary alone,
and the dimensions of the stiffness matrix formed in BEM is then reduced by one in
comparison to a domain method, such as FEM, although the stiffness matrix is full and
symmetric in general. An advantage of BEM in application to fracture problems over
FEM is that domain remeshing is not necessary by crack growth and only elements at the
crack tip are added to the already existing elements.

One of the most common approaches in simulating the crack propagation is the step-
wise method, which consists of the succession of straight segments. In this method, the
propagation path is considered to be a sequence of small steps. At each step of propaga-
tion, the crack extension length and its direction are predicted by the employed fracture
criterion. The crack is then extended from the previous crack tip by a length increment
in the plane perpendicular to the crack front. SCHUTTE (2001) has studied the propaga-
tion of a central straight two-dimensional crack in a unit cell using the stepwise method.
At each step, stress intensity factors are determined numerically by extrapolating the
displacement field to the crack tip. The fracture criterion he has used is the maximum
driving force criterion (LE, SCHUTTE & STUMPF 1999). MOGILEVSKAYA (1997) has
suggested a numerical algorithm to simulate two-dimensional crack growth, in which
stepwise method based on local criterion of propagation is used. He has employed
two crack propagation criteria. At the first step of propagation the maximum ten-
sile stress criterion is used, and at subsequent steps the criterion of local symmetry
(GOLDSTEIN & SALGANIK 1974) is employed.

There are several fracture criteria predicting the direction and the minimum
load (limit load) required to extend a crack under mixed-mode loading, such as
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the criteria of maximum strain energy release rate (ERDOGAN & SIH 1963), maxi-
mum driving force criterion (LE, SCHUTTE & STUMPF 1999), maximum hoop stress
(ERDOGAN & SIH 1963), maximum tensile stress (MAITI & SMITH 1983), local
symmetry (GOLDSTEIN & SALGANIK 1974), and minimum strain energy density
(S1H 1972). The first study of this problem goes back to ERDOGAN & SIH (1963) who
have postulated that fracture is governed by the attainment of a critical circumferential
stress, over a characteristic length surrounding the crack tip. This is the so called max-
imum hoop stress criterion. According to this criterion a crack propagates in the plane
normal to the maximum hoop stress at a characteristic length. This critical stress is pre-
sumably a material constant and is determined by a pure mode-I test. The local symmetry
criterion proposed by GOLDSTEIN & SALGANIK (1974) states that the crack tends to ad-
vance such that the in-plane shear stress in the vicinity of the crack tip vanishes. Another
popular fracture criterion for mixed-mode problems is the maximum energy release rate
criterion, or the Griffith theory (ERDOGAN & SIH 1963). It is postulated that a crack un-
der mixed mode loading will grow along a direction which maximizes the energy release
rate, and energy release rate is a material property and thus it is independent of the mode-
mixity. The minimum strain energy density criterion, proposed by S1H (1974), states that
the direction of crack extension coincides with the direction of minimum strain energy
density along a constant radius around the crack tip. Since test results tend to show that
a crack propagates in a direction perpendicular to the far field tensile load, it leads to the
principal of maximum tensile stress criterion (MAITI & SMITH 1983). The maximum
driving force criterion (LE, SCHUTTE & STUMPF 1999) states that cracks propagate in
the direction the driving force acting at the crack tip becomes maximum. This criterion is
the direct consequence of a variational principle of a cracked body in equilibrium. Based
on this work, the magnitude and the direction of the maximum driving force acting on a
kinking crack are consistently determined.

In this chapter, the simulation of quasi-static propagation of mixed-mode internal
cracks have been performed using the finite element method and the stepwise technique,
considering small strain assumptions. The propagation of the crack is governed by the
maximum driving force criterion (LE, SCHUTTE & STUMPF 1999) along with a gener-
alized Paris’ law, from which the crack trajectory and the extension rate are resulting.
With this, it can be shown that the local crack extension rate is proportional to its thermo-
dynamic dual, the maximum driving force acting at the crack tip (SCHUTTE 2001). This
shows the connection of the maximum driving force criterion with the energy dissipated
along the crack front by its kinking. Another advantage of this criterion is that it consid-
ers the effect of all stress intensity factors for general three-dimensional crack geometries.
This is especially important, since Ky does not always tend to vanish, even for heavily
grown cracks.
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Figure 3.1: crack extension and new crack coordinates

3.1.1 variational principle of fracture mechanics in elastostatics

There are many situations in which a crack under remote loading may expand in direc-
tions not lying in the tangent plane to its initial surface. Tangential or non-tangential
crack expansion can be categorized respectively by stating that a crack grows such that
its expansion lies or does not lie in the tangent plane to its initial surface. In the case
of non-tangential crack expansion the determination of the driving force is not simple.
In this regard, the comparison of the energy stored in the body containing the kinked
crack with that stored in the body prior to crack expansion is required. For small crack
expansions, the change in energy depends strongly on the singular stress field and the
displacement fields near the crack tip. It has been shown that the stress intensity fac-
tors for an infinitesimal kinked crack do not tend to those prior to crack expansion
(BILBY & CARDEW 1957). The limiting stress intensity factors turn out to be a function
of the kink angle and the stress intensity factors prior to crack kinking. The calculation
of the energy change is the main difficulty in determining the driving force acting on a
kinked crack.

This section summarizes the results of the works of LE, STUMPF & WEICHER (1989),
LE & ScHUTTE (1999) and LE, SCHUTTE & STUMPF (1999), who considered the re-
sults of WU (1978) and LEBLOND (1993) in combination with the variational principles

Figure 3.2: local coordinate system in the plane perpendicular to the front of the kinked
crack
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of fracture mechanics (LE 1989) to derive Irwin’s formula, which contains the limiting
stress intensity factor after the kinking of a three-dimensional crack under mixed mode
loading. According to their study, the criterion of maximum driving force is the direct
consequence of the proposed variational formulation and the resulting kinking angle is
then computed. The equations governing the crack growth have been derived in straight
forward manner from the variational principle of a body containing a crack in equilibrium
(LE, SCHUTTE & STUMPF 1999).

What follows gives a brief summary of the derivation of the formula for the maximum
driving force acting on a kinked crack in three-dimensions as well as to determine the
equilibrium criterion of a body containing a crack by means of the variational principles
of fracture mechanics, under the assumption of small elastic strains.

Consider a linear elastic body occupying the region Bs = B\S of the three dimensional
Euclidean space with the exterior boundary 0B and the interior boundary § = SU8. The
surface § is used to describe a crack surface in its initial configuration. The body is loaded
such that it contains the displacement fields u;(x;), where x;,x;,x3 are the Cartesian
coordinates, with the associated stress oy;(x). Here, Latin indices 1,3, k, ... range over
1,2, 3 and the summation over repeated indices is understood. The governing equations
are the three equilibrium conditions (in the absence of body forces) and the Hooke’s law.
Only such loading conditions are considered where the crack faces are traction free. Then
the boundary conditions on the opposite sides of the crack read '

3T =0 on 08. 3.1

Here the indices 4+, — indicate limit values of quantities on the two sides of 8,
and n; is the normal vector pointing in the direction +. The singular stress field and
the displacement field near the crack front prior to the crack extension are given by
(WILLIAMS 1957), (RICE 1968A)

0w =K m.;_o(]) =K \/Zv“(9)+0(1') (3.2)
i = am ’ Ui = Ra 27t ’ ’

where 1 and 0 correspond to the local polar coordinates in the plane perpendicular to the
crack front (figure 3.1), and Greek indices range over I, II, III and denote the three crack
deformation modes. The constants K, are the so called stress intensity factors prior to
the crack extension. Let the crack surface extend to a new surface, which is supposed to
be smooth except at the points on the old crack front. The singular stress field and the
displacement field near the expanded crack front are given by

£2,(0) 7
oy = Kg \‘,’2? +0(1), w= K;\/ 5 V¥(8) + 0(7), (33)

where 1/ and 8’ correspond to the polar coordinates of the shifted and rotated coordinate
system and the indices with prim denote the projections onto the corresponding rotated
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Figure 3.3: fracture locus in three-dimensions

coordinate axes. The radius of the domain, where equation (3.3) applies is of the order
smaller than € and tends to zero together with e. However, the stress intensity factors do

not tend to those prior to crack extension as € tends to zero.

Based on the dimensional analysis (scale changes) and the regularity properties (conti-
nuity and differentiability) of the stresses with respect to the crack extension length €, the
general form of the expansion of the stress intensity factors can be derived in powers of
the crack extension length (AMESTOY & LEBLOND 1992) and (LEBLOND 1993)

K/, = Kq(e) = Kt + K72 \/e+0O(e), (3.4)
where

Kx = Fap(d) Kg,

KE/? = Gap(d) Tp + a* Hop(d) K,
where Fup, Gup, and Hup are universal functions of the kinking angle ¢, Kg and Tp
are the stress intensity factors and the T-stresses of the crack prior to kinking, and a* is
the curvature parameter of the crack extension which for a straight extension vanishes
(a* = 0). Most terms of the expansion formulae are universal, in the sense that they
depend only on the parameters characterizing the local geometry of the crack and its

extension and the asymptotic stress field of the initial crack, without any explicit reference
to the geometry of the body nor to the loading imposed on its boundary.

Considering formula (3.4), the limiting value of K/, as € — 0 equals K},

lim(K{, = Ka(e)) =K = Fag(b) Kp -

(3.5)

(3.6)
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Figure 3.4: kinking angle in terms of A; and A

The total energy functional is then defined as follows

I[u] = J We(gii(wi)) dv — I tiugda + J 2y da, (3.7
By i

0B,
with W¥(ey;) = (1/2) A el + pegj e and &5 = (1/2)(wi; + 151) being the elastic energy
density and the strain field, respectively, and t; represents the external traction field. The
last integral expresses the energy of the crack, which is assumed to be proportional to the
area of the crack surface. Therefore 'y can roughly be interpreted as the surface energy
density, and the factor 2 appears because of two crack faces. Indeed the dissipation due
to the plastic deformation and the separation in the plastic zone are proportional the area
of the crack, and can be included in y.

The variation of the energy functional (3.7) can be defined as

d
ol = EI[u{e]] . (3.8)

The variational principle of fracture mechanics states that the body containing a crack
can only be in stable equilibrium, if the variation of its total energy functional is non-
negative for all sets of admissible displacement fields (LE 1989)

51>0, VYu(e)eC. (3.9)

In the local rotated coordinate system x{ with axes which coincide with the vectors
v, 1, T, where 1 is perpendicular to v and T (figure 3.1), the variation results in

6I=J (2y—limDJv)5ydszo, (3.10)
as E—
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Figure 3.5: coordinate systems of the crack

where Jy- is the corresponding component of the J-integral vector in the local coordinates
at the new crack tip, given by (see also section 1.3.3)

Te(d) = Jr by Ty ds = L(we'nv ~ Gy wewmy) dT, @.11)

with T the contour of radius h = €/2 surrounding the point of 98, and n;- the unit normal
vector on I". The expression

Gy = lim Ji = lim L(we'm. — Oy W, )l (3.12)

will be called the energy release rate for the non-tangential crack extension. Using the
formulae (3.3) with the universal functions f{;,(8') and v{(6') one gets

1 —+2

1
6 = 12 (ki (ki + 5 ki) 613

where E and v are respectively the Young’s modulus and the Poisson’s ratio of the matrix
material.

According to the variational inequality (3.10), the body with a crack § can be in a state
of stable equilibrium if and only if

G*=max Gy < 2v, (3.14)

since 8y; > 0. This is analogous to the criterion of the maximum energy release rate,
except that stress intensity factors are those for the kinked crack. The maximum of the
driving force acting on the crack tip and the direction in which it is reached can be found,
using formula (3.6).
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Figure 3.3 shows the graphics of the dimensionless fracture locus in three-dimensions,
in accordance with equation (3.14), and figure 3.4 gives the dependence of the angle
®max, at which the driving force (formula (3.13)) reaches its maximum, on the mode-
mixity factors
Ki

K
=" A
Ki + [Kl

27 K1 + [Kul + Kl ©

Considering these mode-mixity factors, the following function may be resulting for
the kinking angle from a curve fitting for the part of the surface in figure 3.4, where
0<AM,A2<0.6

Pmax = sgn(Knr) {1 IMP (d11 2§ + di2 A + di3AS + dia)
+c2 (A1 A§ + d2a A3 + das A + daa) (3.16)
* sin (3 (A1l (da1 AS + dsa A3 + ds3 A + ds4))
+ea(dan A§ + daz A3 + des A + daa)
* tanh (cs 1M1 (ds1 AS + ds2 A3 + dss A3 + dsa)) }

A (3.15)

with
0.70966 —6.33529 +1.37583 +3.29878 +1
—0.0977254 —13.9737 +16.0763 —5.22639 +1
{ci) = 3.91741 ,  (dg) =] +2.54474 —2.20079 +1.78968 +1 |,
—13.1588 —5.26771 +8.21557 —4.66357 +1
0.15199 +60.6997 +8.90186 +5.60449 +1
3.17)

wherei=1,5and j = 1,4. This fits ¢mq, in figure 3.4 with a maximum relative error of
1%.

3.2 Simulation of mixed-mode crack growth

To simulate the propagation of mixed-mode internal cracks, the framework of the linear
elastic fracture mechanics (LEFM) has been chosen. If no macroscopic plasticity oc-
curs, there is no large plastic zone at the crack tip, i.e. the small scale yielding approach
(RICE 1974) is suitable, and the crack problem can be treated within the framework of
LEFM. The linear elastic crack tip displacement and stress fields are known to be gov-
erned by the stress intensity factors. However, it should be mentioned that for the general
three-dimensional case of an arbitrary shaped crack with an arbitrary curved front, besides
the three stress intensity factors, there are three constant non-singular stress terms com-
monly referred to as the T-stresses (see chapter 2), which play an important role in differ-
ent areas of fracture mechanics such as the stability of the crack path, the two-parameter
characterization of elastic-plastic crack tip deformation, and the crack tip plasticity. The
number of T-stresses, however, reduces to one for a two-dimensional opened crack.
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Figure 3.6: left: element design along the crack front, right:half-model of an internal
crack

3.2.1 modeling mixed-mode internal cracks

To study the propagation of mixed-mode cracks and the evolution of the stress intensity
factors and the T-stresses, the so called crack tip parameters, a unit cell containing a
growing single internal elliptical or circular crack is considered, which is under uniform
uniaxial remote tensile loading. Cracks are modeled as geometrical cuts in the center
of the unit cell, and are initially perpendicular to the direction of the uniaxial tension,
simulating a mode-I internal crack, figure 3.5. To have a general mode-mixity, cracks
are rotated about the local x, y and z axes by vy, vy and ., respectively. Hexahedral
elements with quadratic displacement behavior are used to mesh the crack front region
embedded in a torus of the radius Ryyr,s = /20 (figure 3.6-left), where higher accuracy
is needed and the elements are refined towards the crack tip. « represents the semi-major
axis of the elliptical crack and the radius of the circular crack, respectively. Generating n
elements in the radial direction, the size of the elements would be Rygrys/n = /(20M).
The rest of the unit cell is meshed using quadratic tetrahedral elements, becoming coarser
towards the outer boundaries of the unit cell. The number of elements in the unit cell is
dependent on the number of elements in the torus (n), and choosing a higher n results an
overall finer mesh. Figure 3.6-right shows half-model of an internal circular crack under
pure mode-I loading.

To check the accuracy of the results, one possible way is comparing the evaluated stress
intensity factors and T-stresses from the model to the analytical ones. This requires that
the size of the cell with respect to the characteristic crack size is such that the crack
tip fields are not affected by the outer boundaries. This, indeed, simulates the so called
non-interacting crack which is later required to study the damage of a unit cell. To find
the appropriate dimension of the unit cell with respect to the crack size fulfilling the
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Figure 3.7: size effect (left), and mesh refinement effect (right)

mentioned requirement, a mode-I circular crack problem has been simulated for which
the size of the unite cell embedding the crack is varying between 5c and 100«, and the
resulting stress intensity factor (K) is compared to the analytical one. The number of
elements 1 is chosen as 12. It is observed that if the relative size of the unit cell is not
big enough, the resulting stress intensity factor from the model is bigger than what the
analytical solution gives (figure 3.7-left), showing the fact that the crack tip stress field is
affected by the outer boundaries. As the dimension of the unit cell increases (L > 20«
figure 3.5) the stress intensity factor converges to the analytical one with an accuracy of
2%, pointing out the fact that the boundary effect on the crack tip fields vanishes. In our
models, the characteristic size of the unit cell is chosen as 150 times the characteristic
crack length o to ensure that there is no boundary effect on the crack tip fields, even
for a heavily grown crack. Here, the cross-symbols and the continuous lines represent
respectively the results from the simulation and the analytical solution.

Another possible way to validate the model is to compare the resulting change of com-
pliance from the model (due to the initiation of the crack) to the analytical solution. Figure
3.7-right shows that the numerical results improve and converge relatively fast by increas-
ing the number of elements.

3.2.2 numerical determination of the crack tip parameters

There are different methods to evaluate the stress intensity factors numerically, but a liter-
ature review shows that most of the methods suggested for the evaluation of the T-stresses
deal with the calculation of Ty, and there is so far no efficient method for calculating all
T-stress terms for mixed-mode crack problems.

The variational method suggested by LEEVERS & RADON (1982) is based on the min-
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imization of the potential energy of the structure to determine the coefficients of the first
20 terms in the two-dimensional mode-I stress expansion for a given crack problem. The
crack tip parameters K; and Tj are indeed the first and second coefficients of the cal-
culated set. A similar method was used by EWING, SWEDLOW & WILLIAMS (1976)
for mixed-mode plane problems. For mode-I plane problems, the method suggested by
KNSEL (1995) calculates the T; by calculating the first few coefficients of the stress ex-
pansion using crack tip hybrid elements.

CARDEW, GOLDTHORPE, HOWARD & KFOURI (1984) and KFOURI (1986) devel-
oped a method for calculating the T-stress for two-dimensional crack problems making
use of the properties of the path independent J-integral. In this method, the J-integral is
determined for two elastic finite element analyses. The first one is for the actual geom-
etry and loading configurations and the other for a semi infinite crack in an infinite plate
subjected to a point force at the crack tip in the direction of the crack line. They proposed
a formula to relate T; to these two values of the J-integral to calculate the T-stress. This
method has good accuracy, because the J-integral can be evaluated far from the crack tip.
HALLBACK & JONSSON (1996) used a similar method for mixed mode crack problems
to calculate the T;. Path independent integrals were also employed by OLSEN (1994) and
SLADEK, SLADEK & FEDELINSKI (1997) to compute K;, Ky and T; for mixed mode
problems using the boundary element technique. These methods all require multiple fi-
nite element or boundary element analyses.

The weight function method considered by SHAM (1989) calculates T; for two-
dimensional crack problems using higher order weight functions by means of special
integrals within a modified finite element procedure. The interaction integral method sug-
gested by NAKAMURA & PARKS (1991) calculates T; for three-dimensional crack prob-
lems. Using the local values of an interaction domain integral involving the stress, strain
and displacement fields, the T; component is derived along the crack front.

Most of the mentioned methods are limited to two-dimensional crack problems, and for
three-dimensional problems they are only capable of calculating T;. Therefore, here, the
direct finite element method based on the stress distribution is applied in the crack front
region, which results in accurate values for both T-stresses and stress intensity factors
for relatively fine elements. The method is based on rearranging equation (1.10) for a
fixed O to calculate the local crack tip parameters from the stress field resulting from the
finite element analysis. This method is very efficient and fast, and can be generalized
to complicated three-dimensional crack problems with little programming effort. For
example, for 0 = 0°, K,’s and T,,’s are evaluated using the following equations

: . Ki
Ki = lim (Vrroy),  Ti=lim (o,m— —) , (3.18)

2nr
K= rll_r’!}) (V 2nr O'ny) ' Ty = rll_l}}) Ont

. . 2v K]
K = I!l_l)l‘g) (V 2nr th) ) Tin= rh_% (Gu ~ o "‘"VTI) )
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Figure 3.8: circular crack with v, = 45° and v, = v, = 0°: distribution of the crack tip
parameters along the crack front

where subscripts 1, t, and y are respectively the directions of the local normal to crack
front, the local tangent to the crack front, and the local normal to the crack plane (figure
3.5). Ky’s and T,’s for the points along the crack front are evaluated by extrapolating the
resulting nodal stresses back to the crack front in the planes perpendicular to the crack
front for each point.

To validate the model, the resulting crack tip parameters from the simulation are com-
pared to the analytical ones, for the initial crack geometry. For this, a circular crack having
an inclination of 45° with respect to the loading direction (v, = 45° and v, =y, = 0°),
and an elliptical crack with an aspect ratio of f /¢ = 0.5 which its major axis has an
inclination of 60° with respect to the uniform uniaxial remote tension (y, = 30° and
Yx = Yy = 0°) are considered. The matrix is considered to be homogeneous, isotropic
and linear elastic. The Poisson’s ratio is chosen as v = 1/3, and the loading level as
o /E = 1/100, where E is the Young’s modulus of the matrix material. For these crack
geometries, the analytical expressions for the stress intensity factors and T-stresses are
known, see for example MURAKAMI (1987) for the stress intensity factors and chapter 2
for the complete set of T-stresses of internal elliptical and circular crack.

It is observed that by choosing n > 6 (figure 3.6), the resulting stress intensity factors
and T-stresses are acceptable (errors smaller than 6 %), and choosing n = 12 improves
the results considerably and the maximum error is in the range of 2 %, for both the K, ’s
and T, ’s. Considering this degree of mesh refinement, in average the maximum number of
generated nodes is approximately 300,000. The distribution of the stress intensity factors
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Figure 3.9: elliptical crack with /& = 0.5, v, = 30° and v, =y, = 0°: distribution of
the crack tip parameters along the crack front

and the T-stresses for the considered degree of mesh refinement (n = 12) are given along
the crack front in figures 3.8 and 3.9, respectively for the considered circular and elliptical
crack geometries. The cross-symbol represents the first component of the stress intensity
factors and T-stresses (Kj, Tp), and triangle and square symbols, respectively the second
and third components (Kii, Tyr and Ky, Tur)- Results based on the analytical solution are
shown with continuous lines. This notation is considered for other graphs as well.

To check the accuracy of the results for the propagated crack geometry, there is no
exact analytical solution giving the stress intensity factors and the T-stresses. However,
the stress intensity factors at the kinked crack tip may be approximated analytically using
the expansion formula (3.4) in terms of the extension length € and the crack tip parameters
prior to kinking. Based on this, it is possible to validate the accuracy of the model for the
propagated geometry as well. Having validated the model at each step, this error measure
may be used in further propagation steps to validate the stress intensity factors. Figure
3.10 compares the resulting stress intensity factors for the first propagated geometry to the
analytical approximation, respectively for the circular crack (left curves) and the elliptical
crack (right curves).

It should be mentioned that the concern of this study is not giving an efficient method
for the determination of the stress intensity factors and the T-stresses, so basically any
method resulting a good level of accuracy could be used to evaluate the required crack
tip parameters. It should be mentioned that relatively fine elements should be generated
to obtain accurate results, and the distance from the crack tip at which the stress results
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Figure 3.10: distribution of K,(€) for the circular crack (left) and the elliptical crack
(right)

are extrapolated is also crucial in the accuracy of the results. To obtain results within
the mentioned level of accuracy, the distance r from the crack tip at which the nodal
stresses are extrapolated should be bigger than «/60 = 1.67% . This is because the
stress field in the first two rows of elements at the crack front does not represent equation
(2.1) accurately enough.

3.2.3 quasi-static propagation of cracks

As mentioned, propagation of the crack is governed by the maximum driving force crite-
rion given in section 3.1.1, according to which a crack grows in the direction of the local
maximum driving force. To calculate the crack propagation rate in terms of the num-
ber of cycle and the associated material parameters, this criterion can be coupled with a
crack evolution law (see section 1.3.5). For example, considering Paris’ law, the local
propagation rate is obtained

da

aﬁ =C (Klmnx - Klo)'n ’ (3-19)
where a and N are the crack length and the number of the load cycles, Kijnax and Kj,
represent the stress intensity factors due to the maximum load and the threshold value,
respectively, and C and n are material constants. A thermodynamic generalization of
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Figure 3.11: local crack propagation

Paris’ law is presented by LEMAITRE & CHABOCHE (1990). The advantage of such
a generalization is that the formulation would not be restricted to cyclic loading with
constant loading amplitude, but it could also be applied to arbitrary loading amplitude
and cycle. The fundamental of the thermodynamic formulation is the flow-rule like in
plasticity and the dissipation of the growing crack. From a generalization of Paris’s law
following evolution law can be deduced (SCHUTTE 2001)

& (Ve - VE) (3.20)

where G},,, and G}, represent the maximum value and the threshold value for the max-
imum driving force, respectively. For vanishing threshold values, and n = 2, the crack
growth rate is resulting as

d

N =CGha o a=CGrg, (3.21)
where a is the crack propagation rate. This is identical to the proportionality between the
thermodynamic flux d and the corresponding thermodynamic force G*. The advantages
of a G based fatigue crack evolution law was explained in section 1.3.5 in detail.

3.2.4 crack growth algorithm and examples

The procedure of simulating the quasi-static propagation of cracks, using the stepwise
method, can be summarized as follows. At each step of crack propagation, the stress
intensity factors at a certain number of geometrical points on the crack front are evalu-
ated numerically using the direct method based on the extrapolation of the stress field.
The propagation rate and the propagation angle for each point are then determined using
equations (3.13), (3.16)and (3.20). Points are then propagated in the planes perpendicular
to the crack front in a local sense, figure 3.11. After propagating all points on the crack
front, the new crack geometry is built and the model is re-meshed according to the new
crack geometry. It is assumed here, that the crack front remains continuously differen-
tiable, so crack front rotation, segmentation and the forming of vertexes are prohibited.
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Figure 3.12: growth of the central straight crack with v, = 45°

Solving the new model enables us to repeat the procedure in further steps to propagate the
crack.

This propagation algorithm is applied to four crack problems to show the propagation
of cracks under mixed-mode loading conditions. The matrix material is considered to be
homogeneous, isotropic and linear elastic. The Poisson’s ratio is chosen as v = 1/3,
and the loading level as 0*°/E = 1/100. To satisfy the non-interacting crack assumption
even for a heavily grown crack, the size of the unit cell is chosen as 150, o« being the
characteristic crack size.

The first example is a two dimensional central straight having an inclination of 45°
with respect to the direction of the remote uniaxial tensile loading. Figure 3.12 shows
the growth of the mixed-mode central crack. It is observed that crack propagates in a
symmetric manner, and the final path becomes perpendicular to the direction of the remote
tension.

As the second example, two inclusions are introduced along the path of the first crack
problem to see the effect of soft and hard inclusions on the selected path by a propagating
crack. The hard inclusion, which is closer to the tip of the initial crack, is considered
to be smaller with a radius of 0.5 « and a Young’s modulus of 1000 E, with E being
the Young’s modulus of the matrix material. The second inclusion is a soft one with a
Young’s modulus of E/100, 000 and a radius of 0.75 «. For both inclusions the Poisson’s
ratio is chosen as 1/3. In figure 3.13, it is observed that crack chooses a path to avoid the
hard inclusion, if possible. Passing by the region, where the stress field due to the soft
inclusion is dominant, crack is attracted to the soft inclusion. Finally, in the last phase of
crack growth, by entering to a region where the surrounding material is homogeneous, a
stabilization in the crack path is observed.

The third and fourth examples are the considered circular and elliptical crack problems,
respectively, which were already introduced in section 3.2.2, i.e circular crack with y, =
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Figure 3.13: growth of the central straight crack with v, = 45° in the presence of inclu-
sions

45° and vy = vy = 0° and elliptical crack with an aspect ratio of f/0 = 0.5, and
v: = 30° and yx = vy = 0°. Figures 3.14 and 3.15 show respectively the growth of
the circular crack and the elliptical crack. The same behavior as in the two-dimensional
examples are observed, showing that cracks, loaded cyclically with a load of constant
amplitude and direction, grow to a mode-I crack.

The models also enable us to give the evolution of the stress intensity factors and the
T-stresses of mixed-mode internal cracks. Figure 3.19 shows the evolution of the crack
tip parameters for the circular crack problem. The evolution of the T-stresses shows that
as the crack grows, Ty vanishes along the crack front. T; and Tyj; become negative con-
stant values along the crack front; their values are approximately the same as for a mode-I
circular crack. The evolution of the stress intensity factors show that mode-II stress in-
tensity factor vanishes along the crack front, as it is for a mode-I circular crack. However,
the mode-111 stress intensity factor does not vanish and comparing its value to K; shows
that its effect should be considered in the propagation of the crack. It should be noted
that although Kjj; may not have an impact on the direction of crack growth, but its value
influences the resulting propagation rate. Similar to the T-stresses, evolution of K is also
in good agreement with a mode-I growing circular crack. It is observed that for a crack
propagated to approximately 5 times its initial size, at each propagation step K| is approx-
imately constant along the crack front and by crack growth K; grows in the same manner
as in the case of a self-similar growth of a circular crack. The same behavior is observed
for the elliptical crack, figures 3.20. The evolution of the stress intensity factors and the
T-stresses show that the inclined elliptical crack turns also to a mode-I circular crack.

Considering different values for the step size parameter C' = C AN, it is possible
to investigate the state of the kinking, and see how this influences the crack path. For
this, the circular crack is considered again. The paths followed by the circular crack
choosing C’ as 0.003, 0.005, 0.0011, and 0.025 are given in figure 3.16. To have a more
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Figure 3.14: growth of the circular crack with y, = 45° and vy, =y, = 0°

clear picture of the paths, the cut of the crack geometries in the xy-plane is shown. It
is observed that choosing the step size parameter C' = C AN in equation (3.21) bigger
than a certain value, here C' > 0.01, results in a somehow different crack path, which
in the case of non-proportional loading may lead to other crack paths than expected. In
the case of proportional loading, however, this may not influence the results very heavily,
since after a few propagation steps the paths followed by cracks for different values of
C’ approximately coincide, and the difference is in the number of steps to reach a certain
crack length (figure 3.16). However, simulation of crack growth phenomena in the case of
non-proportional loading, and even proportional loading in a solid with inclusions and/or
holes, requires that the extension length be small enough, so that the curvature of the crack
path is captured correctly. An example of such a problem is the fatigue crack growth in
airplane panels with windows.

3.3 Impact of fracture criterion

As mentioned in section 3.1, there are different fracture criteria. Some of them neglect
the effect of Kyjj, or they are based on two-dimensional reasonings. They are, however,
widely used for three-dimensional problems.

In this section, comparison is made between different fracture criteria and how they
influence the results by crack growth. To show the effect of Kyj;, the maximum driving
force criterion leaving out the effect of Kyjj is considered as a separate criterion. The
maximum hoop-stress and local symmetry criteria are considered as well. The Griffith
maximum energy release rate criterion, which considers the effect of Ky is considered
to show its difference with the maximum driving force. It is shown that the difference
is in the first few steps, where there is still considerable kinking as the crack grows. By
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Figure 3.15: growth of the elliptical crack with /& = 0.5, v, = 30° and y, = v, = 0°

tending the kinking angle to zero, the results due to these two criteria converge. It should
be mentioned that the convergence of the paths is due to the good nature of the problem
under consideration, as all criteria will tend to cracks growing in a direction perpendicular
to the axis of tension in a homogeneous sample. To summarize, the following fracture
criteria are considered

maximum driving force criterion (3D D.F.),

maximum driving force criterion neglecting the effect of Kyj; (2D D.F.),
maximum hoop-stress criterion (Hoop-S),

maximum energy release rate criterion considering the effect of Kypp (JINT),
Local symmetry criterion (LSYM).

Ch e U e

To compare the impact of different fracture criteria on the evolution of the compliance
tensor of a unit cell due to a growing mixed-mode crack, again the circular crack problem
in section 3.2.1 is considered. To show the impact of different criteria on the kinking angle
and crack growth rate, a representative point on the crack front is considered for which
none of the stress intensity factors vanishes. The impact of different fracture criteria on
the evolution of compliance in the principle directions of the unit cell as the circular crack
grows is presented, as well.

Figures 3.18 show the evolution of the compliance components in the principle direc-
tions, which are normalized with the compliance of the matrix (virgin) material. This
can be considered as a measure of damage due to a growing circular crack. It is obvious
that leaving out the effect of Kyj; from the maximum driving force criterion, i.c 2D D.F,,
Hoop-S and LSYM, the resulting damage is smaller than the one obtained from the cri-
teria considering the effect of Ky (3D D.F. and JINT). Results from the criteria LSYM
and 2D D.F. are in good agreement. This can be explained by considering the fact that
both criteria estimate nearly the same propagation rate (figure 3.17). The evolution of
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Figure 3.16: evolution of the crack geometry considering different C’s

compliance due to 3D D.F. and JINT criteria are nearly the same, but a closer look to the
first few steps states that damage due to JINT is slightly smaller. This is due to the fact
that in the first steps of propagation, the growth rate resulting from JINT is lower than the
one of 3D D.F. (figure 3.17-right), since the stress intensity factors presented in the JINT
are the ones of the crack prior to kinking, which are smaller than the ones of the kinked
crack (in 3D D.F.).

The evolution of the kinking angle and the growth rate using different criteria are shown
in figure 3.17-left. As expected, different criteria result in different kinking angles, but
after some steps of propagation the kinking angles due to different criteria converge all to
zero. The behavior for the growth ratio is somehow different. Figure 3.17-right, explains
the behavior observed in figures 3.18. As stated before, the propagation rate for 3D D.F.
and JINT are different for the first steps, but afterwards they converge to the same values.
The same behavior is observed for the other three criteria that neglect the effect of Kyy.
This is due to the fact that the values of stress intensity factors of the propagating crack
are different for these criteria (due to the difference in the kinking angle and propagation
length), but after a few steps, as Ky tend to vanish, the results due to 2D D.F., Hoop-S and
LSYM criteria converge. Figure 3.17-right shows that estimated growth rates due to the
criteria which neglect the effect of Kyj; reduce at the first few steps, which is contrary to
the fact that crack growth rate increases by crack growth, i.e. growth rate of a bigger crack
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Figure 3.17: evolution of the kinking angle (left), and the growth rate (right)

is larger than a smaller one, under the same loading conditions. The estimated growth rate
due to 3D D.F. and JINT are in good agreement with the mentioned point, showing the
fact that for three-dimensional crack problems, the effect of Ky should be considered.
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Figure 3.18: evolution of the compliance components in the principle directions for the
circular crack with y, =45° and y;, =y, =0°
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This chapter is concerned with the numerical analysis of the evolution of anisotropic
damage due to a single growing internal mixed-mode elliptical or circular crack in a unit
cell, as presented in the previous chapter. This provides a better insight to the process
of damage from the microscale to the macroscale level. For this, the concept of unit cell
damaged by a growing single mixed-mode internal crack is considered.

Finite element simulation of quasi-static propagation of internal cracks under mixed-
mode loading condition was addressed in chapter 3. At each step of crack propagation, the
compliance tensor of the unit cell modified by the damage due to the growing crack can be
calculated by applying six loadings, i.e. three simple shearings and three simple tractions.
This enables us to study the effect of damage evolution due to a growing microcrack on
the mechanical behavior of materials and the corresponding elastic properties in a local
sense (MOLLA-ABBASI & SCHUTTE 2007). Considering the fact that all materials un-
der special loading conditions and most brittle materials develop anisotropic damage, the
presented model results in the evolution of the type of the material symmetries. To identify
the type of material symmetry, the approach proposed by COWIN & MEHRABADI (1987)
is used, which is based on the characterization of the eigenvalues and eigenvectors of the
elasticity tensor. The results are then verified with the help of an optimization proce-
dure.

4.1 Anisotropic materials

Many materials are anisotropic and inhomogeneous due to the presence of varying com-
position of their constituents, or become anisotropic during the manufacturing process or
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during the loading history, due to the accumulation of damage or initiation and growth of
microcracks, microvoids and microdefects in general.

Man made composite materials are often designed to be anisotropic, because their in-
tended use is to carry a particular type of loading that requires stiffness and strength in
one direction more than in the others. Wood is a natural composite composed of cylin-
drical layers associated with each year’s growth. The micro-structure of many natural
materials such as bone tissue, wood, teeth and muscle endow the material with a par-
ticular anisotropic material symmetry for resisting the loadings to which the material is
subjected. These materials evolve their particular micro-structures in response to the en-
vironmental forces.

The method of formation of geological materials generally provides them with a def-
inite layering (natural composite) which makes them elastically anisotropic. Gravity is
the force that gives geological sediments their initial layering. Plate tectonic forces then
move these layers in directions other than that in which they were formed. Macroscopic
man-made materials such as reinforces concreted, skis and helicopter blades are other
examples of anisotropic elastic materials.

Constitutive relations in linear elasticity are given by the generalized Hooke’s law
which linearly relates the components of the second-rank stress and strain tensors with
the help of the fourth-rank elasticity or compliance tensor. The number of independent
components of the linear stiffness or compliance tensor is 21 for the most general case,
where the elastic material possesses no symmetry. For materials with a certain number of
planes of symmetry, the number of distinct components of this tensor will reduce further
accordingly, e.g. for isotropic elastic materials, where every plane is a plane of symmetry,
there are only two distinct elastic constants, the so called Lamé constants. In general, in
a coordinate system other than the symmetry coordinate system of the material, with a
known material symmetry, there will be 21 non-zero components for the elasticity tensor.
However, for a given elasticity tensor relative to a known but arbitrary coordinate system
it is possible to determine the symmetry coordinate system. Once the symmetry coordi-
nate system has been determined the fourth-rank tensor transformation can be applied to
obtain the elasticity tensor in the symmetry coordinate system.

In this section, different notations for the Hooke’s law are given. The method for the
identification of material symmetries for a given elasticity tensor relative to a known but
arbitrary coordinate system is described next. A short summary on the determination of
the eigentensors for the anisotropic elastic material symmetries is given. These provide
the fundamentals required for the analysis of anisotropic damage evolution presented in
the following sections.

4.1.1 different notations for the generalized Hooke’s law

The generalized Hooke’s law in fourth-rank tensorial notation relates the components of
the second-rank stress and strain tensors by a fourth-rank tensor, the so called elasticity
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type of material [Nr.  of dis- | Nr. of planes

symmetry tinct elastic co- | of symmetry
efficients

Isotropy 2 oo?

Transverse 5 oco+1

Isotropy

Cubic 3 9

Tetragonal 6 6 5

Tetragonal 7 7 5

Hexagonal 6 6 3

Hexagonal 7 7 3

Orthotropic 9 3

Monoclinic 13 1

Triclinic 21 0

Table 4.1: characterization of the material symmetries

tensor or compliance tensor depending on its definition, and it reads
c=C:c or e=S:0 where S=C', 4.1)

where the superscript —1 indicates the inverse operation, and

on o1z 013 &n €12 &3
o= |0n 0 03 |, e=|€en €2 €3], 4.2)
031 032 033 €31 €32 €33

and

( Cun Ciz Cus Cizn Ciziz Gz Cisn Ciiz Cizis \
Cnzt Cnz Cus Cizzn Cizzz Cizas Cizan Cizz Cuas

Cia1r Cnzz Cuss Cizzi Cizzz Cizss Cizzi Ciasz Ciass

Can Canz Cans Czn Caz Cons Cun Cziz Cais
C= Cnzt Caizz Can Cz22n Ca2z Cazps Cuan Cunn Cpzx

Czai Caizz Caia Ca31 Casz Cpass Caz1 Cusz Caag

Cam Canz Cans Caan Caziz Csais Csznt Caaiz Caaa
Caizv Caiz Cais Cazn Cizz Cazp Cizzi Czzz Caszs
\ T3z Caizz Caiss Caz1 Cazzz Cazss Cizs1 Caszz Casas /

4.3)
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The elasticity tensor has certain symmetry properties, which follows from the symme-
try of the stress and strain tensors and the thermodynamic requirement that no work should
be produced by the elastic material in a closed loading cycle. The number of independent
components will then reduce from 81 components to 21 for the most general form, where
the elastic material possesses no symmetry (Triclinic materials). For materials with a
certain number of planes of symmetry , the number of distinct components of the tensor
C will reduce further accordingly, e.g. for orthotropic elastic materials (three planes of
symmetry) C has nine distinct components, for Cubic elastic materials (nine planes of
symmetry) the number of distinct components reduces to three, and for isotropic elastic
materials where every plane is a plane of symmetry, there are only two distinct elastic
constants, the so called Lamé constants A and p.

Referring to the Voigt matrix notation, the Hooke’s law is given as

on Cim Cuz Cnaz Cinz Cnzs Cins en
[173) Can Cuzn Cass Caz Cazs Coans £n
033 | _ | Caan Caszz Cassz Casiz Caszs Caais €33 (4.4)
012 Cizn Gz Cizzz Cinz Cizzz Ciziz | | 2612 | ° )
(03] Cun Camz Ciaz Conz Crzaz Conis | |26
013 Cizn Cizsz Cizzs Ciziz Cizzzs Ciniz/ \2e3
or
- o~ o~ ~ a1
c=C:€ or e=S:0, and C=8 , 4.5

where the stiffness matrix C or the compliance matrix S do not represent the components
of a second-rank tensor in six-dimensions. The stress and strain are considered as vectors
in six-dimensional cartesian space. This representation is obtained from (4.1) by making
use of the index-notation conventions of the free and summation indices. The Voigt matrix
notation is important because much of the data on the elastic properties of anisotropic
elastic materials are reported and recorded in this notation.

The second-rank tensor notation in six-dimensions due, in principle, to KELVIN (1856)
(see also KELVIN (1878)), which was expressed by RYCHLEWSKI (1984) and
MEHRABADI & COWIN (1990) in contemporary linear algebra notation, converts the
non-tensorial Voigt notation to the tensorial notation, given in equation (4.6). Using this
notation, stress and strain components form vectors in six-dimensional cartesian space, as
well as second-rank tensors in a three-dimensional cartesian system

on Cyin Cnz Ciuzs  V2Cimz V2Cuzs V2Cins en
(1731 Can Co2 Cass  V2Caiz V2Cas V2Cans €2
033 _ | Can Casz Cazzs V2Cisiz V2Caszs V2Caaa €33
v2o1 | T | V2Cian VZCizz VZICizs 2Ciz 2Cizzz  2Cps V2en
\/EUB \/-2-(:731] \/zc;_gzz \/szs 2Ca313 2Cia 2C3 \/EEB
‘/20'13 \/zcl.’.ll \/iclszz \/zclssa 2Ci312 2Cian 2C313 ‘/25‘3

(4.6)
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or

~1

=C:% or £=8:6, and C=§ , @.7

The factor v/2 which multiplies the shearing components of the six-dimensional stress
and strain vectors in the Voigt notation assures that the scalar product of the two six-
dimensional vectors is equal to the trace of the product of the corresponding second-rank
tensors (Tr(o : €)). This correction also permits the conversion of three-dimensional
second-rank tensor components directly to six-dimensional vector components, and vice
versa. The six-dimensional second-rank tensor of elasticity is constructed from the one
of the Voigt notation multiplying v/2 and 2 factors to the components of the upper-right,
lower-left and lower right matrices, respectively. In (MEHRABADI & COWIN 1990), it
has been proved that the symmetric matrices C and S are representing the components of
second-rank tensors in six-dimensional space.

4.1.2 identification of material symmetries

As mentioned, the elasticity tensor of a linear anisotropic elastic material with known
type of material symmetry, in general, has 21 non-zero components in a coordi-
nate system other than the symmetry coordinate system. For a given elasticity ten-
sor relative to an arbitrary coordinate system with known type of material symme-
try, it is possible to determine the number and orientation of the planes of symmetry
(COwWIN & MEHRABADI 1987). A plane of symmetry at a point in an elastic material
is a plane with respect to which the material has reflective symmetry. The number of
planes of symmetry associated with the number of distinct elastic symmetries propose
which type of symmetry the material possesses. If every vector in a plane is a normal to
a plane of symmetry, the plane is said to be a plane of isotropy, which itself is a plane of
symmetry.

According to COWIN & MEHRABADI (1987), there are ten traditional and distinct
elastic symmetries identified so far. Given the form of the elasticity tensor for a material
relative to an arbitrary coordinate system, it is possible to determine to which of the elastic
symmetries it belongs. Here, the method proposed by COWIN & MEHRABADI (1987) is
used to determine the type of the material symmetry.

A material is said to have a plane of symmetry at a point, if the structure of the material
shows reflective (mirror) symmetry with respect to a plane passing through this point. The
necessary and sufficient conditions for a vector a; to be the normal to a plane of symmetry
of a material of given elasticities Cijmn are

Cirst ar a5 a¢ = (Crstu ar as Ay ay) 0y, 4.8)
Cimmj 95 = (Cymmu G¢ Gu) ai,

Cimmj qQ; = (Ciumm Q¢ ) a1,

Cijmnbjbman = (Crstubsbraray) a;
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where the vector b is any vector perpendicular to a;, and the indices range over 1,2, 3.

Conditions (4.8); and (4.8); show that a; must be an eigenvector of the symmetric
second rank tensors Cimmj and Cijmm, respectively. These two conditions allow one to
calculate a set of possible vectors a;. If one of the vectors of the set of a; also is an
eigenvector of Ciyst ar as a; and Cijmn bj b, i.€. satisfies the conditions (4.8); and (4.8)4,
respectively, then it represents a normal to a plane of symmetry of a material for which its
elasticity tensor Cijyny, is given.

Using this theorem, one can characterize the traditional and distinct elastic symmetries
by their planes of symmetry. The ten traditional and distinct elastic symmetries with the
number of non-zero components of the elasticity tensor are triclinic(21), monoclinic(13),
orthotropic(?), hexagonal(7), hexagonal(6), tetragonal(7), tetragonal(6), hexagonal(5),
cubic(3), and isotropic(2).

Traditional anisotropic elastic material symmetries are characterized by the planes of
symmetry. Triclinic materials have no planes of symmetry. Monoclinic symmetry is
characterized by one plane of symmetry. In the case of three mutually orthogonal planes
of symmetry the material has orthotropic or rhombic symmetry. Hexagonal(7) symme-
try is characterized by three planes of symmetry whose normals all lie in one plane and
make angles that are multiples of 60° with each other. Hexagonal(6) symmetry is also
characterized by three planes of symmetry whose normals all lie in one plane and make
angles that are multiples of 60° with each other, but differs from hexagonal(7) in that, for
Hexagonal(6) symmetry one of the normals to a plane of symmetry is a coordinate axis of
the symmetry coordinate system. Tetragonal(7) symmetry is characterized by five planes
of symmetry, four of which have normals that lie in one plane and make angles which are
multiples of 45° with each other. The fifth plane is the plane in which the other four nor-
mals lie. Tetragonal(6) symmetry is also characterized by five planes of symmetry of the
type described for tetragonal(7) symmetry, but the difference is that for tetragonal(6) three
of the normals to the planes of symmetry are coordinate axes of the symmetry coordinate
system, while for tetragonal(7) only one normal to a plane of symmetry is a coordinate
axis. Materials with cubic symmetry have nine planes of symmetry, which all intersect
at either 90° or 45°. For Isotropic materials, any plane passing through a point is both a
plane of symmetry and a plane of isotropy.

Table 4.2 indicates the type of material symmetry for given number of planes of sym-
metry and the distinctness of the eigenvalues of the second-rank tensors Cimm; and Cijmm,
where S is the set of all a;’s which satisfy the conditions (4.8), and ej; denotes the eigen-
vector corresponding to the distinct eigenvalue.

4.1.3 eigentensors of linear elastic anisotropic materials

The eigenvectors of the three-dimensional fourth-rank anisotropic elasticity tensor, con-
sidered as a second-rank tensor in six-dimensional space, are called eigentensors when
projected back into the three-dimensional space. The maximum number of eigentensors
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type of material sym- | Nr. of planes | Eigenvalues | remarks on eigenvectors
metry (distinct elastic | of symmetry | of Cipmy &

coef.) Cijmm

Isotropic(2) o0? three equal | any vector is an eigenvector
Transverse Isotropy(5) | oo+ 1 two equal enpisinS

Cubic(3) 9 three equal | any vector is an eigenvector
Tetragonal(6) 5 two equal episinS

Tetragonal(7) 5 two equal eqrisin S

Hexagonal(6) 3 two equal eqpisnotin §
Hexagonal(7) 3 two equal erpisnotin S
Orthotropic(9) 3 three distinct | three coincide
Monoclinic(13) 1 three distinct | one coincides

Triclinic(21) 0 three distinct | non coincides

Table 4.2: characterization of the material symmetries

for any elastic symmetry is therefore six. The concept of eigentensor was introduced
by KELVIN (1856), who determined the eigentensors for many elastic symmetries. The
eigentensors are useful in the design of composite materials. The invariants of eigen-
tensors are useful in formulating the phenomenological theories of fracture for brittle
anisotropic materials.

The eigentensors of particular elastic symmetries are significant because they identify
preferred modes of deformation associated with particular anisotropic elastic symmetries.
The eigentensors of a linear isotropic elastic material are familiar. They are the deviatoric
second-rank tensor and a tensor proportional to the unit tensor, the so called hydrostatic
(or dilatational or spherical) part of the tensor.

The problem of finding the eigentensors and eigen-elastic constants for a given elastic
symmetry is addressed by seeking those strain states € for which € and o are parallel in
the six-dimensional cartesian space. Especially, we seek the values of the number A and
the strain states £ that satisfy the equation

o=Ae, or (C—AI})-e=0. 49

Since C is a positive definite symmetric second-rank tensor in six-dimensions, there
will be a maximum of six positive values of A (An, N = 1,...,6) satisfying equation
(4.9) and a maximum of six associated values of ¢, denoted by the vector &N in six-
dimensional space, and by the second-rank tensor ¢ in three-dimensions. The values

of Ay are called the eigen-elastic constants and, if possible, are ordered by the inequality
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Ay > -+ > Ag > 0, and the values of e™) are called the strain eigentensors of linear
elastic material characterized by €. The eigenvalues of the compliance tensor S are the
inverse of the eigenvalues of C.

Symmetry eigenvalues multiplicity | mode
Isotropy cn+2cy2
2 Ca4
Cubic cn+2ci2
tn—¢C2
2 Cag
Transversely ¢33 + V2 ci3(tan o + sec &)
isotropy ca3 — V2 cy3(tan & + sec &)
ci1 —Ci2
2 C44

Hexagonal(7) & | c33 + v2 cy3(tan & + sec &)
Hexagonal(6) ¢33 — V2 ci3(tan & + sec )
0.5(c11—c12)(1+sec B)+cas(1—sec B)
0.5(c11—cy12)(1—sec B)+cqq(1+secB)
Tetragonal(7) ¢33 + V2 ¢y3(tan & + sec )

¢33 — V2 c13(tan & + sec )
0.5(c11—c12)(1+secy)+ces(1—secy)
0.5(ci1—c12)(1—secy)+cgg(1+secy)
2 Caa

Tetragonal(6) ¢33 + V2 ¢13(tan o + sec o)

¢33 — V2 c3(tan & + sec &)

i —Ci2

2 Céo

2 Caq

DO b pmt ot ot DD bt et it et DN = = DN e = WD N e LA

Table 4.3: properties of the eigenvalues for different elastic symmetries

The stress eigentensors o™) are obtained by multiplying £¢(N) by the eigenvalues Ay.
KELVIN (1856) called the the constants Ay the six principle elasticities of the material,
and he called the stress and strain eigentensors the principle types of stress and strain.
The eigentensors associated with distinct values of Ay are orthogonal. For example for
the strain eigentensors

. eM =0 or tr (e”“’ : s‘M’) =0, forN#M, (4.10)
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Figure 4.1: six deformation modes to calculate the compliance tensor

and similar relations hold for stress eigentensors. The strain eigenvector 2™ is not re-
quired to be a unit vector in the six-dimensions. A Cartesian basis can be constructed
from the normalized eigentensors. The normalization of € is denoted by N,

2

=N |8, where [§°=%- 2. 4.11)

(02

The stress eigenvector can be written in terms of the normalized strain eigenvector

e=A8N. (4.12)

The set of six N form a Cartesian basis in six-dimensional space, where

6
Y R g™ -1, (4.13)
K=1

With respect to such a space, &, € and € or § have the representation

6
Py 2 K
B AKE(KIZZAK'E:K)‘IQI )
K=1

6
K=1
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6 6
e=Y =% |e“<)| M 4.14)
K=1

K=1

6
(K) (K) (X) (K)
@=é,\m o™, o §= ZAKN &N

K=1

When all six values of Ay are distinct, which is the case for orthotropic symmetry and
lesser degrees of symmetry

6
ReR™= TJ € vt 4.15)

N=1(N5K) Ax=An’

Considering the second-rank elasticity tensor in the six-dimensions for each type of
elastic symmetry and solving equation (4.9) the number of eigenvalues, their multiplicity
and associated mode of deformation are resulting. Considering the general form of the
elasticity tensor

Cchn €12 Ci3 \/2614 \/2015 \/2616

cn 5] €3 \/f C24 \/i C25 \/i C26

@ — €31 C32 C33 \/i C34 \/2 C35 \/2 C36
V2ca V2cyp V2c43 2cu 2cs5 2
V2esi V2es2 V2es3 2css 2cs5  2cs
V2ea V2Zea V2cs 2ce  2¢i5  2ce

the eigenvalues for different elastic symmetries (MEHRABADI & COWIN 1990) are

listed in table 4.3, where D and I represent the dilatational and isochoric modes of defor-
mation, respectively, and the angle « is defined by

) (4.16)

2
oc=4i—-(0u +ci2—c33) . 4.17)
Ci13

For Hexagonal(7) and Hexagonal(6) the angle 3 are respectively defined by

4\/‘3%4*‘3%5 @18)

cin—Ciz—2c4’

4c
BHé = arctan ——— % |
Ci1—Ciz—2Ca4

and for Tetragonal(7) symmetry vy is obtained from
4
cii—c12—2¢Ce5

BH” = arctan

Y = arctan 4.19)

The associated eigentensors for individual elastic symmetries are obtained by solving
the eigenvalue problem (4.9) for each tensor C associated with a distinct linear elastic
anisotropy.
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4.2 Evolution of the material symmetries

In this section, the evolution of the compliance tensors modified by the damage due to a
growing internal mixed-mode crack is given first, which is based on the simulation results
presented in chapter 3. For this, the circular and elliptical crack problems given in chapter
3 are considered further, i.e circular crack with v, = 45° and v = v, = 0°, and elliptical
crack with an aspect ratio of B/ = 0.5, and v, = 30° and yx = vy = 0°. Evolution of
the type of material symmetries for the calculated compliance tensors is then given with
the help of the method based on the characteristics of the eigenvalues and eigenvectors
presented in section 4.1.2 (COWIN & MEHRABADI 1987).

For a given elasticity tensor with a known type of symmetry, it is possible to calculate
the location of the normals to the planes of symmetry with the help of an optimization
procedure. The idea of this method is to find the coordinate transformation that yields the
best symmetry representation of the given tensor. As mentioned, this method requires the
type of material symmetry as a priori known, hence cannot be generalized to problems
without information on the type of elastic symmetry. The evolution of the axes of sym-
metry for the presented examples are also calculated with the help of this method, and the
results are compared to the ones based on the COWIN & MEHRABADI (1987) method.

4.2.1 evaluation of the compliance tensor

The components of the compliance tensor of the unit cell at each propagation step can
be computed by applying six basic modes of deformation to the unit cell (three uniaxial
tensile loadings and three simple shear loadings). Application of each tensile loading
results in 9 components of the compliance tensor, and each shear loading results in 18
components.

For example, applying 017 = 0y results the following components

en €12+ €
Sun=— Sizin =S = ———
on' 2om
€22 €23+ €32
on ) 23 32 20,” ) ( )
£33 €13+ €3
Sz = — Sin =Sm = ———
on ' 20n
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and applying 02 = 0y, results

2 1121 Zoi’
€22

Su1z = Syl = ——

2212 222 Zom’
€33

S3312 = Saz91 = —

33 20’]2'

En2+ &

S1212 = S1221 =Sp112 =Sz = Tor; 4.21)
E3+E
S2312 = Sz321 = S3212 =Sz = ZZTuﬂ
g3+ €
S1312 = Sizz1 = Sanz =Sz = y .
012

4.2.2 numerical results

This section presents the evolution of the compliance tensor and the evolution of the type
of material symmetry for the considered crack problems. The components of the com-
pliance tensor are given in six-dimensional second-rank tensorial notation with respect to
the principle loading coordinate system of the unit cell, coincident with the global coor-
dinate system, figure 4.1. The Poisson’s ratio is chosen as v = 1/3 and the loading level
as 0°/E = 1/100, where E is the Young’s modulus of the homogenous linear elastic
isotropic matrix material.

The six-dimensional second-rank compliance tensor of the homogeneous isotropic ma-
trix material in its pristine state is

(1 —~ — 0 0 0
—~ 1 —v 0 0 0
Matrix,/_\] —-v —=v 1 0 0 0
ST =%lo0 0 0 14v 0 0 (4.22)
0 0 0 0 1+4v 0
\0 0 0 0 0 1+v
( 1 =13 -173 0 0 O
-1/3 1 =1/3 0 0 0
1|=3 =13 1 0 o0 o
gl o o o 43 o0 o
0 0 0 0 4/3 0
\ 0 ©0 o0 o0 0 4/3

As the crack grows, the compliance tensor modified by damage is calculated with the
help of the procedure given in section 4.2.1. The change of the compliance tensors as-
sociated to the damage due to the initiation of the circular and the elliptical cracks are
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Figure 4.2: elliptical crack: evolution of the diagonal components of the compliance ten-

sor
respectively
2.6050 —0.2365 0 1.6740 0 0
—0.2365 2.6047 0 1.6741 0 0
1 7o0\3 0 0 0 0 0 0
Crack __ (¥4
A5 =¢ (L) 16740 16741 023693 o o | ©23
0 0 0 0 1.4216 1.4201
0 0 0 1.4201 1.4201
and
0.41044 —0.02732 0 0.49054 0 0
—0.02732 1.1797 0 0.44827 0 0
ASCrock 1 (gf)3 0 0 0 0 0 0
E T E\L 0.49054 0.44827 0 0.78721 0 0 ’
0 0 0 0 0.76571 0.44096
0 0 0 0.44096 0.25479
(4.24)

where the tolerance is set as 1077. These results are in good agreement with the
ones based on the analytical solutions for an isotropic homogenous infinite solid dam-
aged by a single circular crack (KRAJCINOVIC 1996), and a single elliptical crack
(BUDIANISKY & O’CONNELL 1976). The detailed analytical solutions for the effec-
tive continuum elastic properties of homogenous isotropic elastic solids corresponding to
the damage due to a circular and an elliptical internal cracks are given in section 5.3.
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Figure 4.3: circular crack: evolution of the diagonal components of the compliance tensor

Figures 4.3 and 4.2 show the evolution of the diagonal components of the change of
compliance tensor, respectively for the circular and elliptical cracks. The left hand curves
in figures 4.3 and 4.2 show the change of the compliance components of the unit cell in the
principle loading directions, and the right hand ones represent the shear components.

4.2.3 Cowin-Mehrabadi approach

To see if there exists a plane of symmetry for the calculated tensors, the Cowin-Mehrabadi
method based on the characterization of the eigenvalues and eigenvectors of the compli-
ance tensor is considered here. For this, the eigenvectors of the second-rank tensors Simmj
and S;jm, are to be calculated first.

For the compliance tensor modified by the damage due to the initial elliptical crack, the
eigenvectors of the two tensors are coincident

nf") =nf? = (0.866 —0.500 0.000) , (4.25)
ny) =nP = (0.500 0.866 0.000) ,
n{) =n{ = (0.000 0.000 1.000) ,

so all three vectors could be normals to the planes of symmetry. These eigenvectors
also satisfy the conditions (4.8); and (4.8)4, showing that all three eigenvectors are nor-
mals to the planes of symmetry. This indicates that the damaged unit cell has at least
three planes of symmetry. The eigenvalues of the two tensors are distinct, so no more
than three planes of symmetry can exist (COWIN & MEHRABADI 1987). Since there
are three mutually orthogonal planes of symmetry for the unit cell embedding the el-
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Figure 4.4: elliptical crack: evolution of the normals to the planes of orthotropy

liptical crack, it follows that the material has orthotropic symmetry, for which the nor-
mals to the planes of symmetry are aligned with the ones of the crack coordinates (1 is
aligned with the semi-minor axis, n is perpendicular to the plane of the crack and n;
is aligned with the semi-major axis of the ellipse. These results were also predicted by
BUDIANISKY & O’CONNELL (1976).

As the crack grows, the same procedure can be undertaken to determine the evolution
of the material symmetries. It is observed that for cach step of crack growth, the type
of material symmetry is approximately orthotropic. Figure 4.4 shows the evolution of
the normals to the planes of orthotropic symmetry as the elliptical crack grows. The thin
arrows (n{’s) show the normals to planes of symmetry due to the initial crack, the thick
ones (n’s) show the ones of the last propagation step and the dots in between show the
evolution path. It is observed that by crack growth, the normal vectors are rotating to align
with the principle loading directions.

In an analogous way, the conditions (4.8) are checked for the initial circular crack. For
this case, the eigenvectors of the tensor Sijm;j and Sijmm, are identical as well
ni! = n‘ﬁ’ (0.707 —0.707 0.000) , (4.26)
T _n2 = (0.707 0707 0.000) ,
“‘ =n) = (0.000 0.000 1.000) ,
so all three vectors could be normals to planes of symmetry. The eigenvectors also sat-
isfy the conditions (4.8); and (4.8)s, showing that all three eigenvectors are normals to

the planes of symmetry, so the damaged unit cell has at least three planes of symme-
try. The tensors Simm; and Sijmm both have two identical eigenvectors. This indicates
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Figure 4.5: circular crack: evolution of the normals to the planes of orthotropy

that the material damaged by the single circular crack becomes transversely isotropic
(COWIN & MEHRABADI 1987). This could be further checked, by considering the
eigenvector associated with the distinct eigenvalue of the tensor Siym; or Sijmm. This
vector is normal to the plane of the crack, and it is easy to show that in the plane of the
crack, where every vector is orthogonal to this vector, any chosen vector is an eigenvector
of the tensor Cipmj or Cijmm. This indicates that the number of the planes of symmetry
is oo + 1, which is the case for a transversely isotropic material.

However, for the growing circular crack the type of material symmetry is different
than for the initial circular crack. It is observed that at each step of crack growth the
type of material symmetry is approximately orthotropic, as was the case for the elliptical
crack. Figure 4.5 shows the evolution of the normals to the planes of orthotropic material
symmetry as the circular crack grows.

4.2.4 optimization approach

Considering the fact that the damage associated with a growing elliptical or circular crack
changes the virgin isotropic material properties into orthotropic one, it is possible to find
the orthotropy axes using an optimization method. The idea of the optimization proce-
dure is to find the coordinate transformation that yields the best symmetry representation
of a tensor with a known type of symmetry. So at each step of crack propagation, the
optimization algorithm consists of finding the appropriate coordinate transformation for
the measured compliance tensor in the principle loading coordinate system of the unit cell
that yields the best orthotropic representation. The compliance tensor transformed to the
axes of orthotropy is denoted with §’, which is calculated using the fourth-rank tensor
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transformation rule
Sijmn = Rir Rjs Rmt Ry Srstu» .27

where R is an orthogonal transformation including all three Euler rotation angles about
the three cartesian axes (R = R;(vz).Ry(vy).Ri(Yx)). As an optimization criterion, the
following target function is defined (SCHUTTE & MOLLA-ABBASI 2007A)

non.ORT 2
Forr= Y (Shmn (R(Yx, Yy» ¥2))) (4.28)

ijmn

3
= (Sin3)? + (Sizzs)* + (Siaas) + Z(S{uz)z + (Slizs)? + (Sius)?,

i=1

where the summation applies only to the non-orthotropic terms that deviate from zero
in the orthotropic coordinate system, and for perfect orthotropy the target function be-
comes zero. By finding the appropriate coordinate transformation by the set of angles
(Yx»Yy»Y2) that minimizes the target function, the orthonormal basis resulting the best
orthotropic approximation is found

ROX" — arg min {Forr (R) [detR =1, R" =R}, 4.29)

=  SORT = ORT {S{m (R°*)},

where ORT(e) is the operator that nulls out the non-orthotropic components of S{.,
deviating from zero. This gives the best orthotropic representation of Sj;,,,,, in the resulting
orthotropic coordinate system.

This method is applied to the considered examples to find the evolution of orthotropic
coordinate system. For both examples, the resulting rotation angles about the x and y
axes are zero (Yx and v,). The evolution of the non-zero rotation, which is about the
z-axis, for the best representation of orthotropy is given by the left hand curves in figures
4.6 and 4.7, respectively for the elliptical and circular cracks. To compare the accuracy
of the results, the resulting approximate orthotropic compliance tensor S’ is compared to
the best orthotropic tensor S°KT which is resulting from S’ by setting all non-orthotropic
components to zero. For this, the following error function is considered

oxr _ 8% =5 | “”
Error?t = Trgmgmoy » v ISImy 2 Sum Sy,

Ljmn=1

(4.30)

and S is the compliance tensor for the undamaged matrix. The right hand curves in
figures 4.6 and 4.7 compare the errors due to the Cowin-Mehrabadi approach and the
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Figure 4.6: elliptical crack: evolution of the orthotropic transformation angle
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Figure 4.7: circular crack: evolution of the orthotropic transformation angle

optimization procedure. It is observed that the difference between the Cowin-Mehrabadi
approach and the optimization procedure is very small. This deviation may be due to the
numerical errors in processing of the results.

Summarizing the results of this chapter, the following points should be men-
tioned. The evolution of the compliance tensor shows that the damage associated
with the initiation of a single mixed-mode internal circular crack changes the virgin
isotropic properties into transversely isotropic ones (KRAJCINOVIC 1996), and the dam-
age associated with a single elliptical crack results in orthotropic material symmetry
(BUDIANISKY & O’CONNELL 1976). Thus, changing the type of material symmetry
from isotropic to orthotropic may imply the existence of local damage due to an ellip-
tical crack. This result is the cornerstone for the proposed continuum damage mode! in
the next chapter. The evolution of damage due to a growing internal elliptical or circular
crack shows that at each step of crack growth material possesses orthotropic symmetry,
and for heavily grown cracks the axes of orthotropy rotate towards the principle loading
coordinates of the unit cell.
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The advantage of using the approach of Cowin-Mehrabadi is that the type of elastic
material symmetry is directly identified from the character of the eigenvectors and eigen-
values, and there is no need for a priori assumptions. Using the optimization procedure,
however, the type of material symmetry should be a priori known and this method cannot
be generalized for problems without prior information on the type of elastic symmetry
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Failure of most structural members on the macroscale follows the irreversible hetero-
geneous microprocesses of time and environment dependent deterioration of materials.
The existence of distributed microscopic voids, cavities, or cracks of the size of crys-
tal grains is referred to as material damage, whereas the process of void nucleation,
growth, and coalescence, which initiates the macrocracks and causes progressive material
degradation through the reduction of strength and stiffness, is called damage evolution
(CHABOCHE 1988), (SKRZYPEK & GANCZARSKI 1999).

On the atomic scale, the material structure is not continuous at all, but is represented
by a configuration of atoms ordered in a crystal lattice or molecular chains bonded by the
interatomic forces. The state of material damage on this level is determined by the config-
uration of atomic bonds, the breaking and re-establishing of which constitutes the damage
evolution. On the microscale, the damage is due to the accumulation of the microstresses
at the neighborhood of microdefects and microinclusions, and material structure is piece-
wise discontinuous and heterogeneous. The state of damage in a volume of material can
be determined by the number of microcracks or microvoids and their size and configura-
tion. On the mesoscale, damage process is concerned with the growth and coalescence of
microcracks or microvoids which together initiate one crack. On the macroscale, growth
of the initiated cracks is the main mechanism of damage and a concept of quasi-continuum
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is introduced. In this regard, the discontinuous and heterogeneous solid suffering from
damage evolution, is approximated by the ideal pseudo undamaged continuum using the
couples of effective state variables, such as £ and @, in the current damaged state and
dissipation potential instead of the classical state variables, such as € and o, representing
the strain and stress tensors for the idealized (pseudo undamaged) and the true (damaged)
solids, respectively. To derive the behavior of the material at the mesoscale, specific
mechanisms at the microscale are studied (LEMAITRE 1992). The mechanical model-
ing of these mechanisms is performed with common constitutive equations and a crack
growth criterion at the meso- or macroscale. The crucial step is the interaction between
different mechanisms and the homogenization binding the gap between the micro- and
the mesoscale.

Damage of crystalline metallic materials can basically be distinguished introducing
two main mechanisms. The first damage mechanism, called the ductile or transgranu-
lar damage mode, is predominant at high stress level tests when the slipbands of plas-
ticity are formed in favorably oriented grains. The microslips are inclined roughly
at 45° to the main stress direction and the coupled damage-(visco)plasticity mecha-
nism may approximately be described by the isotropic (scalar) damage internal vari-
able D, the evolution of which may be governed by the elastic energy release rate
(LEMAITRE & CHABOCHE 1990) or the total (elastic and inelastic) energy release
(SAANOUNI, FORSTER & BEN-HATIRA 1994) in a more general case. The material
instability from microslips initiation eventually yields a discontinuous bifurcation of the
velocity field (RUNESSON, OTTOSEN & PERIC 1991). The plastic strain localization in
zones of microvoid concentration leads to a failure mode with material separation and the
formation of free surfaces (decohesion) on the macrolevel. The macrocracks are formed
in a transgranular mode with a preferable inclination that coincides with the directions of
slipbands of plasticity.

The second damage mechanism, usually identified for simplicity with brittle or inter-
granular damage, is representative for rather low stress level loading conditions. It is
mainly based on the microcracking process initiated at the grain (or subgrain) bound-
aries, and it is recognized to be controlled by the local maximum stress, rather than
the effective stress, such that the normal to the microcrack direction coincides with the
principal stress direction at the point considered. The macrocracking process may be
observed at selected grain boundaries to result from the coalescence of microcracks of
similar average orientation. No or negligibly small plastic deformations precede the
damage evolution, hence pure brittle failure mechanism occurs. The discontinuous and
heterogeneous damaged solid is approximated by the pseudo undamaged continuum by
the use of the couples of effective state variables, the definitions of which depend on
the equivalence principles employed. In such a case, however, the damage evolution
in the elastic-brittle or creep materials is no longer isotropic, hence unlike the duc-
tile damage phenomenon, brittle damage behavior is anisotropic in nature, so that the
description by scalar internal variables is insufficient. The essentially anisotropic descrip-
tion of damage in the elastic-brittle or creep solids by the development of distributed and
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oriented microscopic cracks require damage variables ranging from a vector to second-
rank or higher-rank tensors (KACHANOV 1958), (VAKULENKO & KACHANOV 1971),
(DAVISON & STEVENS 1973), (MURAKAMI & OHNO 1981), (CHABOCHE 1988),
(KRAJCINOVIC 1996).

Basically, there are two ways to model the failure of materials, either in a dis-
crete or a continuum format. The latter approach has the advantage that the early
stages of the failure process, for example the onset of microcracking or void nucle-
ation, can be modeled adequately. Various classes of constitutive models are avail-
able (SKRZYPEK & GANCZARSKI 1999), (KRAJCINOVIC 1996). Attempts to capture
damage phenomena such as shear bands, microcracks and other localization phenom-
ena with numerical methods for continuum damage and continuum plasticity models
have started in the mid-1980s. The original concept of continuum damage mechanics
was introduced by KACHANOV (1958), and it was further developed by HULT (1979),
CHABOCHE (1988), and KRAJCINOVIC (1989). The general purpose of continuum
damage mechanics is to describe the coupling effects of damage processes and the stress-
strain behavior of a material. Two basic approaches have been developed within this
framework.

The first method is the micromechanical approach pioneered by MCCLINTOCK (1968)
and RICE & TRACEY (1969), is based upon the micromechanisms of void nucleation and
growth. Within this approach, the effective elastic properties of the material are derived
by using the pertinent results of micro-constituent analysis, such as that of a planar crack
embedded in an infinite medium. Various averaging schemes are utilized in the transition
from micro to macro response, depending on the density of the cracks and their interac-
tions (BUDIANISKY & O’CONNELL 1976), (HORI & NEMAT-NASSER 1983). At the
microscale, a good representation of the local effects and the physical mechanisms can
be introduced. However, due to the overwhelming complexity of the physical phenomena
reflecting the growth and interaction of the microcracks, difficulties often arise when the
micromechanical approach is implemented into a practical scale structural analysis.

The second approach of continuum damage mechanics is essentially a phenomenolog-
ical one. With this approach, the effect of damage on the deformation processes is taken
into account by introducing damage variables into the constitutive equations of the con-
tinuum (LEMAITRE & CHABOCHE 1985), (CHABOCHE 1988), (CHOW & LU 1989),
(KRAJCINOVIC 1989). It is assumed that the response of a material depends only on
the current state of the micro-structural arrangement, which is approximated by a set of
internal state variables that reflect the macroscopic effects of the microdefects. However,
the exact description of each individual microcrack evolution would be meaningless in
view of the fact that the details of the cracking pattern differs from one crack to the other.
The useful homogenization (averaging) concept is applied for describing the macroscopic
behavior of the material. Hence, instead of trying to reproduce the fine details of the mi-
crodefect and macrocrack patterns, continuum damage mechanics attempts to formulate
a theory that will reflect the influence of these defects in a brittle solid in an approximate
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manner.

Five decades of research on the identification of different damage mechanisms have
provided this field with a wealth of damage models and concepts to study the evolution of
damage and failure analysis of materials and structures. However, there is still a need for
new material models and ideas covering the physical aspects of the irreversible damage
process, with which one can describe the accumulation and the growth of damage more
accurately in practical scale structures. In the framework of brittle and quasi-brittle con-
tinuum damage mechanics, which is the concern of this chapter, beside the advantages of
the so far proposed models and their applicability for certain problems, most of these mod-
els are based on simplifying and ad hoc assumptions, without considering the irreversible
damage process in their formulation in a thermodynamically correct way. To mention
some shortcomings of these models, the following points can be pointed out. Some mod-
els are based on the assumption of isotropic damage evolution, in the sense that the initial
type of the material symmetry is preserved during the total load history. Considering
the directional characteristic of microcracks and microvoids in three-dimensional state
of deformation, the application of isotropic damage model is very limited and for multi-
dimensional stress state the need for anisotropic models arises. Some of these models
are based on the degradation of elastic properties due to microcracks with a fixed orien-
tation and/or self-similar growth of microcracks, without allowing these microdefects to
grow and kink to different planes or shapes. This, however, is in contrast with reality
and experimental observations proving the fact that mixed-mode microcracks in brittle
and quasi-brittle materials grow in a kinking manner. Anisotropic material damage is
known to affect the apparent Young’s modulus and the Poisson’s ratio of the solids. This
is neglected in some of the so far proposed damage models, which is in contrast with the
experimental observation (KRAJCINOVIC & FONSEKA 1982). The simplifying and ad
hoc assumptions which some damage models are based on, neither take the thermody-
namics of the damage phenomena into account, nor properly describe the real irreversible
process of the material degradation in a thermodynamically correct way.

It is known from experiments that most materials, and in more special case brittle
and quasi-brittle materials, under general loading conditions develop anisotropic dam-
age (KRAJCINOVIC & FONSEKA 1982). For a given stress state, materials damaged by
microcracks in general accumulate additional damage through the growth of these mi-
crocracks., Considering this and the mentioned points, the concern of this chapter is to
provide a consistent, continuum damage model based on the micromechanical framework
and the local anisotropy (orthotropy) induced by kinking and growing elliptical and/or
circular microcracks. For clarity purposes and to explain the main issues of the proposed
model in a more clear mathematical way, the complexity of the proposed damage model
is reduced here by leaving out the thermal effects and other non-mechanical phenomena.
Strains and rotations are assumed to be small, hence the framework of linear elastic frac-
ture mechanics can be applied. Furthermore, viscous effects and permanent deformations
are neglected and the material behavior is assumed to be linear elastic in its pristine state.
The small strain assumption, and the lack of permanent deformations in this model makes
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it suitable to show the evolution of damage in structures with brittle and quasi-brittle
fracture behavior experiencing high-cycle fatigue.

Generally, it is impossible to formulate a damage model covering the mixed-mode
propagation of micracracks in a fully traceable way. Considering microcracks in the form
of elliptical and circular cracks, one may calculate the kinking of the initial cracks analyt-
ically only for the first load increment. After the kinking of the initial cracks, however, the
mathematical formulation of the next kinking steps is no longer possible. To overcome
this difficulty, some researchers have introduced models based on simplifying assumption
such as fixing the plane of the initiated microcracks, so that microcracks may only grow
in a self-similar manner. This assumption may be acceptable for the case of monotonic
loading or cyclic loading with a constant loading direction, but for loads with changing di-
rection and amplitude, as is the case for non-proportional loads or even sequential loads,
this assumption leads to underestimating the damage, since it does not allow for crack
kinking. The assumption of self-similar growth of mixed-mode cracks, in general, results
in a smaller damage accumulation than what the real mixed-mode kinking results in.

To cover the mentioned shortcomings of other models, and to overcome the difficulties
in the formulation of a damage model, which accounts for the kinking and growth of mi-
crocracks in a mathematical traceable manner, a micromechanical based continuum dam-
age model is proposed here, which is based on the reduction of stiffness due to kinking
elliptical microcracks. To be able to formulate the model in a fully mathematical traceable
way, the concept of an equivalent elliptical crack is introduced in the sense that a kinked
crack is replaced with an equivalent elliptical crack, resulting in an equivalent dissipa-
tion of energy. Basically, eight degrees of freedom can be considered for each equivalent
elliptical microcrack replacing the kinking one. These are the major and minor axes of
the ellipse, orientation of the microcrack given by three Eulerian rotation angles, and the
position of the crack in space. Considering the concept of unit cell and assuming that the
microcrack is located in the center of the cell, the position of the microcrack can be fixed
and may be left out of the formulation. This is because in the case of non-interacting
cracks, the position of the crack does not have an impact on the elastic properties of the
material. To calculate the other five unknown characteristics of the equivalent crack, dif-
ferent postulates may be proposed. Here, to determine the geometry and orientation of the
equivalent elliptical crack, the postulates of equivalent dissipation and equivalent damage
induced anisotropy are considered. Such a formulation of the dissipative damage process
due to kinking equivalent elliptical microcracks, taking into account the damage induced
orthotropy of an elliptical crack in a local sense, results in a consistent damage model
capturing the load history through the local orthotropic degradation of the mechanical
material properties.

This chapter is organized as follows. The principles of continuum damage mechan-
ics are presented first, which provide the required fundamentals for the discussions in
the general continuum damage mechanics. Based on the micromechanical approach, the
components of the tensors for the change of compliance due to the initiation and the kink-
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ing of an elliptical crack are addressed in an analytical way. These results can be reduced
to give the ones corresponding to a circular crack in the limit case as the major axis of
the ellipse approaches its minor axis. Based on these and the results given in the previ-
ous chapters, a micromechanical based three-dimensional damage model for brittle and
quasi-brittle solids weakened by kinking elliptical microcracks is developed. In the im-
plementation of the continuum damage model, the hypothesis of statistical homogeneity
and weak interaction of microdefects is considered, which is reasonable for a modest dis-
tribution of heterogeneities (NEMAT-NASSER & HORI 1993). With this, the assumption
of non-interacting defects is fulfilled. A variety of numerical examples is then presented
to explain the proposed damage model in more detail and also to show its applicability
to real components subjected to fatigue conditions, by comparing the results based on the
proposed model with the experiments.

5.1 Damage variables

Continuum damage models are developed in either phenomenological or micromechani-
cal framework. In either case, the choice of the damage variables is of crucial importance,
since it reflects the nature of damage and determines the degree of simplicity and feasi-
bility of the theory for application purposes. In all cases of various equivalence principles
it is assumed that in a quasi-continuum the true distribution of defects is smeared out and
homogenized by properly defined internal variables that characterize the damage state.
Scalar (KACHANOV 1958), vector (DAVISON & STEVENS 1973), second-rank tensor
(VAKULENKO & KACHANOV 1971), (MURAKAMI & OHNO 1981), fourth-rank tensor
(CHABOCHE 1988) and even eighth-rank tensor variables (KRAJCINOVIC 1996) have
been used to represent damage variables. While vector and higher rank tensors are pre-
dominately used for the representation of anisotropic damage, the scalar damage variable
has been reserved for isotropic damage.

It was KACHANOV (1958) and later RABOTNOV (1969), who for the first time in-
troduced the concept of the scalar damage variable to represent damage progression in
creep of metals. To characterize a gradual deterioration process of a micro-structure,
via microcracks and microvoids nucleation and evolution through the surface area A of
intersection of the plane of normal n with the representative volume element (RVE), sur-
rounding a material point M, KACHANOV (1958) introduced the continuity parameter
w, the magnitude of which is determined as the ratio of the effective (remaining) area
SA = 8A — 8Ap to the total (undamaged) area SA (figure 5.1)

sA
5A’
such that w = 1 corresponds to the undamaged (virgin) state, whereas the continuity

decreases with damage growth to eventually reach zero for a completely damaged surface
element 5Ap = JA.

w = 0<w<l1, 6.1
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Figure 5.1: surface damage measure

Considering planes of various normals n,, the surface damage in an arbitrary direction

x can be defined
dAmD,

5A
where D = 1 — w = 0 corresponds to the undamaged state of the surface element consid-
ered, and D = 1 to the completely damaged element (fully broken). The above definition
is mainly applicable for crystalline materials in which, on the microscale, microscopic
cracks develop both in metal grains (transgranular damage) and on intergranular bound-
aries (intergranular damage). These microcracks have different orientations, such that the
surface damage parameter also changes with the normal vector orientation when the more
developed vectorial or tensorial damage measures are introduced. This concept received
prompt acceptance and became the cornerstone for further isotropic damage models.

D(M,n,x) = (5.2)

Consider a one-dimensional volume element, e.g a bar of cross-sectional area A with
a distribution of microdefects measured by the damaged surface portion dAqp, subjected
to tension F. The stress, without considering the effect of damage, is o = F/8A. For the
damaged element subjected to the same traction field, with A —5Aq as the effective arca
and considering equation (5.6), the stress is defined as

F 0o
A —08Ap 1-D'

which is the so called effective stress principle in one-dimensions.

F= (5.3)

The concept of scalar damage variable D can be generalized to study three-dimensional
anisotropic damage. CHABOCHE (1988), LECKIE & ONAT (1981) and other re-
searchers have given different fourth-rank tensorial representation of damage. In an anal-
ogous way to equation (5.3)

og=(I-D)"':0=M:o, (5.4)

where [ represents the fourth-rank identity tensor, and ID and Ml are the fourth rank damage
and damage effect tensors, respectively.
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Evolution of the anisotropic elastic brittle damage or creep damage influences both the
stress and strain states and the elastic properties of the material as well, leading to the
concept of fourth-rank elasticity tensor modified by damage

oc=C(D):e, or £¢=8(D):o, (5.5)

where D represents the properly selected damage variables, C and S are respectively the
stiffness and the compliance tensors modified by damage. A general concept of the fourth-
rank damage effect tensor M(D) that transforms the Cauchy stress tensor in a damaged
configuration o to the effective (conjugate) Cauchy stress tensor in an equivalent fic-
tive pseudo undamaged solid &, based on the appropriate damage equivalence hypothesis
(strain or stress or complementary energy or total energy equivalence) takes into account
the fully anisotropic nature of damage in the form (CHOW & LU 1992)

oc=M(D): o, (5.6)

where M(D) is an isotropic fourth-rank tensor valued function of a damage state vari-
able D, and the effective stress tensor &(o, D) is an isotropic second-rank tensor valued
function of o and D.

5.2 Equivalence principles of continuum damage mechanics

Consider a damaged solid in a current configuration, the mechanical state of which is
defined by the couple of external state variables (&, o), where ¢ is the small strain tensor
and its associated variable o is the Cauchy tress tensor. The damaged state can be replaced
with a fictive pseudo undamaged state characterized by the effective state variables (£, 0),
the definition of which depends on the damage equivalence principle. This section gives
the various damage equivalence principles more systematically, to generalize the above
definitions to three-dimensional problems.

5.2.1 principle of strain equivalence - the effective stress concept

The hypothesis of strain equivalence (figure 5.2) states that the strain associated with a
damaged state under the applied stress o is equivalent to the strain associated with the
undamaged state under the effective stress o (LEMAITRE 1992).

In the general case of a linear anisotropic elastic solid in three-dimensional space, the
stress-strain relation is characterized by the generalized Hooke’s law
c=C:¢ or e=S:0, where S=C', .7

which relates the components of the second-rank elastic stress tensor o to the components
of the second-rank elastic strain tensor & by a linear fourth-rank tensor S or C, the so called
compliance and stiffness tensors, respectively.
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Figure 5.2: one-dimensional strain equivalent concept

Hooke’s law for the damaged material follows
o=C:¢ , (5.8)
and considering the principle of strain equivalence, €(a,0) = &(c, D), the stress-strain
relation for the undamaged state yields

oc=C:c¢. (5.9

Combining equations (5.8) and (5.9) results in

~—1

oc=C:C :o0. (5.10)

This together with the definition of effective stress result in the damage tensor
D=I-C:C, (5.11)
and reformulating this, the elasticity tensor for the damaged state is resulting

C=(I-D):C. (5.12)

It should be emphasized, however, that the principle of strain equivalence leads to the
restrictive conclusion that the Poisson’s ratio is not affected by damage, so ¥ = ~v, and
consequently under uniaxial tension test a material suffers only from damage in the di-
rection of tensile stresses. However, for most engineering materials this is not true, since
nucleation and growth of microscopic damage not only results in the redistribution of
stresses due to the cross sectional area reduction but also decreases the stiffness of the
material (CHOW & LU 1992). Hence, the strain equivalence principle is considered as
just one possible principle in continuum damage mechanics.
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Figure 5.3: one-dimensional stress equivalent concept

5.2.2 principle of stress equivalence - the effective strain concept

The hypothesis of stress equivalence (figure 5.3) states that the stress associated with
a damaged state under the applied strain ¢ is equivalent to the stress associated with
the undamaged state under the effective strain € (CORDEBOIS & SIDOROFF 1979),
(SIMO & Ju 1987).

In an analogous manner to the principle of strain equivalence, the damage tensor and
the elasticity tensor for the damaged state are resulting. For the undamaged state, the
stress-strain relation may be written in the form

T=C":0, (5.13)

and considering the principle of stress equivalence o€, 0) = o(€, D), and

~=1

e=C :0, (5.19)
it results
=0 :C:e. (5.15)

Considering the definition of effective strain € = (I — D) : &, the damage tensor is
expressed by

D=I-C':C, (5.16)
and the elasticity tensor for the damaged state is given by
C=C:(I-D). (5.17)

It should be noted that in constitutive equations and damage evolution laws, replacing
the nominal stress with the effective stress in the framework of the strain equivalence
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@e = e

Figure 5.4: elastic energy equivalence in three-dimensions

principle or the nominal strain with the effective strain in the framework of the stress
equivalence principle generally increases the complexity of the governing equations. Al-
though the effective stress or strain concepts can be converted to an effective stiffness
concept via the strain or stress equivalence principles, and vice versa, choosing and con-
sistently applying one of these principles can be confusing. These simplified models do
not properly describe the real irreversible thermodynamic material degradation processes
in an appropriate manner. Hence in general, the hypothesis of the elastic (or total) energy
equivalence might be considered as more realistic than that of strain or stress equivalence
(CORDEBOIS & SIDOROFF 1979), (SIDOROFF 1981).

5.2.3 principle of elastic energy equivalence

The hypothesis of elastic energy equivalence (figure 5.4) states that the elastic energy
associated with a damaged state under the applied stress o and the resulting stress € is
equivalent to the clastic energy associated with the undamaged state under the effective
stress o and the resulting strain € (CORDEBOIS & SIDOROFF 1979). This hypothesis is
also known as the principle of complementary energy equivalence.

The complementary elastic energy potentials for the damaged and the pseudo undam-
aged states are, respectively given by
O¢o,D) = % U:éil 1o, and (5.18)
©(5,0) = % e i,
where D represents a set of damage variables.

Considering the hypothesis of elastic energy equivalence (@°(,0) = ©¢(o, D)) and
the damage coupled Hooke’s law, the following definitions for the effective variables o
and ¢ are resulting

o=(I-D)':0, and E=(I-D):¢, (5.19)
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where I and ID are the fourth-rank identity and damage tensors, respectively. D is related
to the fourth-rank elasticity tensors of the damaged state (C) and the pseudo undamaged
(fictive) state (C) through

D=I-(C):(C)t. (5.20)

In a more general representation, when a fourth-rank damage effect tensor is used, the
effective variables are expressed as

6=M(D):o, and T=MT"(D):¢, (5.21)

with D denoting the properly selected damage variables.

Note that in the energy based damage equivalence model, growth of microcracks and
microvoids influences both stress and strain distributions, which is more realistic than in
the strain or stress damage equivalence postulate, where the drop of local stiffness results
in a local stress decrease or local strain increase, exclusively. Nevertheless, this hypothesis
is limited as it does not allow for the physically adequate description of phenomena other
than damage coupled elasticity (CHOW & LU 1992).

5.3 Effective continuum elastic properties of damaged media

Most materials under special loading conditions and most brittle materials develop
anisotropic damage. One way to model the anisotropic damage is to consider its influ-
ence on the compliance or stiffness of the material in a local sense. Continuum damage
models based on the reduction of stiffness are assumed to involve the degradation of the
elastic properties due to the nucleation and the growth of microcracks and microdefects
in general, which ultimately coalesce to form macrocracks. Most of these damage mod-
els are based on the sclf-similar crack growth assumption, and they do not consider the
kinking and propagation of mixed-mode microcracks and the corresponding effect on the
evolution of the elastic stiffness tensor. For a given stress state, however, it is known that
materials damaged by microcracks in general accumulate additional damage through the
kinking and growth of these microdefects. Considering the kinking and growth of micro-
cracks in the formulation of a damage model is especially important in the case of loads
with changing direction and amplitude (non-proportional loading). In such cases, the as-
sumption of self-similar growth of microcracks is not sufficient to describe the irreversible
thermodynamic process of the material degradation due to the kinking and growth of mi-
crocracks to other planes and shapes. This idea is one of the important cornerstones for
the continuum damage model presented in this work.

The micromechanical models are commonly referred to a class of analytical models
which give the relation between the macroscopic state of a specimen and its micro-
structure (BUDIANSKY 1983). One of the goals of the micromechanical models is to
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provide relatively simple constitutive laws. Within this approach, the effective elastic
properties are derived by using the pertinent results of microconstituent analysis, such as
that of a planar crack embedded in an infinite medium. Using the concept of microme-
chanics, continuum damage models based on the framework of fracture mechanics and
elasticity can give the local details of the damage response within a representative volume
element. These class of models are based on the hypothesis of statistical homogeneity
and weak interaction of defects, which are justifiable for reasonably modest concentra-
tion of heterogeneities (NEMAT-NASSER & HORI 1993). In this respect, the first step
in the formulation of the proposed continuum damage model requires the formulation of
the change of continuum elastic properties due to the presence, kinking and growth of
elliptical and/or circular microcracks.

Applying the approach of micromechanics, the components of the effective compli-
ance tensor of an infinite, homogeneous, isotropic (in its pristine state) and elastic con-
tinuum damaged by a single internal circular crack is given in (KRAJCINOVIC 1996).
Here, applying the same method, the components of the tensor for the change of
compliance due to the presence of a single internal elliptical crack are derived, from
which the results corresponding to a single circular crack can be reproduced (see also
BUDIANISKY & O’CONNELL (1976)). Within the approach of micromechanics, the
effective elastic properties of a solid damaged by a planar internal elliptical crack are
derived from the contribution to the complementary strain energy corresponding to the
quasi-static, selfsimilar growth of the crack. For this, the stress intensity factors suffice to
give the energy released during the quasi-static, selfsimilar growth of the crack. However,
for the formulation of the complementary strain energy corresponding to the kinking of
a crack, the analytical expressions for the so called T-stresses are required as well. The
complete set of the T-stresses for internal elliptical and circular cracks embedded in a
homogenous isotropic infinite solid have been addressed in chapter 2.

5.3.1 presence of a single internal elliptical crack

Consider a single internal elliptical crack in an infinite, homogeneous, isotropic and elas-
tic continuum subjected to mechanical loads applied at infinity. This problem can be
decomposed into two sub-problems: that of the continuum without a crack subjected to
the remote traction field, and that of the same continuum, where only the crack faces are
subjected to the traction field. The traction field of the second sub-problem is determined
from the condition requiring that the total tractions over the mating faces of the crack
vanish.

Within the framework of linear elastic fracture mechanics, the total, local and average
stress and strain fields admit superposition. Under the same traction field, the presence of
an active crack will typically increase the total strains. This implies that the average strain
of the second sub-problem is a non-zero second-rank tensor, so the total average strain
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tensor is given by
e=e+e2=S:0, where S =§Mrix 4 A§Cruck (522)

where § represents the effective compliance of the continua considering the effect of the
crack, SMax j5 the compliance tensor associated to the matrix material in its pristine state,
and ASC™k js the change of compliance due to the presence of the crack.

The components of the tensor ASC™* can be derived from the contribution to the com-
plementary strain energy corresponding to this sub-problem. The complementary en-
ergy is indeed the energy released during the quasi-static, selfsimilar growth of an el-
liptical crack (dissipated energy), and is given by (BUDIANISKY & O’CONNELL 1976),
(KRAJCINOVIC 1996)

P = %L (i T dl) dF. (5.23)

Applying the concept of the local driving force acting in the plane normal to the crack
front, it can be shown (SCHUTTE & MOLLA-ABBASI 2007A)

P = %J: (i Jiey e dl) dr, (5.24)

where J; is the first component of the J-integral vector, and c is the path encircling the
ellipse boarder. e, and e; are the unit vectors showing the normal and radial directions
to the ellipse, and dl and dr are the length elements along the ellipse boarder and radius.
Considering the local coordinate system given in figure 5.5, the following expressions for
the directional unit vectors and the length increments are resulting

1

= (x cosq,P sing,0), (5.25)
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Figure 5.5: elliptical crack and local coordinates



5.3 Effective continuum elastic properties of damaged media 119

7 cos? Z gin?
Va2 cos (p“+[3 sin (pd“)

dl = /o2 sin? @ + B2 cos? pdep.

In the neighborhood of the crack front, the stress and strain states are a combination of
plane strain and anti-plane shear, and J; for homogenous and isotropic elastic solids can
be expressed in terms of the stress intensity factors

dr =

E

where E and v represent the Young’s modulus and the Poisson’s ratio, respectively. Equa-
tion (5.26) can be rewritten in index notation as

1—+2 1
h=——x (K% +Kji++— T Km) ) (5:26)

10 0
a2
J = MagKaKg, where (Mag) = - = o9 (5.27)
00 —

1—wv

The symmetric forms of the expressions for the stress intensity factors of
an internal elliptical crack in a homogenous, isotropic and elastic material are
(KASSIR & SIH 1966)

B /7 v/ ol sin @ + P2 cos? @
Ki=g ‘/ 5.

—/7 ({012 + 021) Bg B cos @ + (023 + 032) By « sin @)
2+/o3 B3/ sin’ @ + B2 cos? @

Kn=

A

(v = 1)V ({012 + 021) By & sin @ — (023 + 032) By P cos <P)
2+/o3 B3v/ o2 sin @ + B2 cos? @
where « and B are the semi-major and semi-minor axes of the ellipse, respectively, @ is
the geometric angle along the ellipse border, and
_ B’k
((k% —v)E(ky) +'Vk%K(k1]) !

K =

By (5.29)

ﬁZkZ
(13 +vKk2) E(ki) —vKEK (k1)) *

where K(o) and E(e) are the complete elliptical integrals of the first and second kind re-
spectively, and ay; (i,j = 1, 2, 3) are the stress components in the local crack coordinates

By =
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(figure 5.5). Care should be taken that in the expression for K, the sign of o, is positive,
hence to express it in a mathematically correct manner it should be multiplied with the
Heaviside step function H(g3;). This leads to a vanishing K; for the pure cleavage mode,
where the stress normal to the crack faces is compressive.

Substituting the expressions for the stress intensity factors and equations (5.25) into
(5.24) and performing the requisite integration, the strain energy released (complementary
energy) by a single elliptical crack in an infinite, homogeneous, isotropic solid in its
pristine state is resulting (KASSIR & SIH 1966)

1 4map?(] —+v2 2 2
1|"=——ﬂ“‘3 (=) (Gzzoé2+G|z (__0'12+crz|) + Gy (—GB-HI”) ,

v 3E 2 2
(5.30)
where
1
Gy = ey (5.31)
e 5
2T 0= E(k) +vKEK (k)
Gy = K
BT +vI) E(ki) —viEK (ki)
B2 B
k= 1—?, k2=a.

These results are identical to the ones derived on the basis of the self-consistent
method given by BUDIANISKY & O’CONNELL (1976). The components of the fourth-
rank compliance tensor attributed to the presence of a single elliptical crack are resulting
from

az'l.l)‘
Sijmn = m ) (5.32)
and considering equations (5.24)-(5.25), it results
o 1 (r 0K, oK
Cack _ _ % 1 Mg —% B . )
ASgmn 305 00w VL (jgc op 305 30w e, -e.dl)dr (5.33)

1 r‘ r“ 9K. 9Kpg
In the local coordinate system of the ellipse, the expression for the compliance tensor
attributable to the presence of a planar elliptical crack of semi-major and semi-minor axes

ﬁdcp) de.
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of «, B is derived by substituting relations (5.27)-(5.32) into (5.33) and performing the
requisite integrations. The fourth-rank tensor of the change of compliance attributed to
the presence of a single elliptical crack is

ASCrk —ASTRk (e¢5e5€;) + (5.34)
AS?{‘,‘;“ (e1e2e1€2 + e2€1€281 + e1€2e2€1 + €z€1€1€2) +
AS%‘;;“ (eze3eze3 + eszezese;r + e;esese; + e3ezeze3) y

where
Ak — 8n (;E—vl) (;((':3]))2 %3, (5.35)
ASSosk — 2n (13—E'v2) k2 (kK —~v)E(ks)+vK(ks) i [3_3'
(v=K) E(ki) —vKEK (k1))" V
ASSESk — 2n (1—-v?) k3 (K —~vkI)E(ks)—vK(ks) B3

3E (¢ +vI2) E (ki) —vIZK (kn)* V'
where the components of the compliance tensor satisfy the symmetry properties imposed
by the symmetries of the stress and strain tensors, i.¢ Sijmn = Sjimn = Sijnm = Smnij-

In terms of a general coordinates system, the tensor may be derived using the law of
coordinate transformation

SGtobal _ . Ris Rmt Rru SlLocal (5.36)

mn Tstu
where Ry; are the components of an orthogonal transformation matrix.
The expression for the compliance tensor attributable to the presence of a planar cir-

cular crack (KRAJCINOVIC 1996) can be reproduced from (5.34) in the limit case where
oa— B

(5.37)
8 (1-+%) o
Crack __ hadl
ASph = =3 Vv
ASCrack Crack __ 16 (] _,vl) £

1212 = 2323 3E(3—‘V) v’

The structure of the resulting tensors indicate that the presence of an elliptical crack in
a homogenous and isotropic volume element in its pristine state changes the type of the
reflective material symmetry from isotropy to orthotropy, where the axes of orthotropy
are aligned with the local coordinates of the ellipse. Considering the circular crack since
Si212 = S;323, the type of symmetry changes to a transversely isotropic one, where in the
plane of the crack any vector is a normal to a plane of symmetry.
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5.3.2 kinking of an internal elliptical crack

To study the degradation of the elastic material properties due to the kinking and growth
of elliptical and/or circular microcracks, consider a single elliptical crack in an infinite,
homogeneous, isotropic and elastic continuum subjected to mechanical loads applied at
infinity. For a stress state outside the damage surface, the considered crack will kink and
propagate to a new geometry, and the local kinking angle ¢ and the local crack extension
length Aa can be calculated from the considered fracture criterion coupled with a fatigue
crack evolution law. In an analogous manner to the previous section, this problem can be
decomposed into two sub-problems: that of the continuum without a crack subjected to
the remote traction field, and that of the same continuum, where only the crack faces are
subjected to the traction field.

In the framework of linear elasticity, the compliance tensor of a material containing a
kinked crack can be decomposed into three parts (SCHUTTE & MOLLA-ABBASI 2007A)

g — §Matrix + ASCrack + ASKink , (5.38)

where SM#¥ix and ASCr=k refer respectively to the compliance tensor of the matrix material
in its pristine state and the change of compliance due to the presence of the microcrack,
and ASKink s the change of compliance due to the kinking and growth of the microcrack
with local kinking angle ¢ and local crack extension Aa.

The analytical expression for the tensor of the change of compliance due to the presence
of a single active elliptical or circular microcrack was given in the previous section. In a
similar way, the tensor of the change of compliance due to the kinking of a crack can be
calculated from the contribution to the complementary strain energy corresponding to the
kinking of the crack, which is the energy released during the kinking of the crack.

The rate of the change of the compliance tensor for a volume element V of elastic mate-
rial, attributable to the extension rate $, through which a point on the perimeter of a single
crack kinks to a new position is given by (SCHUTTE & MOLLA-ABBASI 2007A)

o2 12%(G(s)3)

SKmk —
aaﬁ aO'“-m Vv baij aO'mu ’

jmn

(5.39)

where ** is the complementary energy associated with the kinking of the crack.

Integrating this along the crack perimeter, the rate of the change of compliance due to
the growth of an internal crack is resulting

0%G(s)
Kink
Sm,m Vi; (30‘1, 30 )dl, (5.40)

where G(s) is the energy released during the kinking of crack with a local extension of s,
and is given by

1—v2( ,
Gls) = (K,(s)+1< ()4 m(s)) Mg Kals)Kp(s),  (5:41)

E
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with K, (s) being the stress intensity factors at the propagated crack front, given by (see
section 3.1.1)

Ka(s) = K% +KU72 /s + O(s), (5.42)

and Mg is given in (5.27). Unlike the case of a single elliptical crack, the stress intensity
factors alone would not suffice to give the complementary strain energy corresponding to
the kinking of the crack, and the analytical expressions for the T-stresses of the elliptical
crack (prior to kinking) are required as well (see chapter 2 for the complete set of the T-
stresses for mixed-mode internal elliptical and circular cracks in homogeneous, isotropic
linear elastic solids).

Considering the expansion of the stress intensity factors in terms of the extension length
and the crack tip parameters prior to kinking (see section 3.1.1), equation (5.40) can be
rewritten as

0Ku(s) 9Ka(s) .
Skink = i{)MaB< a;, > (fm di, (5.43)

with
OKals) _ 8 (Faald) Kn + Gar() Tav/s)

aO'i,' - aO'i,'
= Ful0) 32 4 Ga(0)

(5449

oTh
d \,‘/_

where K, and T, are the stress intensity factors and the T-stresses of the crack prior to
propagation, and Fog(¢) and Gqp(¢) are universal functions in terms of the kinking angle
.

The local propagation rate $, measured in the direction normal to the crack front
at a considered point, can be calculated using a fatigue crack evolution law coupled
with the selected fracture criterion. For example considering the modified Paris’ law
given by equation (3.20) in combination with the fracture criterion of maximum driv-
ing force (equation (3.13)), and setting a threshold value for crack growth, it results
(SCHUTTE 2001)

§= d—N =c(ver- \/G_HJ" , (5.45)

where C and 1) are material constants, N represents the number of load cycles, G* is the
maximum driving force acting at the kinked crack tip, and Gy, is the threshold value,
below which there is no damage growth. Here, the threshold value Gy, is considered to
take into account the load history and is varying by crack growth. Indeed, its value is
decreasing by damage growth for brittle and quasi-brittle materials.

The expression for the fourth-rank tensor of the rate of the change of compliance due
to the kinking of an elliptical crack with a local growth rate $ is derived by substituting
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relations (5.44) and (5.45) into (5.43), and performing the requisite integration along the
crack front in the following form

Skink _ ]VJ Mag /o sin? @ + B2 cos? @ (5.46)
oo 3K 0K,
o Fou 55, 00 00mn
Ky T, T, oK,
(F“" B B0 00w | O TP 35 ao,,m) Vst

oTh 0T, .
Gar Ggp—&n—i ao_mns} sde,

where the T, and K are given in equations (2.51) and (5.28), respectively.

The expression for the compliance tensor corresponding to the kinking of a planar cir-
cular crack can be obtained from (5.46) in the limit case where & — . It should be noted
that for the growing crack problem, it is not possible to give a closed form solution for
the compliance tensor attributable to the kinking of a crack, since depending on the crack
problem and the resulting mode-mixity, the kinking angle ¢ and the propagation rate §
change. Hence for each crack problem integral (5.46) should be solved individually.

5.4 A fracture based anisotropic continuum damage model

It is known from experiments that most materials, and in more special case brittle and
quasi-brittle materials, under general loading conditions develop anisotropic damage
(KRAJCINOVIC & FONSEKA 1982), for which damage variable can no longer be ex-
pressed as a scalar. The micromechanical approach of modeling the evolution of the
damage in brittle and quasi-brittle materials consists of studying the growth of a single
crack or material defect, and at the continuum level, modeling is obtained by applying the
homogenization technique to an ensemble of cracks or defects. A given stress state causes
the opposite faces of cracks and defects to open, slide or close, resulting a change in the
material stiffness. A way to model the anisotropic damage is to consider the influence of
the kinking and growth of microcracks on the stiffness of the material at the mesoscale
(KRAJCINOVIC 1996). For a stress state outside the damage surface, materials accumu-
late additional damage through the growth of the microcracks and the material defects,
which generally happens in a kinking manner.

Analytical formulation of the interaction of microcracks and microdefects, in general,
is a difficult task. This becomes almost impossible for propagating cracks, due to the
overwhelming complexity of the physical phenomena reflecting the growth and the in-
teraction of the microcracks. Some limited solutions have been proposed for very spe-
cific case, such as two parallel elliptical cracks in an infinite solid subjected to tension
(ISIDA & ET AL. 1984), and plates containing random array of cracks (ISIDA 1970).



5.4 A fracture based anisotropic continuum damage model 125

Figure 5.6: kinked crack and its equivalent elliptical crack

However, the proposed solutions are not always analytical, and some of them are empiri-
cal formulae (MURAKAMI 1987).

Based on the hypothesis of statistical homogeneity and weak interaction of microc-
racks, and in more general case microdefects, which is reasonable for a modest distri-
bution of heterogeneities (NEMAT-NASSER & HORI 1993), the first step in the formula-
tion of the proposed damage model requires the formulation of the change of continuum
elastic properties due to the presence, kinking and growth of elliptical and/or circular mi-
crocracks. In the previous section, based on the assumption of noninteracting cracks, the
effect of a single mixed-mode elliptical crack and its kinking on the effective elastic prop-
erties of materials was formulated in an analytical manner. After the kinking of the initial
cracks, however, mathematical formulation of the next kinking steps is no longer possible.
To overcome this difficulty in the formulation of a damage model, which accounts for the
kinking and growth of microcracks in a mathematical traceable way, the concept of an
equivalent elliptical crack may be considered. In this regard, a kinked crack is replaced
with an equivalent elliptical crack in a thermodynamically consistent manner, resulting
equivalent dissipation of energy and equivalent damage induced anisotropy. Basically,
eight degrees of freedom can be considered for each equivalent elliptical microcrack re-
placing the kinking one. These are the major and minor axes of the ellipse (2 unknowns),
orientation of the microcrack given by three Eulerian rotation angles (3 unknowns), and
the position of the crack in the space (3 unknowns). Considering the concept of the unit
cell and assuming that the microcrack is located in the center of the cell, the position of
the microcrack can be considered a priori known (fixed) and be left out of the formulation.

To calculate the other five unknowns characteristics of the equivalent crack, i.e. the
geometry and orientation of the equivalent crack, different postulates may be considered.
SCHUTTE (2001) has proposed a damage model based on a two-dimensional equivalent
straight crack, where the number of degrees of freedom in his model reduces to two.
These are the crack length, and its orientation about its center. He has considered different
possibilities to find the rotation and the geometry of the equivalent replacement crack
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e equivalent stress intensity factors R, = Kz,

equivalent driving forces 6=ac",

e equivalent mode-mixities A = A*,
e equivalent propagation rates & = a*,
e equivalent dissipations,

where quantities with a hat indicate the ones corresponding to the equivalent replacement
crack. His damage model is based on the assumptions of equivalent propagation rates
combined with equivalent dissipations, resulting the length of the equivalent crack and its
orientation, respectively.

Considering the anisotropic nature of damage in the three-dimensional stress state and
the postulate of equivalent dissipations, the following postulates may be proposed fur-
ther

e equivalent damage induced anisotropy, and

: : Crack Crack Kink
e equivalent change of compliance tensors A Gmn = ASiimn + ASﬁmn.

In this work, the equivalent replacement crack model is based on the postulates of
equivalent dissipations and equivalent damage induced anisotropy. The geometry and the
orientation of the equivalent elliptical crack replacing the kinked one then result consid-
ering two optimization problems. The first problem takes into account the fact that the
local damage associated with a single planar elliptical crack results in an orthotropic ma-
terial symmetry, thus it can be argued that changing the type of material symmetry from
isotropy to orthotropy may imply the existence of local damage due to an elliptical crack.
In section 4.2, it was shown that the damage associated with the growth of a mixed-mode
elliptical or circular crack also changes the virgin isotropic material into approximately
orthotropic one. Thus it is deduced that the orientation of the equivalent crack replacing
the kinked one is such that the resulting orthotropy axes are aligned with the ones due
to the damage associated with the kinked crack. It is reminded that for a single elliptical
crack in an initially isotropic material, the axes of orthotropy are aligned with the axes of
the ellipse, i.e. two axes of orthotropy are aligned with the major and minor axes of the
ellipse and the third one is the normal to the plane of the ellipse. The second optimiza-
tion problem results in the geometry of the equivalent elliptical crack in the sense that the
components of the change of compliance due to the kinked crack and the equivalent crack
are approximately identical. Such a formulation of the dissipative damage process due to
kinking elliptical microcracks, taking into account the damage induced orthotropy of an
elliptical crack in a local sense, results in a consistent damage model capturing the load
history through the local orthotropic degradation of the mechanical properties.

The proposed continuum damage model based on the reduction of stiffness due to
the kinking of equivalent elliptical microcracks results the effective elastic properties
of a damaged material volume element in a completely analytical and consistent way.
Based on the incremental analysis of the effective elasticity tensor for the given cur-
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rent values of the local stress and strain tensors, and taking the load history into ac-
count by introducing the concept of an equivalent elliptical crack, the propagation of
microcrack is calculated by considering a crack evolution law. In this study, the propa-
gation of microcracks is governed by the modified Paris’ law given by equation (3.20)
coupled with the fracture criterion of maximum driving force given by equation (3.13)
(LE, SCHUTTE & STUMPF 1999).

5.4.1 optimization subroutines

As mentioned in the previous section, based on the assumption of equivalent damage in-
duced anisotropy, here orthotropy, the orientations of the equivalent crack are resulting.
For this the optimization procedure addressed in section 4.2 is considered again, in the
sense that the appropriate orthogonal rotation is calculated which results in the best or-
thotropic representation of the compliance tensor corresponding to the damage due to the
kinked crack. Considering the transformation law for fourth-rank tensors, one possible
way is considering the following optimization procedure which looks for the best Eu-
lerian rotation angles minimizing the non-orthotropic components of the comresponding
compliance tensor

non.ORT )
Fi= Y (Shmn RYx Yy» 2))) (5.47)

iLjimn

3
= (Siy3)? + (Slas)* + (Siszs)? + ) _(Sfua) + (Shizs)* + (Sfus)?

i=1
RO%T (94,9y ,9.) = argmin {F, (R) |detR =1, R" =R"'} ,
= SR = ORT {S{jmn (R°*)} ,
where  Simn = Rir Rjs Rint Rnu Sestu

where R is an orthogonal transformation including all rotations about the three cartesian
axes (R(Yx, Yy, ¥z)), figure 5.6, and S and §' are the compliance tensors in the considered
global coordinate system and the local orthotropic coordinate system, respectively.

The geometry of the equivalent crack is resulting from the postulate of equivalent ten-
sors for the change of compliance. This is done by a direct comparison of the change
of compliance tensors associated with the damages due to the kinked crack and due the
equivalent elliptical crack, given with respect to a known coordinate system (local co-
ordinates of the equivalent crack may be a good choice). In this regard, the following
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given- AS"'H, A A
et B YR Y YE

map o™ to the local crack coordinate system

check for damage/crack growth G* > Gy,

continue in case of damage growth

calculate the propagation of crack with the help of a crack evolu-

tion law coupled with a fracture criterion, i.e obtaining the functions

Aa(ep) and d(e)

o calculate the compliance tensors attributable to the presence and kink-
ing of the current elliptical crack with o™, 3", v}, vy, Y7, through
equations (5.34) and (5.46)

o first optimization algorithm resulting the orientation of the equivalent
elliptical crack, y2*!, 3+, y2*', through equation (5.47)

o second optimization algorithm resulting the geometry of the equiva-
lent elliptical crack, o™+, ™+, through equation (5.48)

o update the stiffness matrix C**' and the stress state g™’

® O o o

Table 5.1: algorithm for a consistent fracture based continuum damage model

optimization problem should be solved
3

Fo= Y (Symn (& B) —SIL)’, (5.48)

ij,mn

{&, B} = argmin {F3|& > ,, B > Bo} ,

where § is the tensor of the change of compliance due to the equivalent elliptical crack
with an aspect ratio of A = B/&, the components of which are given in the local crack
coordinates in equation (5.34), and &, and 3, are the semi-major and semi-minor axes of
the elliptical crack prior to kinking.

The proposed continuum damage model based on the reduction of stiffness due to kink-
ing elliptical microcracks can be easily implemented in a finite element code. In the in-
cremental formulation, to have a more stable algorithm and for a faster convergence, the
tangent stiffness of the damage material should be introduced, the so called algorithmic
tangent (SIMO & TAYLOR 1986). The algorithm of the proposed damage model based
is summarized in table 5.1 in an incremental manner.

The proposed damage model can also capture the unilateral effect observed in tension-
compression tests, observed for a certain classes of materials including ceramics and con-
crete (BROUTMAN, KRISHNAKUMAR & MALLICK 1970), (HORIBE 1990), provided
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that for a passive crack the corresponding components of the compliance components
are recovered, and they return to their degraded state upon the activation of the crack. To
see if the state of a crack is passive or active, a criterion based on the stress or strain state
may be considered. CHABOCHE (1988) has proposed both strain based and stress based
methods as activation and deactivation criteria. According to the strain based criterion, the
damage can be considered as fully active if the normal strain associated to that direction1
is positive. This criterion holds true only under uniaxial compression and tension, where
the crack plane is perpendicular to the loading, and cannot be considered for multi-axial
stress state. Under multi-axial state of stress with increasing confining stress, the active
damage due to positive normal strain would lead to an erroneous result. The stress based
crack closure criterion can be defined using the normal traction to the plane of the crack.
According to this criterion, a crack becomes active if the corresponding normal stress to
its plane is positive.

The criterion considered here is based on the fact that a closed crack can still kink due
to the influence of mode-II and III crack deformations. According to this criterion, if the
mode I deformation of a crack vanishes, it may still be considered as an active crack if
the effect of mode-II and III deformations can overcome the energy barrier needed for
crack kinking, and else it is a passive crack. In both cases, it should be checked, which
components of the compliance tensor are recovered and which ones are influenced by
the damage. It is reminded that in this work, the effect of friction for a closed crack is
considered to be negligible.

5.5 Numerical examples

The proposed continuum damage model, based on the reduction of stiffness due to kinking
elliptical microcracks can be easily implemented in a finite element code. This has been
performed here in the commercial finite element analysis software Ansys as a user material
subroutine.

In the following sections, a variety of numerical examples is presented. The first two
examples are illustrative examples, which explain the proposed model in a fully analytical
manner. The first example addresses the determination of the equivalent crack after a
single kink step. As the second example, a unit cell damaged by a single mixed-mode
circular crack is subjected to four stages of cyclic loadings with changing directions.
With this, the degradation of the material properties and the evolution of the considered
damage parameters are presented. This example is especially important, since it provides
the reader with the details of the irreversible damage process due to growing microcracks
subjected to cyclic loading with changing directions. The third example shows the mesh
sensitivity of the model. The objective of the other examples is to show the applicability of
the proposed model to real components subjected to fatigue conditions. This is performed
by calibrating the model at the first step. For this, the results of two fatigue experiments
conducted by JEELANI & MUSIAL (1986) have been considered. These experiments
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ultimate yield shear fracture Poisson’s  Young’s Young’s shear
tensile strength strength toughness ratio modulus modulus modelus
strength (MPa) (MPa) (MPay/m) in tension in tension (MPa)
(MPa) (MPa) (MPa)

1232 1036 756 162 0.32 203,000 203,000 77,000

Table 5.2: mechanical properties of AISI 4130 steel

enable one to estimate a domain for the constants in the proposed damage model. To
check if the calibrated model leads to valid results, it is then applied to study the evolution
of damage leading to final failure by considering two other experiments chosen from
(JEELANI & MUSIAL 1986).

All experiments are conducted on AISI 4130 steel with the mechanical prop-
erties and the chemical composition given in tables 5.2 and 5.3, respectively
(HUDSON & FERRAINOLO 1991), (JEELANI & MUSIAL 1986), except the first illus-
trative example, which for comparison purposes the mechanical properties are chosen to
be the same as the ones considered in chapters 3 and 4.

5.5.1 example-1

The objective of this section is to explain the proposed continuum damage model by
giving an illustrative example in a fully analytical manner. The considered crack problem
is the circular crack presented in chapters 3, 2 and 4, i.e. v, = 45° and 'y, =yy = 0°. The
loading level is 0®°/E = 1/1000, the Poisson’s ratio v = 1/3, and the initial crack size
is considered to be «,/L = 1/150 with L being the characteristic length of the volume
element.

To avoid more complexity, it is assumed that the stress state is outside the damage
surface, thus the considered circular microcrack will propagate, and at this step due to
simplicity purposes, the Wohler’s limit stress is assumed to be negligible. The first step
in the model is calculating the propagation of the crack under the given local stress state,
which is resulting from a crack evolution law, e.g. Paris’ law, coupled with a fracture

Fe C Mn P S Si Cr Mo

balance 0.305 0.500 0.035 0.04 0.275 0.950 0.20

Table 5.3: chemical composition of AISI 4130 steel (wt %)
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Figure 5.7: circular crack: propagation parameters along the crack front

criterion, e.g. maximum driving criterion which is considered in this work. Considering
equations (3.20) and (3.13), the rate of crack growth is

&=C (\/G_)“ , (5.49)

where C and n are the Paris’ parameters. For clarity purposes, the propagation of the
crack is exaggerated by selecting these parameters as C = 0.01 and 1 = 2. This and
the considered loading level and material parameters result in crack extension length of
approximately 12% of initial crack radius ot,. The propagation parameters, i.e. the ex-
tension length and the kinking angle are resulting as functions of the geometrical angle
¢ along the crack front. Figure 5.7 gives the distributions of these parameters along the
crack front, and with these the new crack geometry is resulting (figures 5.9-left).

The next step is to calculate the influence of crack growth on the compliance tensor
through relations (5.37), (5.46). These result in the effective compliance tensor modified
by the damage due to the propagated circular crack. In six-dimensional tensorial notation,

Figure 5.8: target function in the optimization algorithm
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Figure 5.9: growth of the circular crack and its equivalent elliptical crack

normalizing the components of the compliance tensor with the tensile compliance com-
ponent of the pristine material 1/E, and the factor (&/L)?, where o and L are respectively
the characteristic size of the crack and the length of the unit cell, results in:

0.05270 0.01853 —0.00338 0.18844 0 0
0.01853 5.57268 0.00920 0.29881 0 0
As. — | (%)® [ —0.00338 0.00920 001928 000743 0 0
C”E(T) 0.18844 0.29880 0.00743 3.79581 0 0
0 0 0 0  3.59953 0.12201
0 0 0 0.12201 0.03956
(5.50)

To find the equivalent elliptical crack which replaces the propagated crack, it suffices
to perform two further steps. The first step is finding the axes of orthotropy due to the
damage induced by crack growth which can be deduced as the local coordinates of the
equivalent crack. The second step is to find the geometry of the equivalent crack, the
local axes of which are aligned with the axes of orthotropy calculated at the previous
step. These two steps are performed by solving the optimization problems, given by
equations (5.47) and (5.48), respectively (figure 5.8). The application of this procedure
to the considered example results in the following parameters for the equivalent elliptical
crack replacing the current propagated crack

Dm0, Pym0°, Py —2.65, (31)
2 04755, B o100,
X o

where §’s are given with respect to the local coordinates of the crack prior to propagation.
The resulting local Eulerian angles result in the best approximate orthotropic representa-
tion of tensor (5.49), which is indeed given in the local coordinate system of the equivalent
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stage 1 stage 2 stage 3 stage 4

Figure 5.10: order of the considered sequential loading

elliptical crack replacing the propagated one

0.04412 0.00708 —0.0033 0 0 0
0.00708 5.60415 0.00966 0 0 0
ST _1 (ﬁ)3 —0.0033 0.00966 0.01928 0 0 0
¢C TENL 0 0 0 377292 0 0
0 0 0 0 3.60319 0

0 0 0 0  0.03590

(5.52)

5.5.2 example-2

The objective of this example is to provide a better insight to the irreversible process of
brittle damage in a local sense. For this a representative volume element of AISI 4130
steel is considered which embeds a single circular crack. The circular crack in its initial
configuration has an inclination angle of 45° with respect to the 2-axis (figure 5.10). The
initial size of the crack is considered to be L/500, L being the characteristic size of the
unit cell. The mechanical properties of the matrix material in its pristine state are given in
table 5.2, and the constants in the modified Paris’ equation (3.20) are chosen as C = 1075
andn=2.

stage 1 stage 2 stage 3 stage 4

stress g3 cycles stress 02 cycles stress 03 cycles stress 04  cycles
(MPa) Ny (MPa) N2 (MPa) N3 (MPa) Ny
1500 160,000 1400 100,000 1350 160,000 1450 100,000

Table 5.4: characteristics of the applied sequential loading
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Figure 5.11: evolution of the geometry and the orientations of the equivalent elliptical

crack
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Figure 5.12: evolution of the stiffness components in the principle directions

To study the local degradation of the considered material under fatigue conditions with
the help of the proposed model, the unit cell is subjected to four stages of cyclic loading
as presented in table 5.4 and figure 5.10. In the load stage 1, a stress of 1500 (MPa)
is applied in the direction of 2-axis for 100, 000 cycles, and in the subsequent stages the
direction of the applied stress is parallel to the 3-axis, 1-axis, and 2-axis, respectively. The
applied stresses are 1400 (MPa), 1350 (MPa), 1450 (MPa) and the corresponding number
of cycles are the same as for the stage 1.

The proposed optimization subroutines are solved at each load increment, in order to
calculate the geometry and the rotation of the equivalent elliptical crack replacing the
kinked one. Figure 5.11 shows the evolution of the geometrical parameters and the orien-
tation of the equivalent elliptical crack with respect to the number of cycles. It is observed
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Figure 5.13: specimen geometry and different mesh patterns

that up to approximately 300, 000 loading cycles, the evolution of the corresponding dam-
age is relatively smooth, and at this moment application of the load stage 4 accelerates
the accumulation of damage.

To explain this, lets review cach load stage separately. The load stage 1, is identical
to the propagation of the circular crack presented in chapters 3, 4. It was observed that
by crack growth, the equivalent elliptical crack rotates to become perpendicular to the
direction of 7. This is more evident in figure 5.11-right, where at N = 100, 000 the
equivalent crack has an inclination of approximately vy, = 10° with direction-1. Changing
the load to the load stage 2 results in no observable damage accumulation in the material,
because at this stage, the equivalent crack is parallel to o;. Hence, very small changes
in the presented parameters are induced, which due to the scaling of the curves is not
observable. The load stage 3, similar to the load stage 2 has small contribution to the
process of damage growth, since at this stage, plane of the crack is inclined nearly 10°
with respect to the direction of o3 (identical to the direction-1). This small angle induces
a relatively small normal stress on the plane of the equivalent crack, leading to a relatively
small driving force along the crack front, which consequently results in a slow propagation
of the crack. This is observed between cycles 200, 000 and 300, 000 in figure 5.11, as y.
grows again bigger. At the end of this stage, v, has reached a value of approximately 15°.
Application of the load stage 4, however, accelerates the propagation of the crack, since
at this stage the orientation of the equivalent crack is such that the local normal stress
acting on the plane of the crack induces a strong driving force on the crack front. As can
be deduced from figure 5.11, the dimensions of the crack evolve very fast to damage the
whole material volume.

Figure 5.12 shows the degradation of the stiffness components in the principle loading
directions. It is observed that at the end of the load stage 4, the stiffness in direction-
3 does not show a considerable change, while in directions 1 and 2, the degradation of
stiffness is obvious.
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Figure 5.14: load-cycle curves for different mesh patterns

5.5.3 mesh sensitivity

The objective of this example is to show the degree of the mesh dependency for the pro-
posed damage model. For this, the specimen of the form given in figure 5.13 is considered,
where

1n=10mm, 71,=20mm, h;=100mm, h; =20mm, R =505mm.

Displacement controlled analyses have been performed for different discretization lev-
els (figure 5.13), where a constant displacement with the magnitude of 2% of the speci-
men’s initial length hy + h; is applied for 2, 000, 000 cycles. All models are meshed with
the help of hexahedral elements with quadratic displacement behavior. Considering mesh
pattern A, 48 hexahedral elements are generated, and mesh patterns B and C result in 384
and 1728 elements, respectively. The corresponding constants of the damage model are
chosen as 1 = 2,C = 7.39 x 10~%. The resulting force-cycle curves for these experi-
ments are given in figure 5.14, where Fy and F, are the resultant forces at the end cross
section of the specimen (r2), which correspond respectively to the current load-cycle and
the initial load-cycle. The good agreement between the results corresponding to different
discretization levels demonstrate the mesh independency of the model. This is due to the
fact that in the considered fatigue microcrack evolution law, the rate of the driving force
is not appearing.

5.5.4 calibration and validation of the model

The aim of the presented examples here is to show the applicability of the proposed model
to real components subjected to fatigue conditions. This is performed by calibrating the
model at the first step. For this two experiments are considered. It is then checked if the
calibrated model leads to valid results by considering two other experiments.
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For the calibration and validation of the model, the cumulative fatigue data of the exper-
iments conducted by JEELANI & MUSIAL (1986) have been considered. These experi-
ments enable one to estimate a domain for the material constants in the proposed damage
model, leading to valid results for all the considered experiments. For this, the specimen
of the form given in figure 5.15 has been considered, where

T1=25mm, 12=20mm, h;=45mm, h;=25mm, R=70mm.

The laboratory experiments have been conducted on AISI 4130 steel to gen-
erate cumulative fatigue data. The tests have been performed in four stages
(JEELANI & MUSIAL 1986). In the first, second and third stages, the loads and the num-
ber of cycles applied at each load stage have been predetermined. In the fourth stage,
the load has been preselected and the experiment has been continued until the final fail-
ure of the specimen. Tests have been conducted with low-to-high, low-to-high-mixed,
high-to-low and high-to-low-mixed stress sequences. All the experiments have been con-
ducted in the elastic range. For more details on these experiments, the reader is referred
to JEELANI & MUSIAL (1986).

In order to calibrate and validate the proposed damage model, four experiments have
been chosen from (JEELANI & MUSIAL 1986), where for all experiments the stress ratio
is R = 0. These are given in tables 5.5 and 5.6, where the first set of data (table 5.5) is
considered to calibrate the model and the second set (table 5.6) is applied for the validation
of the calibrated model. All models are meshed with the help of hexahedral elements with
quadratic displacement behavior, and the considered degree of mesh refinement leads to
1539 elements. For each experiment, at each stage of loading the specimen is subjected
to a surface load of the amplitude F = 0 A, where A = m‘%, and r; is the bigger radius
of the specimen (figure 5.15).

In order to calibrate the model, by considering different values for the constants in
the damage model the cumulative fatigue data corresponding to the first two experiments
presented in table 5.5 are generated. This gives a domain for the constants in the proposed
damage model. Fitting the resulting damage data from the model to the experiments

test  stage stage stage stage

Nr | 2 3 4
stress  cycles stress  cycles stress  cycles stress cycles to
(MPa) (MPa) (MPa) (MPa) failure

1 455 635,800 595 232,300 700 5,500 750 11,000

2 490 467,200 630 189,200 560 289,000 770 82,400

Table 5.5: calibration of the model: cumulative fatigue data for the stress ratio of 0
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Figure 5.15: geometry of the specimen and its discretization

results in the following material parameters for these experiments

n=218, C=173x10"7.

The next step is to validate the resulting fatigue parameters. This is performed by
considering the fatigue data of experiments 3 and 4 given in table 5.6. To see if these
parameters lead to valid results, the corresponding model for each experiment is loaded
by the first three load stages, and at the final step it is loaded with the load stage 4 and
the required number of load cycles to final failure are determined. This is given in the last
row of table 5.6, where the resulting number of cycles to final failure from the model are
in good agreement with the experimental data. The maximum deviation is nearly 3.6%,
which for application purposes is acceptable.

Figures 5.16, 5.18, 5.20, 5.22 show the applied loading and the resulting elongation

test  stage stage stage stage

Nr |1 2 3 4
stress  cycles stress  cycles stress  cycles stress  cycles  to
(MPa) (MPa) (MPa) (MPa) failure

experiment  model

3 700 32,500 630 189,200 560 89,000 490 682,300 657,800

4 770 1,900 630 108,200 700 29,500 560 647,300 629,500

Table 5.6: validation of the parameters: cumulative fatigue data for the stress ratio of 0



5.5 Numerical examples 139

with the number of loading cycles corresponding to each experiment, respectively. Al =
2 Ah,; is the elongation of the specimen in the direction of the applied load F. For all
experiments, it is observed that at some point in the final stage of loading, the elongation
Al increases very fast. This corresponds, indeed, to the final failure of the specimen. The
analysis is interrupted when the elongation has reached 6% of the initial specimen’s length
2 hy, as the proposed model is no longer valid in the presence of big plastic deformations
at the macroscopic crack tip.

Figures 5.17, 5.19, 5.21, 5.23 show different views of the state of damage in the neck
cross section (the weakest cross section) of the specimen at the end of each load stage
(figure 5.15-right: views A — A and B — B). Here, 0 corresponds to the pristine state and
1 represents the fully damaged state.
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A micromechanical based continuum damage model based on the reduction of stiffness
due to kinking elliptical microcracks has been proposed to show the anisotropic irre-
versible process of damage accumulation due to microcrack kinking and growth in brittle
and quasi-brittle materials. It is known from experiments that all materials, and in more
special case brittle materials, under general loading conditions develop anisotropic dam-
age (KRAJCINOVIC & FONSEKA 1982). For a given siress state, materials damaged by
microcracks in general accumulate additional damage through the kinking and growth of
the initiated microcracks. The model is formulated consistently in a fully analytical way
and the degradation of the elastic properties is associated with the irreversible process of
crack kinking and growth. In order to make the formulation of the model mathemati-
cally traceable, the concept of an equivalent elliptical crack is proposed. The geometry
and the orientation of the equivalent cracks are resulting from the postulates of equiv-
alent dissipation and equivalent damage induced anisotropy. The proposed formulation
yields a consistent damage model suitable for predicting the failure of structures and me-
chanical components subjected to fatigue conditions, independent of the type of loading.
Accounting for the kinking and growth of microcracks and the type of damage induced
anisotropy in the formulation of damage models is especially important in the case of non-
proportional loads or even sequential loads, since the assumption of self-similar growth
of mixed-mode cracks may underestimate the accumulated damage.

The micromechanical models are commonly referred to a class of analytical models
which give the relation between the macroscopic state of a specimen and its micro-
structure (BUDIANSKY 1983). These class of models are based on the hypothesis of
statistical homogeneity and weak interaction of defects, which are justifiable for reason-
ably modest concentration of heterogeneities (NEMAT-NASSER & HORI 1993). Within
the approach of micromechanics, the effective elastic properties of a solid damaged by
microcracks are derived by using the pertinent results of microconstituent analysis, such
as that of a planar elliptical crack embedded in an infinite medium. The components
of the effective compliance tensor can be derived from the contribution to the comple-
mentary strain energy corresponding to the quasi-static, selfsimilar growth of an elliptical
crack. For this, the stress intensity factors suffice to give the energy released during the
quasi-static, selfsimilar growth of an elliptical crack. However, for the formulation of the
complementary strain energy corresponding to the kinking of a crack, the non-singular
constant terms in the stress expansion formula, the so called T-stresses, are required as
well. To be able to include the effect of the T-stresses, the analytical expressions for
the T-stress components are to be addressed. The analytical expressions for the stress
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intensity factors are given for many two-dimensional and three-dimensional crack prob-
lems, but solutions for the T-stresses are available mostly for two-dimensional crack prob-
lems, and very limited solutions in three-dimensions are available (MURAKAMI 1987).
In chapter 2, the complete set of the elastic T-stresses for elliptical and circu-
lar cracks embedded in a homogenous isotropic infinite solid have been addressed
(SCHUTTE & MOLLA-ABBASI 2007B), (MOLLA-ABBASI & SCHUTTE 2008). Using
the potential method and a transformation technique, the asymptotic solutions for the
stress components are derived, from which the T-stresses for elliptical and circular cracks
in infinite isotropic linear elastic solids are resulting. It has been shown that beside the
stress intensity factors, the T-stresses play also an important role in the subjects related
to fracture mechanics and plasticity (LARSSON & CARLSSON 1973), (RICE 1974),
(AYATOLLAHI, PAVIER & SMITH 1998), (SCHUTTE & MOLLA-ABBASI 2007C).

The evolution of the cracks is governed by the criterion of maximum driving force
coupled with a fatigue crack evolution law. In this regard, instead of using the stress in-
tensity factors as the leading parameter for fatigue characterization, the maximum driving
force concept has been considered (LE, SCHUTTE & STUMPF 1999). The advantage of
using such a formulation is that the effect of the material parameters such as the Young’s
modulus and the Poisson’s ratio are taken into account. In experimental observations
by JOHNSON & PARIS (1968), it has been observed that by dividing AK by the Young’s
modulus, the mid range fatigue data for various metals with diversified mechanical proper-
ties tend to congregate together within a relatively narrow scatter band. Using the concept
of driving force or energy release rate enables overcoming the dependency of the formula-
tion on specimen geometry and size, crack configuration and size, and loading condition
as well, and there is no need to calculate the stress intensity factors, since calculating the
energy released during crack propagation requires nevertheless no stress field solution at
the crack tip, and hence makes it applicable to any specimen with arbitrary crack shapes
and loading conditions. The most important advantage of using a G-based evolution law
is that the rate of crack propagation is given in terms of its thermodynamical dual G. This
is best illustrated by considering the irreversible nature of the crack propagation process,
where according to the continuum thermodynamics, there is an entropy production rate
associated with this irreversibility. Thus introducing the crack propagation rate as a new
internal variable, the driving force is considered as its thermodynamic conjugate force
(thermodynamic dual). Finally, with this kind of formulation the effect of mode III stress
intensity factor is automatically taken into account. This is especially important, since for
general three-dimensional crack problems Ky; does not always tend to vanish, even for
heavily grown cracks.

For clarity purposes and to explain the main issues of the proposed model in a more
clear mathematical way, the complexity of the proposed damage model has been reduced
here by leaving out the thermal effects and other non-mechanical phenomena. Strains
and rotations have been assumed to be small, hence the framework of the linear elastic
fracture mechanics can be applied. Furthermore, viscous effects and permanent deforma-
tions have been neglected and the material behavior is assumed to be linear elastic in its



147

pristine state. The small strain assumption, and the lack of permanent deformations in
this model makes it suitable to show the evolution of damage in structures with brittle and
quasi-brittle fracture behavior experiencing high-cycle fatigue. As the first extension, the
proposed damage model can be modified to account for the effects of friction and tem-
perature. The implementation of the model can also capture the unilateral effect observed
in tension-compression tests, observed for a certain class of materials including ceram-
ics and concrete, provided that for a passive crack the components of the corresponding
compliance components are recovered, and they return to their degraded state upon the
activation of the crack.



149

Bibliography

Achenbach, J. D. (1973). Wave Propagation in Elastic Solids. North-Holland, Amster-
dam.

Aliabadi, M. H. (1997). Boundary element formulations in fracture mechanics. Applied
Mechanics Review 50, 83-96.

Amestoy, M. & J. B. Leblond (1992). Crack paths in plane situations - II: Detailed form
of the expansion of the stress intensity factors. International Journal of Solids and
Structures 29, 465-501.

Arad, S., J. C. Radon & L. E. Culver (1974). Growth of fatigue cracks in metals and
polymers. Engineering Fracture Mechanics 6(1), 195-208.

Atluri, S. N. (1986). Computational Methods in the Mechanics of Fracture. North Hol-
land.

Ayatollahi, M. R., M. J. Pavier & D. J. Smith (1998). Determination of T-stress from
finite element analysis for mode-I and mixed-mode loading. International Journal
of Fracture 91, 293~298.

Ayatollahi, M. R., M. J. Pavier & D. J. Smith (2002). Mode-I cracks subjected to large
T-stresses. International Journal of Fracture 117, 159-174.

Ball, R. C. & H. Larralde (1995). Linear stability analysis of planar straight cracks
propagating quasistatically under type I loading. International Journal of Frac-
ture 71, 365-371.

Benthem, J. P. & W. T. Koiter (1973). Mechanics of fracture - Method of analysis
and solutions of crack problems (ed. Sih, G. C.), Volume 1:131-178. Noordhoff
international publishing Leyden.

Betegon, C. & J. W. Hancock (1991). Two-parameter characterization of elastic-plastic
crack tip fields. Journal of Applied Mechanics 58, 104-110.

Bilby, B. A. & G. E. Cardew (1957). The crack with a kinked tip. International Journal
of Fracture 11, 708-712.

Bilby, B. A., G. E. Cardew, M. R. Goldthorpe & 1. C. Howard (1986). A finite element
investigation of the effect of speciemen geometry on the fields of stress and strain
at the tips of stationary cracks, Size Effects in Fracture. Mechanical Engineering
Publications Limited, London.

Bowles, C. Q. & J. Schijve (1973). The role of inclusions in fatigue crack initiation in
an aluminium alloy. International Journal of Fracture 9, 171-1798.

Broberg, K. B. (1979). Mathematical methods in fracture mechanics. Trends in Appli-
cations of Pure Mathematics to Mechanics 2, 57-78.

Broberg, K. B. (1987). A path independent integral for plates. Journal of Applied Me-
chanics 54, 458-459.



150 BIBLIOGRAPHY

Broberg, K. B. (1999). Cracks and Fracture. Academic Press.

Broek, D. (1974). Elementary Engineering Fracture Mechanics. Noordhoff interna-
tional publishing Leyden.

Broek, D. & J. Schijve (1963). The influence of the mean stress on th epropagation of
fatigue cracks in aluminium alloy sheets. Nat. Aerospace Inst. Amsterdam (TR-M-
2111).

Broutman, L. J., S. M. Krishnakumar & P. K. Mallick (1970). Effects of combined
stresses on fracture of alumina and graphite. Journal of the American Ceramic
Society 53(12), 649-654.

Budianisky, B. & J. R. O’Connell (1976). Elastic moduli of a cracked solid. Interna-
tional Journal of Solids and Structures 12, 81-97.

Budianisky, B. & J. R. Rice (1973). Conservation laws and energy release rates. Jour-
nal of Applied Mechanics 40, 201-203.

Budiansky, B. (1983). Micromechanics. Computers and Structures 16, 3—12.

Byrd, P. F. & M. D. Friedman (1971). Handbook of Elliptical Integrals for Engineers
and Scientists (2™ ed.), Volume Band-67. Springer.

Cardew, G. E., M. R. Goldthorpe, I. C. Howard & A. P. Kfouri (1984). On the elastic
T-term. Fundamentals of Deformation and Fracture, 465-476.

Chaboche, J. L. (1988). Continuum damage mechanics: part I: general concepts, part
II: damage growth, crack initiation, and crack growth. Journal of Applied Mechan-
ics 55(3), 59-71.

Cherepanov, G. P. (1967). Crack propagation in continous media. Applied Mechanics
and Mechanics 31, 476-488.

Cherepanov, G. P. (1968). Cracks in solids. International Journal of Solids and Struc-
tures 4, 811-831.

Chow, C. L. & T. J. Lu (1989). On evolution laws of anisotropic damage. Engineering
Fracture Mechanics 3(3), 679-701.

Chow, C. L. & T. J. Lu (1990). A unified approach to fatigue crack propagation in
metals and polymers. Journal of Materials and Science Letters 9, 1427-1430.

Chow, C. L. & T. J. Lu (1992). An analytical and experimental study of mixed-mode
ductile fracture under non-proportional loading. International Journal of Damage
Mechanics 1, 191-236.

Cordebois, J. P. & F. Sidoroff (1979). Damaged induced elastic anisotropy. Coll. Eu-
romech 115, Villard de Lnas.

Cotterell, B. & J. R. Rice (1980). Slightly curved or kinked cracks. International Jurnal
of Fracture 16(2), 155-169.

Cottrell, A. H. & D. Hull (1957). Extrusion and intrusion by cyclic slip in copper.
Proceedings of the Royal Society of London (A242), 211-217.

Cowin, S. C. & M. M. Mehrabadi (1987). On the identification of material symme-
try for anisotropic elastic materials. Quarterly Journal of Mechanics and Applied
Mathematics 40, 451-476.

Davison, L. & A. L. Stevens (1973). Thermomechanical constitution of spalling elastic



BIBLIOGRAPHY 151

bodies. Journal of Applied Physics 44, 668-674.

Drucker, D. & W. Prager (1952). Soil mechanics and plastic analysis or limit design.
Quarterly of Applied Mathematics 10, 157-165.

Du, Z. Z. & J. W. Hancock (1991). The effect of non-singular stresses on crack tip
constraint. Journal of Mechanics and Physics of Solids 39, 555-567.

Dundurs, J. (1969). Edge-bonded dissimilar orthogonal elastic wedges under normal
and shear loading. Journal of Applied Mechanics 36, 650-652.

Eischen, J. W. & G. Hermann (1987). Energy release rates and related balance laws in
linear defect mechanics. ASME Journal of Applied Mechanics 54, 388-392.

El-Soudani, S. M. & R. M. N. Pelloux (1973). Influence of inclusion content on fatigue
crack propagation in aluminium alloys. Metallurgical Transactions 4, 519-531.

Erdogan, F. (1967). Crack propagation theories. NAS4 reports (CR-901).

Erdogan, F. (1978). Mixed boundary value problems in mechanics. Mechanics Today 4,
1-86.

Erdogan, F. & G. C. Sih (1963). On the crack extension in plates under plane loading
and transverse shear. ASME Journal of Basic Engineering 85, 519-527.

Eshelby, J. D. (1920). The force on an elastic singularity. Philosophical Transactions
of the Royal Society of London A221, 163-198.

Eshelby, J. D. (1951). The force on an elastic singularity. Philosophical Transactions
of the Royal Society of London A244, 87-112.

Eshelby, J. D. (1974). The calculation of energy release rate. Prospects of Fracture
Mechanics, 69-84.

Ewing, P. D., J. L. Swedlow & J. G. Williams (1976). Further results on the angled
crack problem. International Journal of Fracture 12, 85-93.

Fletcher, D. C. (1976). Conservation laws in linear elastodynamics. Archive for Ratio-
nal Mechanics and Analysis 60, 329-353.

Forman, R., V. E. Kearney & R. M. Engle (1967). Numerical analysis of carck prop-
agation in cyclic loaded structure. Transactions of the ASME, Journal of Basic
Engineering (89D), 459.

Frangi, A., G. Novati, R. Springhetti & M. Rovizzi (2002). 3-D fracture analysis by
the symmetric galerkin bem. Computational Mechanics 28, 221-231.

Freund, L. B. (1978). Stress intensity calculations based on a conservation integral.
International Journal of Solids and Structures 14, 241-250.

Freund, L. B. (1990). Dynamic Fracture Mechanics. Cambridge University Press.

Gao, H. (1988). Nearly circular shear mode cracks. International Journal of Solids and
Structures 24, 177-193.

Gao, H. (1992). Three-dimensional slightly non-planar cracks. ASME Journal of Ap-
plied Mechanics 59, 335-343.

Gao, H. & J. R. Rice (1986). Shear stress intensity factors for a planar crack with
slightly curved front. ASME Journal of Applied Mechanics 53(774-778).

Gao, H. & J. R. Rice (1987a). Nearly circular connections of elastic half spaces. ASME
Journal of Applied Mechanics 54, 627-634.



152 BIBLIOGRAPHY

Gao, H. & J. R. Rice (1987b). Somewhat circular tensile cracks. International Journal
of Fracture 33, 155-174.

Goldstein, R. V. & R. K. Salganik (1974). Brittle fracture of solids with arbitrary
cracks. International Journal of Fracture 10(4), 507-523.

Goursat, E. (1898). Sur I’équation V2V2w = 0. Bulletin de la Société Mathématique
France 26, 236.

Green, A. E. & 1. N. Sneddon (1950). The distribution of stress in the neighborhood of a
flat elliptical crack in an elastic solid. Proceedings of the Cambridge Philosophical
Society 46, 159-164.

Griffith, A. A. (1921). The phenomena of rupture and flow in solids. Philosophical
Transactions, Series A 221, 163-198.

Griffith, A. A. (1924). The theory of rupture. Proceedings of First International
Congress of Applied Mechanics, 55—-63.

Grosskreutz, J. C. & C. Shaw (1969). Critical mechanisms in the development of fa-
tigue cracks in 2024-T4 aluminium. Fracture, Chapman and Hall, 620-629.

Giinther, W. (1962). Uber einige randintegrale der elastomechanik. Abh. Brauchschw.
Wiss. Ges. 14, 53-72.

Hallback, N. & N. Jonsson (1996). T-stress evaluations of mixed mode I/II fracture
specimens and T-effects on mixed mode failure of aluminium. International Jour-
nal of Fracture 76, 141-168.

Hori, M. & S. Nemat-Nasser (1983). Overall moduli of solids with microcracks: Load-
induced anisotropy. Journal of Mechanics and Physics of Solids 31, 155-171.

Horibe, S. (1990). A new method for tension-compression fatigue testing of ceramic
materials. Journal of Materials Science 9, 745-747.

Hudson, C. M. & J. J. Ferrainolo (1991). A compendium of sources of fracture tough-
ness and fatigue crack growth data for metallic alloys, part IV. International Jour-
nal of Fracture 48, R19-R43.

Hult, 1. (1979). "CDM-capabilities, limitations and promises”, Mechanics of Defor-
mation and Fracture. Pergamen Press, NY.

Hutchinson, J. W. (1968). Singular behaviour at the end of a tensile crack in hardening
material. Journal of Mechanics and Physics of Solids 16, 13-31.

Inglis, C. E. (1913). Stress in a plate due to presence of cracks and shape corners.
Transactions of the Institute of Naval Architects 55, 219-241.

Irwin, G. R. (1948). Fracture dynamics, fracturing of metals. ASM Publications, 147—
166.

Irwin, G. R. (1957). Analysis of stresses and strains near the end of a crack traversing
a plate. ASME Journal of Applied Mechanics 24, 361-364.

Irwin, G. R. (1961). Plastic zone near a crack and fracture toughness. Sagamore Re-
search Conference Proceedings.

Isida, M. (1970). Analysis of stress intensity factors for plates containing random array
of cracks. Bulletin of the Japan Society of Mechanical Engineers 13(59), 635—642.

Isida, M. & et al. (1984). Two parallel elliptical cracks in an infinite solid subjected to



BIBLIOGRAPHY 153

tension. International Journal of Fracture 27(31), 31-48.

Jeelani, S. & M. Musial (1986). A study of cumulative fatigue damage in ASIS 4130
steel. Journal of Materials Science 21,2109-2113.

Johnson, H. H. & P. C. Paris (1968). Engineering Fracture Mechanics 1, 3.

Kachanov, L. M. (1958). On the creep rupture time. Jzv. Akad. Nauk. (SSSR) 8, 2631.

Kassir, M. K. & G. C. Sih (1966). Three-dimensional stress distribution around an
elliptical crack under arbitrary loadings. Journal of Applied Mechanics, 601-611.

Kassir, M. K. & G. C. Sih (1975). Mechanics of Fracture - Three-Dimensional Crack
Problems, Volume 2. Noordhoff international publishing Leyden.

Kelvin, L. (1856). Elements of a mathematical theory of elasticity, partl on stresses and
strains. Philosophical Transactions of the Royal Society of London 166, 481-498.

Kelvin, L. (1878). Mathematical theory of elasticity. Elasticity, Encyclopedia Britan-
nica 7, 819-825.

Kestin, J. & J. Bataille (1977). Irreversible thermodynamics of continnum and internal
variables. In Continuum Models of Discrete Systems (12).

Kfouri, A. P. (1986). Some evaluations of elastic T-term using eshelby’s method. /n-
ternational Journal of Fracture 30, 301-315.

Knowles, J. K. & E. Sternberg (1972). On a class of conservation laws in linearized
and finite elastostatics. Archive for Rational Mechanics and Analysis 44, 187-211.

Knsel, Z. (1995). Evaluation of the elastic T-stress using a hybrid finite element ap-
proach. International Journal of Fracture 70, R9-R14.

Kommers, J. B. (1912). Repeated stress testing, parts I and II. Sixth Congress of the
International Association for Testing Materials, New York.

Krajcinovic, D. (1983a). Constitutive equations for damaging materials. Journal of
Applied Mechanics 50, 355-360.

Krajcinovic, D. (1983b). Creep of structure-a continuous damage mechanics approach.
Journal of Structural Mechanics 11(1), 1-11.

Krajcinovic, D. (1985). Continuum damage mechanics revisited : basic concepts and
definitions. Journal of Applied Mechanics 52, 829-834.

Krajcinovic, D. (1989). Damage mechanics. Mechanics of Materials 8, 117-197.

Krajcinovic, D. (1996). Damage Mechanics. North-Holland.

Krajcinovic, D. & G. U. Fonseka (1981). The continuous damage theory of brittle
materials. ournal of Apphed Mechanics 48, 809-824.

Krajcinovic, D. & G. U. Fonseka (1982). The continuous damage theory of brittle
materials; parts I and II. Journal of Applied Mechanics 48, 809-824.

Lapidus, L. & G. F. Pinder (1982). Numerical solution of partial differential equations
in science and engineering. John Willy & Sons-New York.

Larsson, S. G. & A. J. Carlsson (1973). Influence of non-singular stress terms and
speciemen geometry on small scale yielding at crack tips in elastic-plastic materi-
als. Journal of Mechanics and Physics of Solids 21, 263-278.

Le, K. C. (1989). Equilibrium criterion for a nonlinear elastic slitted body. Advances
in Fracture - Oxford: Pergamon Press, 49-53.



154 BIBLIOGRAPHY

Le, K. C. & H. Schiitte (1999). Variational formulation of the crack problem with a
virtual crack kinking. Proceedings of 9th International Symposium on Continuum
Models and Discrete Systems, 727-735.

Le, K. C., H. Schiitte & H. Stumpf (1999). Determination of the driving force acting
on a kinked crack. Archive of Applied Mechanics 69(1), 337-344.

Le, K. C., H. Stumpf & D. Weicher (1989). Variational principles of fracture mechan-
ics. Mitteilungen Institute fiir Mechanik, Rihr Universitdt Bochum (64).

Leblond, J. B. (1989). Crack paths in plane situations - I: General form of the expansion
of the stress intensity factors. International Journal of Solids and Structures 28,
1311-1325.

Leblond, J. B. (1993). Crack kinking and curving in three-dimensional elastic solids
- application to the study of crack path stability in hydraulic fracturing. Mixed-
mode fatigue and fracture-ESIS 14 (Edited by H.P. Rossmanith and K.J. Miller),
Mechanical Engineering Publications, London, 219-243.

Leblond, J. B. (1999). Crack paths in three-dimensional elastic solids. I: two-term
expansion of the stress intensity factors—application to crack path stability in hy-
draulic fracturing. International Journal of Solids and Sructures 36, 79-103.

Leblond, J. B. & J. Frelat (2000). Crack kinking from an initially crcak. International
Journal of Solids and Sructures 37, 1595-1614.

Leblond, J. B. & J. Frelat (2001). Crack kinking from an interface crack with initial
contact between the crack lips. European Journal of Mechanics A/Solids 20, 937-
951.

Leblond, J. B. & I. Frelat (2004). Crack kinking from an initially closed, ordinary or
onterface crack, in the presence of friction. Engineering Fracture Mechanics 11,
289-307.

Leblond, J. B. & O. Torlai (1992). The stress field near the front of an arbitrarily shaped
crack in a three-dimensional elastic body. Journal of Elasticity 29, 97-131.

Leckie, F. A. & E. T. Onat (1981). Tensorial nature of damage measuring internal
variables. Physical Nonlinearities in Structural Analysis, Springer, 140-155.

Leevers, P. S. & J. C. Radon (1982). Inherent stress biaxiality in various fracture spec-
imen geometries. International Journal of Fracture 9,311-325.

Lemaitre, J. (1985). A continuous damage mechanics model for ductile fracture. ournal
of Engineering Materials and Technology 107, 83-89.

Lemaitre, J. (1992). 4 course on damage mechanics. Springer.

Lemaitre, J. & J. L. Chaboche (1985). Mecanique des Materiaux Solides. Dunod, Paris.

Lemaitre, L. & J. L. Chaboche (1990). Mechanics of Solid Materials. Cambridge Uni-
versity Press.

Li, S., M. E. Mear & L. Xiao (1998). Symmetric weak-form integral equation method
for three-dimentional fracture analysis. Computer Methods Applied Mechanics En-
gineering 151, 435-459.

Liebowitz, H. (1968). Fracture. Academic Press.

Maiti, S. K. & R. A. Smith (1983). Criteria for mixed mode brittle fracture based on



BIBLIOGRAPHY 155

the pre-instability stress-strain field - I and I1. International Journal of Fracture 23,
281-295.

Maugin, G. A. (1992). The Thermomechanics of Plasticity and Fracture. Cambridge
University Press.

Maugin, G. A. (1993). Material inhomogeneities in elasticity (15 ed.). St. Edmunds-
bury Press - Great Britain.

McClintock, F. A. (1968). A criterion for ductile fracture by the growth of holes. Jour-
nal of Applied Mechanics, 363-371.

McEvily, A. J. & R. C. Boettner (1963). A note on fatigue and microstructure. Fracture
of Solids 1963(Interscience Publications), 383—389.

Mehrabadi, M. M. & S. C. Cowin (1990). Eigentensors of linear anisotropic elastic
materials. Quarterly Journal of Mechanics and Applied Mathematics 43, 15-41.

Miner, M. A. (1945). Cumulative damage in fatigue. Journal of Applied Mechan-
ics 12(3), A159-A164.

Mogilevskaya, S. G. (1997). Numerical modelling of 2-D smooth crack growth. Inter-
national Journal of Fracture 87, 389-405.

Mohr, O. (1900). Welche umstinde bedingen die elastizitdtsgrenze und den bruch eines
materials? Zeitschrift des Vereins Deutscher Ingenieure (24), 1524—1530.

Molla-Abbasi, K. & H. Schiitte (2006). Evolution of elstic T-stresses of growing
mixed-mode cracks. Proceedings in Applied Mathematics and Mechanics 6, 179—
180.

Molla-Abbasi, K. & H. Schiitte (2007). Numerical analyses of the anisotropic damage
evolution due to a growing mixed-mode crack. Key Engineering Materials 348-
349, 701-404.

Molla-Abbasi, K. & H. Schiitte (2008). On the full set of elastic non-singular stress
terms of internal elliptical cracks under mixed-mode loading condition. Engineer-
ing Fracture Mechanics 75(6), 1545-1568.

Mott, N. F. (1958). A theory of the origin of the fatigue cracks. Acta Metallurgica 6,
195-197.

Murakami, S. & N. Ohno (1981). A continuum theory of creep and creep damage.
Creep in Structures, 422-434.

Murakami, Y. (1987). Stress Intensity Factors Handbook. Pergamon Press.

Muskhelishvili, N. I. (1933). Some basic problems of the mathematical theory of elas-
ticity. Noordhoff.

Nakamura, T. & D. M. Parks (1991). Determination of elastic T-stress along 3-D
crack fronts using an interaction integral. International Journal of Solids and Struc-
tures 29, 1597-1611.

Nemat-Nasser, S. & M. Hori (1993). Micromechanics, Overal Properties of Heteroge-
neous Materials. North-Holland.

Néther, E. (1918). Invariante variations-probleme. Nachrichtender der Kéniglicher
Gesellschaft der Wissenschaften, Géttingen (235-257).

O’Dowd, N. P. & C. F. Shih (1991). Family of crack tip fields characterized by triaxial-



156 BIBLIOGRAPHY

ity parameter-1. structure of fields. Journal of Mechanics and Physics of Solids 39,
989-1015.

Olsen, P. C. (1994). Determining the stress intensity factors k;, k;; and the t-term via
the conservation laws using the boundary element method. Engineering Fracture
Mechanics 49(1), 49-60.

Orowan, E. (1948). Fracture and strength of solids. Reports on Progress in Physics
XII 34, 185-232.

Palmgreen, A. (1924). Die lebensdauer von kugellager. VDI Zeitschrift 68, 339-341.

Paris, P. C. (1962). The Growth of Fatigue Growth due to Variations in Load. Ph. D.
thesis, Lehigh University, Bethlehem, USA.

Paris, P. C., M. P. Gomez & W. E. Anderson (1961). A rational analytic theory of
fatigue. The Trend in Engineering 13, 9-14.

Rabotnov, Y. N. (1968). Creep rupture. Proceedings of the 12th International Congress
of Applied Mechanics, 342-349.

Rabotnov, Y. N. (1969). Creep problems in structural members. Amsterdam: North
Holland Publishing Co..

Ravi-Chandar, K. (1982). An Experimental Investigation into the Mechanics of Dy-
namic Fracture. Ph. D. thesis, California Institute of Technology, California, USA.

Rice, J. (1985). Conserved integrals and energetic forces. Fundamentals of Deforma-
tion and Fracture, Eshelby Memorial Symposium, 33-56.

Rice, J. (1989). Weight function theory for three-dimensional elastic crack analysis.
Fracture Mechanics: Perspectives and Directions, 29-57.

Rice, J. R. (1968a). Fracture: An Advanced Treatise, ed. Liebowitz, H., Chapter 3:
Mathematical analysis in the mechanics of fracture (191-311), Volume 7. Aca-
demic Press, New York.

Rice, J. R. (1968b). A path independent integral and the approximate analysis of strain
concentration by notches and cracks. Journal of Applied Mechanics 35, 379-386.

Rice, J. R. (1974). Limitations to the small scale yielding approximation for crack tip
plasticity. Journal of the Mechanics and Physics of Solids 22, 17-26.

Rice, J. R. & G. F. Rosengren (1968). Plane strain deformation near a crack tip in
a power-law hardening material. Journal of Mechanics and Physics of Solids 16,
1-12,

Rice, J. R. & D. M. Tracey (1969). On the ductile enlargement of voids in triaxial stress
fields. Journal of Mechanics and Physics of Solids 17,201-217.

Rizzo, F. J. (1967). An integral equation approach to boundary value problems of clas-
sical elastostatics. Quarterly of Applied Mathematics 25, 83-95.

Robinson (1952).

Runesson, K., N. S. Ottosen & D. Peric (1991). Plane strain and stress discontinuous
bifurcations in elastic-plastic materials at plane stress and plane strain. Interna-
tional Journal of Plasticity 27, 9-121.

Rychlewski, J. (1984). On hook’s law. Prikl. Matem. Mekhan. 48, 303-314.

Saanouni, K., C. H. Forster & F. Ben-Hatira (1994). On the anelastic flow with damage.



BIBLIOGRAPHY 157

International Journal of Damage Mechanics 3, 140-169.

Sanders, J. L. (1960). On the griffith-irwin fracture theory. Journal of Applied Mechan-
ics 27, 352-353.

Schiitte, H. (2001). Ein finites Modell fiir spride Schédigung basierend auf der Ausbre-
itung von Mikrorissen. Ph. D. thesis, Ruhr Universitit Bochum, Bochum, Germany.

Schiitte, H. & K. Molla-Abbasi (2007a). On the evolution of elastic symmetries of
growing mixed-mode cracks. 8th International Conference on Multiaxial Fatigue
and Fracture.

Schiitte, H. & K. Molla-Abbasi (2007b). On the full set of elastic non-singular stress
terms of internal circular cracks under mixed-mode loading condition. Engineering
Fracture Mechanics 74(17), 2770-2787.

Schiitte, H. & K. Molla-Abbasi (2007c). On the influence of corner singularity on
kinking mixed-mode crack propagation. Key Engineering Materials 348-349, 585-
588.

Sham, T. L. (1989). The determination of the elastic T-term using higher order weight
functions. International Journal of Fracture 48, 81-102.

Sidoroff, F. (1981). Description of anisotropic damage application to elasticity. [UTAM
- Physical Nonlinearities in Structural Analysis, Springer, 237-244.

Sih, G. C. (1973). Mechanics of Fracture - Methods of analysis and solutions of crack
problems, Volume 1. Noordhoff international publishing Leyden.

Sih, G. S. (1972). Mechanics of Fracture - A Special Theory of Crack Propagation.
Noordhoff international publishing Leyden.

Sih, G. S. (1974). Strain energy density factor applied to mixed mode crack problems.
International Journal of Fracture 10(3), 305-321.

Simo, J. C. & J. W. Ju (1987). Strain- and stress- based continuum damage models.
International Journal of Solids and Structures 23(7), 821-869 and 841-869.

Simo, J. C. & R. L. Taylor (1986). A return mapping algorithm for plane stress elasto-
plasticity. International Journal for Numerical Methods in Engineering 22, 649-
670.

Skrzypek, J. & A. Ganczarski (1999). Modeling of Material Damage and Failure od
Structures, Theory and Applications. Springer.

Sladek, J., V. Sladek & P. Fedelinski (1997). Contour integrals for mixed-mode crack
analysis: effect of nonsingular terms. Theoretical and Applied Fracture Mechan-
ics 27, 115-127.

Smith, D. J., M. R. Ayatollahi & M. J. Pavier (2001). The role of T-stress in brittle frac-
ture for linear elastic materials under mixed-mode loading. Fatigue and Fracture
of Engineering Materials and Structures 24, 137-150.

Sneddon, 1. N. (1946). The distribution of stress in the neighbourhood of a crack in an
elastic solid. Proceedings of the Royal Society 60, 187-222.

Sumi, Y. (1986). Computational crack path prediction, applied to crack arrestabilty
by a circular hole. Proceedings of the International Conference on Computational
Mechanics, Tokyo, 241.



158 BIBLIOGRAPHY

Sumi, Y., S. Nemat-Nasser & L. M. Keer (1983). On crack branching and curving in a
finite body. International Journal of Fracture 21, 67-19.

Sutton, S. A. (1974). Fatigue crack propagation in an epoxy polymer. Engineering
Fracture Mechanics 6(3), 587-595.

Tian, C. & W. Cui (2006). T-stress in elastic-plastic crack-tip fields. International Jour-
nal of Fracture 136, 9-14.

Timoshenko, S. P. (1953). History of the Strength of Materials. McGraw-Hill.

Ting, T. C. T. (1985). Asymptotic solution near the apex of an elastic wedge with
curved boundaries. Quarterly of Applied Mathematics 42, 467-476.

Tresca, H. (1872). sur les godets graisseurs présentés par m. ermond rous. Acad. Sci.
Paris 20, 75-135.

Vakulenko, A. A. & M. L. Kachanov (1971). Continual theory of medium with cracks.
Mechanics of Solids 6, 145-151.

von Mises, R. (1913). Mechanik der festen kérper im plastischen deformablen zustand.
Nachrichten von der Gesellschaft der Wissenschaten zu Gottingen (Mathematisch-
Physikalische Klasse), 582-592.

Walker, E. K. (1969). An effective strain concept for crack propagation and fatigue with
specific application to biaxial stress fatigue. Air Force Conference on Fracture and
Fatigue (TR-70-144), 225-233.

Wang, X. (2004). Elastic T-stress solutions for penny-shaped cracks under tension and
bending. Engineering Fracture Mechanics 71, 2283-2298.

Wang, Y. Y. (1993). On the two-parameter characterization of elastic-plastic crack front
field in surface cracked plates. ASTM - Constraint Effects in Fracture, 120-138.

Westergaard, H. M. (1939). Bearing pressure and cracks. Journal of Applied Mechan-
ics 61, A49-A53.

Whittaker, E. T. & G. N. Watson (1962). Modern Analysis. Cambridge University
Press, 548-552.

Wieghardt, K. (1907). Uber das Spalten und Zerreissen elastischer Koérper. Zeitschrift
Jiir Mathematik und Physik 55, 60-103. (Translated in Fatigue and Fracture of
Engineering Materials and Structures. On splitting and cracking of elastic bodies
(1995) 18, 1371-1405.).

Williams, M. L. (1957). On the stress distribution at the base of a stationary crack.
Journal of Applied Mechanics 24, 109-114,

Wahler, A. (1860). Uber die festigkeits-versuche mit eisen und stahl. Zeitschrift fiir
Bauwesen 8,10,13,16,20.

Woo, C. W. & C. L. Chow (1984). Fatigue crack propagation in aluminium and pmma.
International Journal of Fracture 26(R), 37-42.

Wood, W. A. (1958). Recent observations on fatigue fracture in metals. American So-
ciety of Testing Materials 237, 110-121.

Whu, C. H. (1978). Elasticity problems od slender Z-crack. Journal of elasticity 8, 183—
205.

Xu, G., A. F. Bower & M. Ortiz (1994). An analysis of non-planar crack growth un-



BIBLIOGRAPHY 159

der mixed-mode loading. International Journal of Solids and Structures 31, 2167-
2193.

Ziegler, H. (1983). North-Holland Publishing Co.

Zienkiewicz, O. C. & R. L. Taylor (1989). Finite Element Method (4" ed.). McGraw-
Hill. New York.



Appendix

Appendix A

Expressions of f{} and g}

The non-zero expression of the universal functions are given in (LEBLOND & TORLAI 1992).

The functions for f are expressed in the Polar-coordinates and the g-functions in both
Polar- and Cartesian-coordinates.

Functions f3:
fl.(8) = 4\/12; (Scosg —cos?) , fhe(8) = Wi ]271 (3 cos 5 + cos —)
(A-1)
.30 I 2v 0
(0) T (sm2 + sin 7) , f(8)= \/TT cos 7
1 0 36 36
1 _ . . 38
f.(0)= 4\/_(Ssm +3sm2), (9) \/_(sm2+sm2),
(A-2)
1 0 30 —2v 0
1 _ v v 1 _ TV Y
f,.,(e)_4\/2_n (cosz+3cosz), . (8) \/ZTtst'
1 .6 1 e
fill(g) = 7oy file) = Tom 057 (A-3)
Functions g{} in the Cartesian coordinates:
0 (0) =1, g (0)=" (A-4)
g (8) =1,
l[l (e) =1.
Functions gf in the Polar coordinates:
gr () =cos?(8), gge (9) = sin’(8), (A-5)
g;z [e) =V, gl‘e (9) - Sln(ze) ’

Qez (9) = —sm(e) ’ grz (e) = COS(B) )
Ill (9] = -|
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Universal functions proportional to /7

Functions h{:
1 0 I _ 1 8_ 56
(9] Ywir 3cos = +cosz), hee(e)—m(ScosE cosz),
(A-6)
1 e . 56 2v 0
hl (8) 4 3 (sm2 s1n7), h, () = ﬁcosz
1 (32550 2), wh(o)= o (sn -5 ?)
hl(e) = 4@{( sin +58m2), hee(e)—4\/2_ﬂ sin> —sin—- |,
(A-7)
hip (8) = \/—( coS = +5cos?), hi‘z(e)—\j;smz
I 3% gy o138 )
hite) = \/_smz, 2 (8) = 2ﬂcosz. (A-8)

Functions 1% :

1,(8)= \/1— (h-%) (m%nm?), (A-9)
L (g) = 1., 8. (3_ 38
1,:(9)—\/; 7 )cosz (2 Z'V)cosz,
New?, wior=y/L (2v-1)sn
= \/:(Zv 2) cos 3, 1.(8) = o (Zv 2) sin 5,
ﬂl‘(e)=—§\/£_;rsing, 12‘[9)=\/;1;(4+?‘v)smg

Functions m{;"!
mode-II: (A-10)

92 /1 0 1 0

L (9) = Z4/o— cos =, miy" LI

my (9)—-2 - cos 3, (8) = 7 €055

1 0 3 1 6

Imn _ v ILn [ b
my; (0) =12v = cos 2 mg' (0) 7V 3 sin 7
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mode-III: (A-11)
3 /1 30 3 / 1 30
L1 =2 &in 22 LN =4/
mez (e) 4V 2 sin 2 ’ mrz (e) 4 c 08 —- 2 ’
Functions m&3:
e
mode-I: (A-12)
-3v /1 . 30 3—v /1 30
mi3 () = \/2—7‘ sin =, my3(e) = \/ﬁ cos —
mode-II: (A-13)
miLi3 (g) = ,/ ﬂ( 83sing+3"8;3sin529),
mit @) = L2 o (cos§ ren D),
mode-III: (A-14)
/ 1 0 / 1 0
m.}.}.]’u (9) =2 Z‘( cos 5, "I 1 (e) 27 cos E
/ 1 0 / 1 .0
mLIZI,B (e) = (4‘V— 1) Z_ﬂ 005-2-, IIl13 (9] e smE
Functions m3:
mode-I: (A-15)
21 0 9 3
133 (g} — £ A
my” (0) = (8 )sm2+(]6 ‘v)smz)
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mode-II: (A-16)
] 13 0 9 30
133 (g) — A/ _2 v A =
m,> (8) ﬂ((S‘v ]6)cosz+(]6 'v)cosz),
2 30
mig3 () = —]7; ((h - ]—7) cos g + (v -~ %) cos 7) )
1 3 6 1+v 30
33 gy — ./ 2 _ 2 TR P
m,.> (8) I ((8‘V 5v+2) cos2+ 7 2),
/ 1 .0 .
m_lr%33 (8) = 2—n (‘v — ]—) smz + sin T) ’
mode-III: (A-17)
5 /1 .0 . 30
m},‘}ﬁ (0) = -1V (sm 3 + sin 7) ,

/ 1 7 0 5 30
111,33 =4+/— (2 Z 4= =
m (8) ( cos‘2 + —cos 2) ,

Functions n:

mode-I: (A-18)
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mode-I: (A-19)
s (G (5-3) (- 2)).

ngh (0) = %{ (%—‘v <smi+sin?),

nll(e) = 2]—7( ((8%’2—!-7%—;) sing——l—;—vsinize-).

nﬂ,(@): ;—ﬂ(%—g) (cosg+(‘v—]—7é)cos%q),

mode-IIT: (A-20)
nil(g) = _g Zlﬂ cos -g-,

il (0) = 7/ 55 sin,
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Appendix B

Expressions of the universal functions F,g, G4 and Hug

The non-zero expression of the universal functions Fyg and Gyg in terms of the kinking
angle ¢ are (LEBLOND 1999):
+5.07790 m® — 2.88312m'% — 0.0925 m'2 + 2.996 m"*
—4,059m'6 +1.63m'" + 4.1 m® + O(m%),
Py M (10m BN (13 s
2= m+( 3 +1s) ™ +( ™ 80 +1280) m
+12.313906 m” — 7.32433 m’ + 1.5793 m"' + 4.0216 m"?
—6.915m" +4.21m"7 + 456 m" + O(m?'),

P T 4_n+1;3_ w4 271:+137t3_597t5 3
L) 3 ' 48 3 ' 730 3840
—6.176023 m’ +4.44112m° — 15340 m'" — 2.0700 m"?
+4.684m" —3.95m"7 —1.32m" + O(m?),
3\ , (8 29n2 57\ , 32 4
FZZ”"(“*T)’“ +(3+—1s "Tiz)"‘ +(_E'T

11597 11976 ¢ . 0
7200 + 1 5360) m° 4 10.58254 m°® —4.78511m

—1.8804m'2 +7.280 m'" — 7.591 m'¢ + 0.25m'® + 12.5 m?® + O(m*?),
Fiz =F31 =F3 =F3; =0,

1—m\™?
fo=(rim)

where m = ¢/, and

Gn =15.74961 m? — 47.93339 m* + 63.66599 m® — 50.7088 m® (B-2)
+ 26.66807 m'® — 6.0205 m'? — 7.314m™"™ 4+ 10.947 m'®
—2.85m'¥ —13.7m%® 4+ O(m%),

Gz =—5.013257 m + 30.07954 m3 — 59.565733 m® + 61.17444 m’
—39.90249 m’ 4+ 15.6222m'" 4+ 3.0343 m' —12.781m'®
+9.69m' +6.62m" + O(m?'},

2 (1-m\™
G =—2m m(u—m) -
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In (LEBLOND 1999), the in-plane components of H,g(¢) are given as tabulated nu-

merical data

¢° Hu($) Hi(d) Hald) Ha(d)
0 0 2250 0750 O

5 -0.098 -2.236 0.746 -0.189
10 -0.194 -2.196 0.731 -0.374
15 -0.288 -2.129 0.708 -0.553
20 -0.377 -2.037 0.675 -0.723
25 -0461 -1922 0.635 -0.879
30 -0.538 -1.786 0.587 -1.021
35 -0.608 -1.631 0533 -1.145
40 -0.669 -1460 0474 -1.250
45 -0.721 -1276 0410 -1.334
50 -0.763 -1.082 0344 -1.396
55 -0.796 -0.881 0276 -1.436
60 -0.819 -0.677 0207 -1.454
65 -0.833 -0472 0.139 -1.450
70 -0.837 -0.270 0.072 -1.424
75 -0.832 -0.073 0.008 -1.378
80 -0.818 0.115 -0.052 -1.313

Table B-1: numerical values of the in-plane components Hyg(¢)

The resulting functions may be obtained from curve fitting, where H;;(¢) and Hy ()

are odd functions of ¢ and H;2(¢) and Hy(¢) even functions

Hip =— 1.12400 m + 0.360546 m* + 0.025559 m® — 0.459497 m’
+1.27174 m’ — 1.86604 m'" 4 1.56091 m'3 — 0.748144 m'>
+0.191592m'7 — 0.020345 m'? + O(m?"),

Hiz = — 2.24987 + 1.7846 m? — 0.274494 m* — 0.51285 m®
+ 1.60245 m® — 2.57438 m'® + 2.42131 m'2 — 1.33571 m™
+ 0.405271 m'6 — 0.055258 m'® + O(m?),

Hj1 =0.750252 — 0.618181 m? — 0.128243 m* + 1.88129 m®

(B-3)
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—6.8318m® + 14.2247m'" — 18.0754 m'? + 14.22 m™
—6.75317m'¢ + 1.77205 m'® + O(m%),

Hzy = —2.16823 m + 0.793333 m3 + 0.234458 m® — 1.42031 m’
+3.15283 m’ —4.07036 m'' + 3.14437 m'3 — 1.42864 m"
+0.351761 m'7 — 0.036189 m'? + O(m?"),

and the out of plane component Hs3(¢) is given by

B 1 3(1-m\™ _/mm 2m (1-m\™
37 cos(mm/2) Z(l+m) sm(T)_m(wm)
(B-4)
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Appendix C

The fundamental integral and its partial derivatives

The solution to the fundamental integral (sections 2.2.3 and 2.2.4)
10/ y? z2 ds
P=c —_—t =1 ——,
ZL (oc2+s+|32+s+s )1/Q(s)

is obtained by considering the result of each single term (BYRD & FRIEDMAN 1971):
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where
. o
¢ = am{u;) = arcsin ( m) , (C-3)
7
k= ]—%,

k2=,/1—k%=g.

To evaluate the needed terms of partial derivatives of the potential functions, following
derivatives should be applied
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anisotropic, 112
brittle damage, 112
creep damage, 112
damage, xii, 85, 108, 111, 124
damage evolution, 86
elastic material symmetry, 86
elastic solid, 112
elastic symmetry, 91

brittle, xi, 1, 4, 10, 85, 110
brittle anisotropic, 91
brittle failure, 106

ceramic, 16, 128
circular crack, 29

mode-I T-stresses, 42

T-stress(complete set), 49
cleavage, 10
complete elliptical integral

first kind, 46

second kind, 40, 46
compliance, 79, 109
compliance tensor, 85, 98, 112
concrete, 16, 128
constitutive equation, xii, 106
constitutive model, 107
continuum damage mechanics, xi, xiv,

107,112

continuum plasticity model, 107
coordinates, 33

Cartesian, 33

Ellipsoidal, 33

local, 34

Polar, 33

relations, 34

crack
growth rate, 61
growth, xiii, 116, 117
growth rate, 75, 123
kinking, xiii, 60, 116, 117
kinking angle, 65
propagation, 116
propagation angle, 75
propagation rate, 74, 75
criterion
Griffith theory, 62
local symmetry, 60, 61
maximum driving force, 61, 123
maximum energy release rate, 67
maximum hoop stress, 62
maximum strain energy density, 62
maximum tensile stress, 61
cyclic loading, xii

damage
anisotropic, xii, 85, 108, 116, 124
brittle, 106
effect tensor, 111, 116
evolution, xii, xiv, 105, 108
intergranular, 111
transgranular, 111
damage induced anisotropy, xiii, 125-127
displacement, 71
dissipation, 75
energy, 109
postulate, 125
potential, 106
rate, 8
ductile, 10
ductile-brittle transition, 10
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element eigentensor, 86, 90

crack tip hybrid, 71 eigenvalue, 85

hexahedral, 50, 69, 136 eigenvector, 85, 90

tetrahedral, 50, 69 optimization approach, 100, 127
elliptical crack, 29

mode-11/111, 43 Lamé constants, 86, 88

asymptotic stress field, 29

mode-I, 38 macro- K, 105

mode-I SIF, 42 $§king 106

mode-11/1II SIF’s, 47 scale, 3, 105

semi-mainor axis, 34
semi-major axis, 34
stress field (mode-I), 41
stress field (mode-I1/11I), 46
embrittlement, 15
equivalence principles, 112
strain energy equivalence, 115
strain equivalence, 112
stress equivalence, 114
equivalent crack, 109, 125, 135
extrapolation, 51

fatigue crack evolution law
G-based law, 28
K-based law, 27
Forman’s law, xii, 26
generalized Paris’ law, 75
modified Paris’ law, 123
Paris’ law, xii, 26, 62

first order estimate, 51

fractographic, 12

fracture criterion, 61

fracture toughness, 6, 26, 27, 31, 130

glass, 16

half space, 38
harmonic function, 44
Hooke’s law, 64, 86

identification of material symmetry
Cowin-Mehrabadi approach, 85, 89,
98
eigen-elastic constant, 91

macro-scale, xiv
material force, 21
material symmetry, xiv, 85, 86, 89, 95,
100, 108, 126
cubic, 90
hexagonal, 90
hexagonal(6), 90
hexagonal(7), 90
isotropic, 90
monoclinic, 90
orthotropic, 90
tetragonal(6), 90
tetragonal(7), 90
triclinic, 90
mesoscale, 85, 105
micro-
cavity, 3
constituent, 117
cracks, xii
defect, 86, 105, 111
inclusion, 105
mechanical modeling, xii
mechanics, xii, xiii
process, 105
scale, xiv, 85
scopic, 111
scopic phenomena, 2
slip, 106
stress, 105
structural, 3
structure, 86
void, 2, 86, 105
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monotonic loading, 109

path independent integral, xiii, 23
J-integral, 8, 71
L-integral, 23
M-integral, 23
P-integral, 23
perturbation, 31
plane of symmetry, 86, 89
plane strain, 7
plastic zone, 29
shape, 50
size, 50
Poisson’s ratio, 27, 40, 67, 108, 119
postulate, 109
equivalent change of compliance ten-
sors, 126
equivalent damage induced anisotropy,
109, 126
equivalent dissipation, 109, 126
equivalent driving force, 126
equivalent mode-mixity, 126
equivalent stress intensity factor, 126
equivalentpropagation rate, 126
potential function, 39

quasi-brittle, 108, 110
quasi-continuum, 110

residual stress, 16
RVE, 110

S-N diagrams, xi
shear modulus, 40
simulation
crack growth, xiii, 68
finite element, 85
slipband, 106
small strain assumption, 59
stability, 31
steel, 16
stiffness
matrix, 61
reduction, xiii, 105

stiffness tensor, 112
stochastic constitutive law, 117
strain, xi, 21, 71, 88, 106
strain energy, 4, 18, 122

density, 22

release rate, 5
strength, xi, 3, 86

bulk, 4

criterion, 4

parameter, 7

shear, 130

theory, 3

ultimate, xi, 130

yield, xi, 11, 51, 130
stress, xi, 21, 71, 88, 106
stress intensity factor

direct method, 50
stress tensor, 52

deviatoric part, 52
superposition method, 29

T-stress, 29
effect, 29
elliptical crack, 29
mode-I circular crack, 42
negative, 31
positive, 31
stability criterion, 31
tensile yield strength, 51
thermodynamics, xii, 3, 27
conjugate force, 28
consistent, xiii, 125
dual, 28, 62
flux, 75
force, 75
Tresca criterion, 9

uniaxial traction, 38
unit cell, xiv, 10, 33, 43, 61, 69, 85, 95,
109, 129

von Mises, 9

Woahler diagram, 9
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wood, 16

yield criterion, 51
von Mises, 51
Young’s modulus, 27, 67, 108, 119
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