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Zusammenfassung

In dieser Arbeit wird der Multiple Localisation Surface Approach (MLSA)
vorgestellt, der auf dem Strong Discontinuity Approach basiert und eine geo-
metrisch nichtlineare Finite-Elemente-Anwendung darstellt. Er dient der Be-
schreibung lokalisierter Deformationen in Strukturen, die Materialversagen in
der Form einer Entfestigung unterliegen. Die Haupteigenschaft des MLSA ist
die simultane Ausbreitung von mehrfachen, sich iiberschneidenden Diskonti-
nuititen innerhalb eines jeden finiten Elementes. Die Flachentopologie und die
Ausrichtung parallel zu einer der Elementseiten sind so gewahlt, dass sie fiir die
Beschreibung der Entfestigung in Materialien mit einer beliebigen Verteilung
von bereits existierenden Mikrodefekten geeignet sind. Diese Wahl liefert einen
aus numerischer Sicht zu bevorzugenden symmetrischen Tangentenoperator
fiir die FE-Anwendung. Zwei alternative Formulierungen des MLSA werden
im Detail beschrieben. Die implizite Formulierung erméglicht die Einbindung
plastizitdtsbasierter kohisiver Gesetze und kann auf ein breites Spektrum an
Schadigungstheorien angewendet werden. Die explizite Formulierung eignet
sich fiir numerische Simulationen eines lokalisierten Materialversagens, das
plastischen Deformationen in Form von Gleitbindern unterliegt. Eine Vali-
dierung der vorgeschlagenen Ansatze findet abschlieBend anhand dreidimen-
sionaler Beispiele statt.

Summary

The Multiple Localisation Surface Approach (MLSA), a geometrically non-
linear finite element application based on the Strong Discontinuity Approach
which is used for the description of localised deformation in structures un-
dergoing material failure in the form of strain softening, is presented in this
thesis. The main property of the MLSA is the simultaneous propagation of
multiple intersecting discontinuities within each element. The planar topology
and the orientation parallel to one of the element sides for singular surfaces
are chosen such to be suitable for the description of strain softening in mate-
rials with an arbitrary distribution of pre-existing micro-defects. This choice
yields a numerically preferable, symmetric tangent operator in the finite ele-
ment application. Two alternating formulations of the MLSA are described
in detail. The implicit formulation allows the incorporation of any plasticity
based cohesive law and can be applied to a broad range of damage theories as
well. The explicit formulation can be employed for numerical simulations of
localised failure in a wide range of materials experiencing plastic deformations
in the form of slip bands. The basic properties of the proposed numerical
solution are investigated in several three-dimensional numerical examples.
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Conventions and Notations

Scalars (Latin characters - italic)

energy dissipation
internal energy
entropy

Jacobian

mass

time

temperature

Scalars (Greek characters)

dij
A1,2,3
Ap
fo

p

¢

P
Yo

KRONECKER delta symbol
principal stretches

LAME constants

reference mass density
current mass density
yield function

ramp function
HELMHOLTZ free energy

Vectors (Latin characters - boldface roman)

spatial acceleration

material acceleration

unit base vectors of a rectangular Cartesian coordinate system
material displacement jump

eigenvectors of a spatial tensor

eigenvectors of a material tensor

normal vector corresponding to the singular surface 8.0
residual

displacement

spatial velocity

material velocity

position vector in the current configuration

position vector in the reference configuration

Vectors (Greek characters)

«

strain-like internal state variables

Second order tensors (Latin characters - boldface roman)

b

left CAUCHY-GREEN deformation tensor



right CAUCHY-GREEN deformation tensor

ALMANSI strain tensor

rate-of-deformation tensor

GREEN-LAGRANGE strain tensor

deformation gradient

enhanced displacement gradient

stiffness matrix

velocity gradient

spatial traction

material traction

first PIOLA-KIRCHOFF stress tensor

second PIOLA-KIRCHOFF stress tensor
| displacement jump

regular part of the displacement field

right stretch tensor

left stretch tensor

spin tensor

stress-like internal state variables

Qg<orgTOURT"RmEEACQ

Second order tensors (Greek characters)

eP jump deformation tensor
o CAUCHY stress tensor

> MANDEL stress tensor

T KIRCHOFF stress tensor

Fourth order tensors (Latin characters - boldface roman)

c spatial elastic tangent operator

C material elastic tangent operator

Cc° algorithmic tangent operator

I fourth order identity tensor

geym symmetric fourth order identity tensor

Other symbols

r boundary of the current configuration

o boundary of the reference configuration
E, admissible stress space

Jact set of active singular surfaces

Q current configuration

Qo reference configuration

ot current configuration of the bulk material

9: singular surface



vil

Hs HEAVISIDE function with respect to the discontinuity surface 9:§2
Superscripts

()t right-hand limit at 9.}

()~ left-hand limit at 9:Q

(‘)(ﬁ ) quantity associated with the singular surface X G

() quantity associated with the trial state

Overlines

(T) regular part of a tensorial quantity

() singular part of a tensorial quantity
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1 Introduction

1.1 Motivation

One of the major challenges in the field of computational solid mechanics is
the numerical simulation of material and structural failure. Such computations
are necessary for the evaluation of the ultimate capacity of new materials and
structures. Numerical methods for the calculation of limit situations close to
intensive damage or collapse are designed to lead to a safe but practical esti-
mation of the ultimate amount of loading. The Finite Element (FE) method,
as an essential part of computer-aided design in engineering, is widely applied
in calculations of this type. Therefore, a great amount of scientific effort is
investigated in the enhancement of the FE tools for the treatment of such com-
plex mechanical problems. Due to the very specific nature of the phenomenon
of failure, the application of the FE method is not always a straightforward
task. Namely, the failure of many engineering materials is often characterised
by intense deformation modes restricted to narrow zones. Typical examples
of such behaviour are the adiabatic shear-banding in metals, shear bands in
soils, and localisation bands of cracking in brittle materials such as rocks and
concrete. The technical importance of these highly localised zones lies in the
fact that their occurrence which signifies the onset of failure, is a precursor to
rapture. Localised deformation is regularly followed by a reduction in overall
strength of the material as loading proceeds. This phenomenon is known as
strain softening. In order to predict not only the ultimate load but also the
post-peak softening response of the material, attention is drawn to creating
numerical solutions that are robust and consistent. Although the general con-
ditions for the occurrence of localised deformation are well understood and
extensively analysed, the nature of the problem poses severe challenges to the
numerical implementations. Due to the fact that the dimension of the narrow
regions of localised strains is often distinctively smaller than the dimension
of the structure, the phenomenon can be regarded as a multi-scale problem.
In addition, the presence of strain softening which triggers the strain locali-
sation leads by application of classical continuum models to the dependence
of the numerical solution on the finite element discretization. The use of con-
ventional FE method for the simulation of structural problems which involve
localisation results in both a size and directional dependence on mesh topol-
ogy. Additionally, the mesh refinement can lead to physically inappropriate
solutions because energy dissipation in localisation zones decreases.

Various approaches have been developed in order to circumvent the mesh de-
pendence of finite element based modelling of strain localisation: plastic evo-
lution equations with an incorporated length scale ([PIETRUSZCZAK & MROZ
1981]), non-local approach ([PIJAUDIER-CABOT & BAZANT 1987; BAZANT
& P1IAUDIER-CABOT 1988|, weak-discontinuity approach (JORTiZ, LEROY &
NEEDLEMAN 1987]) and strong-discontinuity based approach ([NEEDLEMAN
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1990; DvoRrkIN, CuiTiNO & Gioia 1990; SimMo, OLIVER & ARMERO 1993;
ORrTIZ & PANDOLFI 1999; MoES, DoLBOW & BELYTSCHKO 1999]). Since the
numerical model presented in this dissertation belongs to the class of strong-
discontinuity based approaches, this group of numerical solutions is briefly
presented in this introduction. Strong discontinuity approaches are based on
the hypothesis of a discontinuous displacement field and implementation of
cohesive laws ([DUGDALE 1960; BARENBLATT 1962]) connecting the traction
vector to the discontinuity of the displacement field. Numerical implementa-
tions of strong discontinuities can be further separated in two general groups.
The first group are the interface elements allowing the discontinuity of the dis-
placement field only at the element boundaries ([NEEDLEMAN 1990; ORTIZ &
PANDOLFI 1999]) and the elements with an inner displacement jump allowing
the discontinuity of the displacement field inside the element. The latter can be
branched into Strong Discontinuity Approach (SDA) [DVORKIN, CUITINO &
G101A 1990; KLISINSKI, RUNESSON & STURE 1991; SiM0O, OLIVER & ARMERO
1993; ARMERO & GARIKIPATI 1996] and EXtended Finite Element Method
(X-FEM) ([Mois, DoLBow & BELYTSCHKO 1999; DoLBow, MoEs & BE-
LYTSCHKO 2002; SUKUMAR, MOES, MORAN & BELYTSCHKO 2000]). SDA
models use the enrichment of the displacement field on the element level and
X-FEM utilises the Partition of Unity concept and nodal enrichments of the
displacement field. Due to the fact that strong discontinuities in SDA are mod-
elled element-wise, i.e. in an incompatible fashion, the numerical treatment
of additional degrees of freedom resulting from their introduction is possible
on the element or material point level. Further classification of the Strong
Discontinuity Approach can be made according to the choice of the procedure
for the elimination of the degrees of freedom associated with the discontinuity
from the calculation. [ARMERO & GARIKIPATI 1996; LARSSON, STEINMANN
& RUNESSON 1998; STEINMANN & BETSCH 2000; ARMERO 1999; OLIVER,
HUESPE, PULIDO & SAMANIEGO 2003; GASSER & HOLZAPFEL 2003; CALLARI
& ARMERO 2004] eliminate those degrees of freedom on the element level us-
ing the static condensation procedure. [BORJA 2000; MOSLER & MESCHKE
2000; MOSLER & MESCHKE 2001; MOSLER 2005A] suggest the elimination
already at the material point level. This idea is extended to geometrically ex-
act kinematics in [BOrRJA 2002; MOSLER 2006|. This short overview confirms
that the decades of intense research in the field of constitutive modelling in the
presence of localised deformation provided this field with a wealth of different
numerical concepts. However, a need for fully three-dimensional, geometrically
exact numerical solutions for the prediction of strain-softening still exists.

The method of choice for the numerical analysis of the localised failure in
this work belongs to the class of SDAs. This choice is based on the follow-
ing properties of the SDA. The possibility of an element-level condensation of
additional degrees of freedom yields relatively inexpensive implementation, cf.
[OLIVER, J., HUESPE, A.E. & SANCHEZ, P.J. 2006]. Additionally, [OLIVER,



1.2 Outline 3

J., HUESPE, A.E. & SANCHEZ, P.J. 2006] show that the computational costs
of numerical implementation of SDA in the case of multiple localisation sur-
faces remain almost constant with an increase in the number of cracks. This
thesis takes the SDA proposed by [MOSLER 2006] as a basis for the develop-
ment of a new numerical model suitable for the description of the localised
material failure in the presence of pre-existing micro-cracks. The factors re-
sponsible for localised deformation include, among others, initial imperfections
and defects in the continuum. For instance, the ultimate load of jointed rocks
is influenced by the roughness and orientation of pre-existing slip surfaces.
Additionally, the evolution of those internal surfaces is very important. In
order to study the influence of pre-existing microdefects on macroscopic prop-
erties of the material, an efficient numerical model based on finite element
technology is developed. The essential properties of the implementation are:

e strong discontinuity kinematics

fully three-dimensional model

pre-existing defects in form of displacement discontinuities with known
orientation

symmetric formulation of the numerical procedure

independence of the result from the spatial discretization
e simultaneous propagation of multiple localisation surfaces

e geometrically exact formulation

These characteristics ensure the applicability of the proposed model in the
simulations of localised material failure in the presence of pre-existing defects,
objectivity of the numerical results in the case of three-dimensional problems
undergoing finite deformations, as well as the efficiency of the numerical pro-
cedure.

1.2 Outline

This dissertation is structured into six chapters. Subsequent to this introduc-
tion, a brief summary of selected topics in continuum mechanics and constitu-
tive modelling, necessary for the development and understanding of the rest of
this work, is given in Chapter 2. The introduction of basic notions in the finite
kinematics of deformable bodies is followed by a brief overview of fundamental
axioms of thermodynamics. Two different constitutive models, hyperelasticity
and finite strain plasticity, are briefly explained with a special retrospect to the
main principles of material modelling. For the reference, literature covering a
wide range of topics in continuum mechanics is cited.
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Chapter 3 is devoted to the extensive description of a numerical procedure
for the modelling of material failure at finite strains by the Finite Element
Method. In the opening sections, the kinematics of the Strong Discontinuity
Approach (SDA), which is the core of the numerical implementation treated in
this thesis, is proposed. The main trait of the SDA kinematics is the existence
of a discontinuity in the displacement field which describes the motion of the
body experiencing strain softening under loading. In order to accommodate
this property, a corresponding deformation mapping with a continuous and a
discontinuous part is created. The distinction between the singularity surface
and the rest of the material is realised in the constitutive model by assuming
a purely elastic bulk material and a strictly inelastic localised deformation.
The application of the Enhanced Assumed Strain (EAS) concept in the kine-
matic frame renders constitutive equations similar to those of standard (finite)
plasticity. A numerical finite element procedure for the solution of the consti-
tutive model with a single discontinuity surface based on these facts is then
presented. The numerical implementation does not require any assumption re-
garding neither the type of the finite elements, nor the constitutive behaviour.
Any traction-separation law, connecting the displacement jump to the traction
vector, can be applied. The topology and the orientation of the singularity
are chosen such as to render a symmetric numerical formulation, i.e. singular
surfaces are parallel to the sides of the tetrahedral finite elements. In this
manner, the space of admissible internal surfaces spanned by the proposed
numerical model is relatively rich and the continuity of the singular surface
91 can be guaranteed.

As a next step, a simultaneous propagation of the multiple discontinuities in-
side finite elements is modelled. This advanced version of the SDA is presented
in Chapter 4. Multiple Localisation Surface Approach (MLSA) leads to an al-
teration in the definition of the gradient of the localised deformation mapping
which captures the influence of the multisurface singularities. The kinematics
and the constitutive model of MLSA are defined with the assumption that
the basic notions and postulates of the Strong Discontinuity Approach re-
main unchanged. The chapter offers a complete presentation of the necessary
changes in the algorithm for the numerical implementation of SDA in the case
of multisurface discontinuities. Two versions of the method, an implicit and
an explicit MLSA are defined. They differ in the proposed form of the de-
formation gradient. The explicit formulation of MLSA is applicable for the
type of inelastic behaviour involving sliding modes, which is characteristic for
ductile metals and geomaterials.

The results of the application of MLSA in numerical simulations are presented
in Chapter 5. The applicability and the performance of the presented three-
dimensional finite element formulation is tested on three different numerical
examples. First example is the evaluation of the ultimate load in a triaxial
compression test of a soft rock sample. After that, a comparative analysis of
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the explicit and the implicit formulation of MLSA is performed on a simulation
of an uniaxial tension test of a bar. The chapter is concluded with an analysis
of the crack propagation in a L-shaped slab.

The last part of the dissertation includes a summary and an outlook. Some
remarks concerning possible further modifications of the proposed numerical
model are given.

1.3 Mathematical notations

In addition to the conventions and notations defined on pages v to vii, some
mathematical notations of importance for the understanding of the subsequent
derivations are summarised here.

Tensor components are defined with respect to an orthogonal Cartesian coor-
dinate system. The symmetric unit tensor of second order is given as

I=0ie ®e;. (1.1)

Two different unit tensors of fourth order are defined. The non-symmetric
tensor is

I= (5im 6jn) e;i®e; Ve, den, (12)
while the symmetric unit tensor of fourth order has the form

I = % (8im Gjn -+ 8in Omy) €i ® €; @ €m ® €n . (1.3)
Tensor operations are defined by

a®b =a;bjei Qe

a-b =a;b
A-B=A;; Bjre:®ex (1.4)
A:B=A5j Bij

A . B = Aijm.n an €; ®ej

for ¢, 7, k = 1, 2, 3. Tensor operations defining trace, transpose and inverse
have following definitions

tr (A) = Ay
(AT, = Ay
A-A"' =1 (1.5)

_ 1 : 2=






2 Continuum Mechanics

This chapter carries a brief summary of selected topics in continuum mechan-
ics, necessary for the development and understanding of the main part of this
work. In Section 2.1 a standard mathematical frame for the finite motion of
deformable bodies is set. Section 2.2 offers a short overview of the mathe-
matical description of the physical causes of the motion of the body and its
deformation through axioms of thermodynamics. Section 2.3 postulates the
main objective of constitutive modelling and draws attention to its main prin-
ciples. The fundamentals of hyperelasticity and finite strain plasticity, as two
constitutive models used in this work, are roughly sketched in Sections 2.4 and
2.5. This chapter is not intended as an introduction to continuum mechanics
or constitutive modelling. It merely provides the minimum of constituents of
both, necessary for the chapters to come. References for further investigation
of the subject of continuum mechanics may include [TRUESDELL & TOUPIN
1960; TRUESDELL & NOLL 1965; WANG & TRUESDELL 1973; MARSDEN &
HuGHES 1994; OGDEN 1997; ORTIZ 2003}, and for the thorough analysis
of modelling of dissipative materials [HILL 1950; LUBLINER 1997; SiMO &
HUGHES 1998; SiMo 1998; ORrriz 2002; X1A0, BRUHNS & MEYERsS 2006].

2.1 Kinematics
2.1.1 Bodies and configurations

The object of interest is a body, mathematically defined as an oriented differen-
tiable manifold B in R® which can be covered by a global system of coordinates.
Elements of this manifold are called body-points or particles. Any open sub-
manifold of B is also a body and it is referred to as subbody of B. A domain
Qo C R3, defined as an open and connected set of particles bounded by the
boundary T, is said to be the initial configuration of a certain body of interest
B at time t = 0.

This configuration, shown in Figure 2.1, can also be used as a reference con-
figuration and as an undeformed configuration in the analysis of the motion
and the deformation of the body B. The undeformed configuration is the con-
figuration with respect to which the deformation of the body is measured. If
not stated otherwise, it is to be assumed that the initial configuration, the
reference configuration and the undeformed configuration coincide. A domain
Q C R3, occupied by the body B at time t is the current configuration. It is
also to be recognised as its deformed configuration.

A body B, and consequently all its configurations, is associated with a scalar
measure m, named the mass distribution or simply mass. The mass m can be
assumed absolutely continuous for any configuration of the body, and there-
fore with a mass density p, which can depend on the configuration currently
occupied by the body B (cf. [TRUESDELL & NoLL 1965]). Additionally, the
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X1, 1

Figure 2.1: Reference and current configurations of a body B.

considered body B belongs to the class of BOLTZMANN continua (see [BOLTz-
MANN 1874] for more details), without any supplementary rotational degrees
of freedom.

2.1.2 Lagrangean and Eulerian coordinates

The physical reality of a body B is related to a three dimensional EUCLIDEAN
point space (as defined e.g. in [OGDEN 1997]), and a real time axis by a
frame of reference. It is then possible to mathematically describe it by a
pair {x,t}, including a point x and time ¢ and known as an event. The
totality of all events represents space-time. The position of an event can be
defined only if a frame of reference, or equivalently an observer exists and this
definition then depends on the choice of the observer. It is important to state
here the distinction between a frame of reference and a coordinate system.
The rectangular Cartesian coordinate system and its unit base vectors e; are
defined in an EUCLIDEAN point space and can in general case differ for the
reference and the current configuration. Here, a unique coordinate system is
used for both configurations.

The position vector X of each particle or material point P in the reference
configuration o is an one-to-one mapping between the particle and a set of
real numbers (X, X2, X3), given by

3
X = inei = Xie;. (2.1)
i=1
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Here, X; are the coordinates of P and e; the unit vectors of an orthonormal
base in a conveniently chosen rectangular Cartesian coordinate system, such
as the one given in Figure 2.1. The second term in (2.1) shows the indicial no-
tation of the summation, where indices repeated twice in a term are summed
according to the Einstein notation. This reference frame is referred to as a
material or Lagrangean reference frame and coordinates X; are the material
coordinates of the material point P.

The position vector x of a material point @ in the current configuration € is de-
fined in the same manner, using the triple of Cartesian coordinates (x1, x2,Z3)

3
X = Zmiei = T;€;. (2.2)
i=l1

This reference frame is a spatial or Fulerian reference frame and coordinates
x; are the spatial coordinates of the material point Q.

2.1.3 Deformation and motion

A deformation of the body B is a sufficiently smooth, one-to-one mapping
@ : Q@ — R® of any of its configurations to the three-dimensional Euclidean
space. The deformation mapping ¢ is an one-to-one correspondence between
material points P € 2 and @ € 2. In vector form and in coordinates, ¢ takes
the form

x=p(X), zi=pi(X), Xe€Q. (2.3)

The transition from an undeformed configuration €2 at time ¢t = 0 to the
deformed configuration £ at time ¢ is the total deformation of the body B

x(X,t) = o(X, 1). (24)
A motion of the body B is a mapping ¢ : Q x [t1,t2] — R? which secures the

injectivity of the mappings ¢(-,t),t € [t1,¢2], during the time interval [¢,, t2].
The deformation ¢ is set to be an identity mapping at the time ¢ = 0, i.e.

X =x(X,0) = ¢(X,0). (2.5)

If the description of the motion is done using X and ¢ as independent variables
it is a material description. If x and ¢ are the independent variables it is a
spatial description.
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2.1.4 Displacement, velocity and acceleration

The displacement of the material point is introduced as a vector u(X,t) con-
necting its place in the reference configuration P and its place in the current
configuration @ (see Figure 2.1), so

u(X,t) = x(X,t) - X = p(X,t) - X. (2.6)

The material or Lagrangean velocity field is the rate of change of the position
vector x(X, t) with respect to time, i.e. the first time derivative of the motion
@(X,1) and it is denoted by the superposed dot:

dp(X,t) _ ox(X,t) _ . _ du(X,t) _

VX.t) = —% ot Bt

(2.7)

With this definition in mind, the material or Lagrangean acceleration field is

OV(X,t) _

A, =

V=%, (2.8)

The spatial or Eulerian velocity field is

v(x,t) = Sp(x, 1) = (8(,0 o cp—l) (x,1). (2.9)

ot ot

Eulerian and Lagrangean velocity fields stand in following correlation:

dp(X,1t) X | dp(X,t)

v(x,t) = v(e(X,t),t) = X ot ot

=V(X,t). (2.10)

The spatial or Eulerian acceleration field is

a(x,t) = avgt" t _ (aa\t’ otp_l) (x,1). (2.11)

In (2.9) and (2.11) o denotes the composition of mappings.

In general, one defines the material (Lagrangean) time derivative of any scalar,
vectorial or tensorial field in Q as a time derivative with material coordinate
X held constant. The spatial (Eulerian) time derivative is the time derivative
with spatial coordinate x held constant. They are related through

d o0
EEIX =5 . +v-grad . (2.12)
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2.1.5 Local deformation

An infinitesimal material neighbourhood of point P with the position vector
X has a volume dV € o, and an infinitesimal spatial neighbourhood of the
point @ with the position vector x has a volume dv € Q at time {.

If X + dX is a neighbouring point to P in dV and x + dx is a neighbouring
point to @ in dv, then

x+dx = (X +dX,t) = o(X,t) + a";g{’—t)dx (2.13)
or, in coordinates
, ., 9vi(X, 1) _ Opi(X, 1)
z; +dxi =z + X, dX,;, dz;= 3%, dX;. (2.14)

We define the deformation gradient of the motion ¢ as a second-order tensor
field F:

_0p(Xt) o _ de(X,t)
F=—3 Fu=—(%a— (2.15)

This second-order tensor determines completely the deformation mapping of
the infinitesimal vector dX at X to the infinitesimal vector dx at x and belongs
to a group of orientation-preserving transformations.

According to [ORrTIZ 2003], if ¢’ : Q0 — R? and ¢” : (%) — R? are
two successive deformations of o and F'(X,¢) and F"(¢'(X,t),t) are the
corresponding deformation gradients at material point X and time ¢, the total
local deformation gradient is a multiplication of the incremental deformation
gradients:

F(X,t) = F'(¢' (X, 1),1) - F'(X, 1) . (2.16)

Following this line of thought and based on this multiplicative property of the
deformation gradient F, an intermediate configuration §); can be introduced
in order to materialise this composition rule (see Figure 2.2).

Since both reference frames are orthonormal, the square of the length of the
infinitesimal spatial vector dx is

ds® = dzidz; . (2.17)
Using (2.14) it changes to
ds? = Fi FiydX1d Xy = CrydXidX, . (2.18)

The second order tensor C is the right CAUCHY-GREEN deformation tensor,
which defines the deformation of the length of infinitesimal material vectors

C= FT-F, Cry=F,F;=Cys. (2.19)
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Figure 2.2: Multiplicative decomposition of the deformation gradient and the
intermediate configuration of a body B.

Volumes dV and dv are then related through

dv
where
J(X,t) =detF(X,t) (2.21)

is the Jacobian of the deformation ¢ and a measure of the local volumetric
deformation. Since the mapping ¢ is chosen to be an one-to-one mapping, the
necessary condition to locally secure this choice is the local invertible nature
of F' and therefore

J(X,t) #0. (2.22)

If dA is an infinitesimal material neighbouring area of P with the outward
unit normal N and da is an infinitesimal spatial neighbouring area of @ with
the outward unit normal n, then dA deforms into da through P1oLA transfor-
mation

nide = J(X,)NJF;H(X,t)dA. (2.23)

This transformation rule is also known as NANSON’s formula.
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2.1.6 Polar decomposition

Since the right CAUCHY-GREEN deformation tensor is symmetric and positive-
definite, three positive real eigenvalues {Af, A3, ,\3} and an orthonormal basis of
eigenvectors {N1, N2, N3} can be defined, such that the corresponding spectral
decomposition of C has a form

3
C=> MN:®N;, (2.24)

i=1

where the notation @ represents a tensor or dyadic product of eigenvectors N;
as defined e.g. in [OGDEN 1997].

The eigenvectors {IN;, N2, N3} are usually referred to as the material principal
directions and positive real numbers {1, A2, A3} are the principal stretches.
The three principal invariants of the right CAUCHY- GREEN deformation tensor
C are to be calculated by

L(C) =tr(C),

I(C) = % [t (C)? — tr (C?)]
I3(C) =detC = J>. (2.25)

Based on the spectral decomposition of the right CAUCHY-GREEN deforma-
tion tensor (2.24), a positive definite, symmetric second-order tensor U is
introduced as the right stretch tensor:

3
U=> AN:®@N;, U’=F'-F=C. (226)
i=1

If the polar decomposition theorem (see [OGDEN 1997; MARSDEN & HUGHES
1994] for details) is exercised on the deformation gradient F using the right
stretch tensor U and an orthogonal second-order tensor R, it leads to its right
polar decomposition

F=R-U. (2.27)
Tensor R is the rotation tensor of the local deformation F with properties:
RT. R=R-RT=1 with I=§;;e;®e; and det R=1 (2.28)

being the identity on €5, e; the unit vectors of an orthonormal base defined
in (2.1) and §;; the KRONECKER delta symbol:

o 1 : 21=3
6,,—{ 0 : i#j (2.29)
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Together with the right stretch tensor U, the rotation tensor R decomposes
the deformation ¢ with the gradient F into a pure stretch along the material
principal directions followed by a finite rotation.

A motion ¢ with the gradient F can also be decomposed using a positive
definite, symmetric second-order tensor named left stretch tensor V and the
rotation tensor R and based on the polar decomposition theorem

F=V-R. (2.30)

The spectral representation of V follows from its symmetry, positive definite-
ness, orthogonality of R and the spectral representation of U:

3 3 3
V=R (Z)\iNi ®Ni) -RT = Z)\i (RN;) ® (RN;) = Z/\i n; ® n;.

i=1 i=1 i=1

(2.31)

The directions n; are the spatial principal directions, which are obtained by
applying the rotation R to the material principal directions. The left CAUCHY-
GREEN deformation tensor is introduced as

b=V*=F.FT, (2.32)

This polar decomposition of F is called the left polar decomposition and it
interprets the deformation ¢ as a finite rotation followed by a pure stretch
along the spatial principal directions.

2.1.7 Strain measures

If the change in the length of the infinitesimal material vector dX after the
deformation ¢ is to be evaluated, according to (2.18) and (2.19) it will read

ds? —dS§? = F 1 Fi;dX;dX; —dXdX;
= dX;(FirFiy—612)dXy

= dX (FT .F— 1) dx (2.33)
in the reference configuration and
ds®’ —dS? = dzida — Fy;' F;'dida;
= dz; (6:;; — F;' Fj;') dz;
= dx(I-F7-F')dx (2.34)

in the current configuration. This change in length and relative direction is
loosely called strain. The necessary and sufficient condition for the material
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to be unstrained at X is that the right-hand side (RHS) of the (2.33) vanishes
for arbitrary dX:

F'.F=1. (2.35)

This condition allows for the deformation gradient in the form of rigid rotation
F = R, which leads to the deformation ¢ in the form of rigid body motion
with zero strain. A rigid body motion in general consists of a rigid translation
xr(t) and a rigid rotation R(t):

x(X,t) = xr(t) + R() - X. (2.36)

If condition (2.35) is satisfied for all X in g, then the deformation ¢ is globally
described by (2.36) and the body B is unstrained.

If condition (2.35) is not satisfied at X, then the material is strained and
an acceptable tensor measure of finite strain is to be defined. According to
[HiLL 1968], certain families of finite strain measures can be described using
the principal stretches {1, A2, A3} and material or spatial principal directions
{N1,N2,N3} and {ni,n2,n3}, depending on the choice of the description:

3

E(U) = Z f (X)) N; ® N; (2.37)
i=1
3

e(V) = ) f(A)m®n; (2.38)

with f (\;) being any sufficiently smooth and monotone function with proper-
ties

fyy=o0, f(1)=1. (2.39)

With these conditions, it is ensured that all strain measures defined above are
such that an increase in the length of the infinitesimal material vector dX after
the deformation ¢ leads to the increase in the corresponding strain, and that
near the reference configuration they all agree to first order. One such family
of functions is given by

Xm_1)/2m , m#0
f(’\i)={l(n()\i) ) /2 , m=0

For m = 1, (2.37) gives the strain measure known as GREEN-LAGRANGE strain
tensor

E=%(FT-F—I). (2.41)

(2.40)

If m = -1, the strain measure resulting from (2.38) is the ALMANSI strain
tensor

e= % (I -FT. F“) . (2.42)
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If m = 0 the resulting strain measure is the HENCKY strain tensor.

A spatial gradient of the spatial velocity field v is another measure of local
deformation rate which leads to a strain measure. This gradient is named
velocity gradient and it is to be calculated as

_Ov(x,t) Ov;

1 . gradv or Il = Bz; (2.43)

In order to find the correlation between the velocity gradient and the defor-
mation gradient, first the material time derivative of the deformation gradient
F is evaluated

. 0 (Op(X,t)) _ OV(X,t) _
F= En ( X )— X =GradV. (2.44)

If this result is used together with the fact that for each vector field V(X,t) =
vix,t) € N

GradV =gradv - F, (2.45)

the velocity gradient and the deformation gradient are connected by the rela-
tion

Fiy=LijFjy or F=1-F. (2.46)

The velocity gradient tensor can be decomposed into symmetric and skew-
symmetric parts by

1= % (1+ lT) + % (1 - lT). (2.47)

The symmetric part of the velocity gradient is the rate-of-deformation tensor
d:

_1 T -1 (06v Oy
d—2(l+l) or d,J_z(axjﬁua—%). (2.48)

The skew-symmetric part of the velocity gradient is the spin tensor w:

o o= L (Ov _ 0y
w—2(l 1) or w"_z(am,- a$i). (2.49)

The spin tensor w measures the local rate of rigid rotation of the infinitesimal
spatial neighbourhood at x and the rate-of deformation tensor d represents
the local rate of change of its length. Therefore, the velocity gradient 1 can be
summed up to a measure of the local rate of distortion (change of length and
change of orientation) of the infinitesimal spatial neighbourhood at x.
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2.2 Conservation laws

After the kinematics of a body in motion is postulated and described by a
set of variables, the action of the outside world on this body in motion and
the interactions between different parts of the body can be addressed. In this
section, a body B in motion through the deformation mapping ¢ : Bx [t1,t2] —
R3 and occupying the space Q at time t € [t1,t2] is under investigation.

2.2.1 Conservation of mass

Figure 2.3: Forces acting on a body B.

If subbody P is any part of the body B occupying the reference configuration
o at time £ = 0 and current configuration Q at time ¢ (see Figure 2.3),
po : o — R the referential mass density per unit undeformed volume and
p : £ — R the current mass density per unit deformed volume, then the mass
contained in P is (for closed systems)

m (P) =/podV= / pdv. (2.50)
P P(P)

The principle of mass conservation states that the mass contained in any sub-
body must remain constant in time, i.e.

dm d d
—dt—('P)_a—t/podV—a f pdv=0, VP CA. (2.51)

P ®P)
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Here, both the material and the spatial form of the integral statement are
given.

If the domain of integration in the material form of (2.51) is assumed not
dependent on time for all 7P, the local statement of the conservation of mass
is obtained by simply removing the integrand:

fo=0, inP. (2.52)

Since the spatial domain of integration depends on time, the local spatial form
of the conservation of mass cannot be determined in the same straightforward
manner. However, if REYNOLD’s transport theorem which states that for any
spatial field f and subbody P

% / fdv= / (f + fdivv) dv (2.53)
P(P) P(P)

is applied to the spatial form of (2.51), it leads to

TP = [ G+pdivan (2.54)
©(P)

with the material time derivative ('), spatial divergence operator div and spa-
tial velocity field v. Since this identity must hold for all P, the local spatial
statement of the conservation of mass is

p+ pdivy =0, ine(P). (2.55)

2.2.2 Conservation of linear and angular momentum and stress
measures

For all bodies B, the linear momentum contained in subbody P is defined by

L('P)zfponV: / pvdu. (2.56)
P P(P)

Here, V is the material velocity field and v is the spatial velocity field defined
in (2.7) and (2.9).

If the body B occupying the space §2 at any time ¢ and its motion ¢ are given
(see Figure 2.3), a system of forces acting on any part P of the body B consists
of the external body force acting across the domain P (e.g. gravity), and the
traction or contact force acting across the boundary 9P of P. The starting
assumption is that all acting forces are continuously distributed.
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The differential body force dfy, acting on an infinitesimal material neighbour-
hood with volume dV at X € £ or on an infinitesimal spatial neighbourhood
with volume dv at x € Q at time ¢ is

dfb = pO(xs t) B(X, t) dV = P((P(X, t)a t) ﬁ(xa t) dv ’ (257)

where B(X, t) and B(p(X, t),t) are vector fields of material and spatial body-
force density per unit mass or simply material and spatial body force, and po
and p are the referential and current mass density per corresponding unit vol-
ume.

The differential contact force dfy acting on an infinitesimal material neighbour-
hood with area dS at X € dP or on an infinitesimal spatial neighbourhood
with area ds at x € 9 (P) at time ¢ is

dfy = T(N, X, t)dS = t(n,x,t)ds. (2.58)

Vector fields T(N, X, t) and t(n, x, t) are the material and spatial traction per
unit undeformed/deformed area defined according to the stress principle as
given e.g. in [TRUESDELL & NoLL 1965], as functions of position, time and
unit outward normal N at X € P or n at x € 9p(P).

If the additivity of forces is applied, the total resultant of all forces acting on
P is to be calculated from the total body force and total contact force acting
on P by

£(P) = |[poBdV+ [ T(N)dS
[moeve]

/pﬁdv-l— / t(n)ds. (2.59)
PP 0P (P)

The principle of conservation of linear momentum states that
%(P) —£(P), YPCOQ. (2.60)

If (2.56) and (2.59) are used in (2.60), this statement has the following form
in material description

4 [ povav = / oo BdV + f T (N)dS, (2.61)
oP

dt
P P
and its spatial form is

% pvdy = /Pﬁdv+ / t(n)ds. (2.62)

w(P) PP 8¢ (P)
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Two statements can be made about the material traction per unit undeformed
area T(IN, X, t) if the motion ¢ of the body B conserves linear momentum.
The first follows the NEWTON’s law of action and reaction and states that

T(-N) = —T(N), T(N)+T(-N)=0. (2.63)

The second is the CAUCHY’s Tetrahedron Theorem, which states that there
exists a stress-tensor field P such that the traction field T(N) is linear in the
unit normal;

T(N)=P-N, Ti(N)=PiNy. (2.64)

The stress-tensor P is the first PIOLA-KIRCHOFF stress tensor and it measures
the actual contact force when it is taken per unit undeformed area.

The first RHS of (2.59) can be transformed under the assumption of conser-
vation of mass by bringing the time derivative under the integral and using
CAuUcCHY’s theorem and the divergence theorem as given in [TRUESDELL &
TouPIN 1960|:

/ (poA — poB — DivP)dV =0, (2.65)
P

with the material divergence operator Div and the material acceleration A
defined in (2.8). Taking into account that this identity must hold for all P
leads to the localised material form of conservation of linear momentum:

DivP + poB = ppA, inP. (2.66)
When (2.64) is applied in (2.59), the following statement can be made

/ T (N) dS = / PNdS = / t(n)ds. (2.67)

ap P 8P (P)

If surface integrals in (2.67) are transformed according to the NANSON’s for-
mula given in (2.23), it becomes

[ [t(n)—(J_lP-FT)n]ds= [ [t(n) —o-n]ds=0. (2.68)

8@ (P) 8@ (P)
Since this relation must hold for all P:
tn)=o-n, o=J'P-FT. (2.69)

The stress-tensor field o is referred to as the CAUCHY siress tensor or true
stress tensor and it measures the actual contact force when it is taken per unit
deformed area.



2.2 Conservation laws 21

The localised form of (2.68) is derived using the REYNOLD’s transport theorem
given in (2.53) and the divergence theorem as given in [TRUESDELL & TOUPIN
1960]:

/(pa—p,@—diva)dv=0 = dive+pB8 =pa, ine(P). (2.70)
®w(P)

Here, the fact that the left-hand side (LHS) of the statement (2.70) must hold
for all P is exploited. Equations (2.66) and (2.70) are the material and the
spatial form of CAUCHY’s first law of motion.

If G(P) € R? is the total angular momentum contained in the subbody P:

G(P) = / x X pvdv, (2.71)
P(P)

and M(P) € R? is the resultant moment of all forces acting on P:

M(P) = / x x pBdv+ / x X t(n)ds, (2.72)
@w(P) 9P (P)

then the principle of angular momentum states that
dg
E(’P) =M(P), VPCQ. (2.73)

Assuming the conservation of mass and applying (2.69) to the integral form
of this identity in spatial form

/ x X pvdv = / xx pBdv+ / x X t(n)ds (2.74)
Ww(P) w(P) 8 (P)

leads to the CAUCHY’s second law of motion which states that for a mass,
linear and angular momentum conserving motion of a body B the CAUCHY
stress tensor o is symmetric, i.e.

Oij = 0ji. (2'75)

The symbol x denotes the cross-product of two vectors.

The first PIOLA-KIRCHOFF stress tensor P is not, in general, a symmetric
tensor. In order to provide a symmetric tensor representation of the stress
in the reference configuration, the second PIOLA-KIRCHOFF stress tensor S is
introduced:

S=F'!'P=JF'.o FT. (2.76)
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The second P10LA-KIRCHOFF stress tensor S is a symmetric tensor if and only
if CAUCHY’s second law of motion holds.

An additional stress measure to be introduced here is the KIRCHHOFF stress
tensor

r=Jo=F-S.FT. (2.77)

This stress measure is also known as weighted CAUCHY stress tensor and can
be useful in some constitutive models.

2.2.3 Principal of virtual work

For each body in motion B, occupying the configuration o with boundary I’
at time ¢ = 0 and the configuration 2 with the boundary ¢(I') at time ¢, a set
of boundary conditions can be prescribed:

w=@ on I,
P.-N=T on ', or o:n=% on ¢(,). (2.78)

Here, @ is the prescribed deformation mapping across the displacement or
DIRICHLET boundary I'y, T are the prescribed material tractions across the
traction or NEUMANN boundary ', and t are the prescribed spatial tractions
across the traction or NEUMANN boundary ¢(I'z). The DIRICHLET and NEU-
MANN boundaries are the subsets of the boundary I’y such that I' =T'y, U T,
F.NTe =0.

Together with the material and the spatial form of CAUCHY’s first law of mo-
tion given in (2.66) and (2.70), (2.78) define the local form of the Boundary
Value Problem (BVP) of a body B, which under the isothermal and static
restrictions put upon the reference configuration reads:

DivP +poB=0, VXe€B
p=¢, VXel.
P-N=T, vVXel,. (2.79)

The local or strong form of the BVP is not well suited for the numerical solution
using finite-element methods. In order to discretise (2.79), an alternative form
of conservation of linear momentum is needed. The principle of virtual work
or weak form is such an equivalent.

An admissible test function 1(X) is defined such that it vanishes identically
on the prescribed DIRICHLET boundary I',: n(X) =0, VX €I',. Assuming
that (2.65) holds, one can state

/(—poB —DivP) - ndV =0. (2.80)
B
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Applying the divergence theorem and using the fact that the test function
vanishes on I', as well as the material NEUMANN boundary condition given in
(2.78), this equation leads to

/(P:Grad'n—poB-n) dV—/T-ndSzO, (2.81)
B Lo

which is a material form of the principle of virtual work or a weak form of
the linear momentum balance in the reference configuration. Same procedure
can be applied to (2.70) and it leads to the spatial form of the principle of
virtual work or a weak form of the linear momentum balance in the current
configuration:

/ (o :gradnp — pb-7) dv — / t-nds=0. (2.82)
P(B) P(To)

If now a space of admissible displacements V is defined by all displacement
fields satisfying homogeneous displacement boundary conditions, one can sum-
marise the numerical effort to reach the solution of the BVP as:

Find ¢ € V such that the weak form of the linear momentum balance (2.81)
stands Vn € V.

2.2.4 Conservation of energy

If the existence of the body B in R? is to be put into a thermodynamic frame,
some basic notions must be defined. According to [ORTIZ 2003], a thermody-
namic system describes the body B as a fixed amount of matter with constant
chemical composition and subjected to mechanical processes. Its mathemat-
ical definition is a state. A state of body B includes the configuration of the
body 2 and additional parameters associated with heat and temperature. Its
properties can be intensive or extensive. Intensive properties stay constant if
two identical systems join into one. The density p, the absolute temperature
T and the velocity v are such properties. Ezxtensive properties double if two
identical systems join into one. The mass m, the volume V and the entropy
H are such properties. Additional variables q necessary to fully define the
state of the system are internal variables. A thermodynamic system is said
to be in the state of uniform thermodynamic equilibrium if all its properties
are independent of time and its intensive properties are independent of the
position.

In order to postulate the balance of energy of the body B, the resulting ki-
netic energy of a subbody P of a body B, in motion through the deformation
mapping ¢ is defined

1 1
K(P) = / > llV]?av = f 2 plvIPdv. (2.83)
P P(P)
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Here, po and p are the referential and spatial mass density, and || V|| and ||v||
are the EUCLIDIAN norms of the material and spatial velocity fields.
Additional kinetic energy due to thermal fluctuations is the heat. The total
rate of heat input into the subbody P is

QP = /pOSdV—alH-NdS

P

= / psdv — / h-nds, (2.84)
w(P) op(P)

where S : B x [t1,t2] — R is the material heat-source density per unit mass,
s : B x [t1,t2] — R is the spatial heat-source density per unit mass, H- N is
the outward material heat flux defined for the infinitesimal material area dS
of the boundary P and corresponding outward normal N at X and h-n is
the outward material heat flux defined for the infinitesimal material area ds
of the boundary dy(P) and corresponding outward normal n at x.

The externel power is the power of the body forces and tractions applied to a
subbody P:

PE(P) = fpoB-VdV+/T(N)-VdS'
P 3P

= /p,B-vdv+ / t(n)-vds. (2.85)
w(P) 9@ (P)

The stress power represents the externally supplied power which does not
provide the raise of the kinetic energy:

PP(P) = PE(P)- K(P). (2.86)

If the motion ¢ of a body B satisfies conservation of mass, linear momentum
and angular momentum, the stress power can be evaluated by

PD('P)=/P:FdV=/S: %CdV: / o:ddv, (2.87)
P P P(P)

using the first PIOLA-KIRCHOFF stress tensor P and the material time deriva-
tive of the deformation gradient F, or the CAUCHY stress tensor o and the
rate-of-deformation tensor d, or the second P10LA-KIRCHOFF stress tensor S
and the material time derivative of the right CAUCHY-GREEN deformation ten-
sor C. These pairs of stress and rate-of-deformation measures are introduced
by [HILL 1968] as work-conjugates and this conjugacy is determined through
the stress power. The symbol : in the above equation represents the double
contraction of two tensors.
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The first function of state to be introduced here is the internal energy E(P),
defined for each subbody P of B. It can be empirically confirmed that if P is
taken from state 1 to state 2 along a certain path I', the time integral

AE(P) = f E(P)dt = ?f [PP(P.1) + Q%(P.1)] at (2.88)
r r

is independent of the path I" and vanishes for any closed circle. This statement
opens a possibility to define the internal energy of the subbody P as

EP) = /po Udv = / pudv, (2.89)
P w(P)

where U is the material internal energy density per unit mass and u is the
spatial internal energy density per unit mass.

The use of (2.87) for the integrands of (2.88) leads to the principle of conser-
vation of energy or first law of thermodynamics:

E(P)+ K(P) = PE(P) + Q%*(P), (2.90)

which sets a demand of the exact conversion of the external power and heat
input into either kinetic energy or internal energy for any subbody P.
The integral material form of (2.90) is then

d

i) poUdV = /P FdV+/poSdV /H Nds, (2.91)

P

and its local material form, which follows from (2.91) by the similar mathe-
matical transformation as in the case of balance of linear momentum, is

poU=P:F+poS—-DivH, inB. (2.92)

The Eulerian or spatial form of energy balance reads, as an integral statement

%/pudv= f a‘:ddv+/psdv— / h.nds, (2.93)

P(P) wP) P(P) w(oP)

and as a local statement

piu=0c:d+ps—divh, ine(B). (2.94)
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2.2.5 The second law of thermodynamics

The main interest of this section lies in the thermodynamics of continua. Based
on the definition of state given in previous section, the thermodynamic system
during a dynamic process is defined by its configuration Q(¢) at time ¢ and
some additional variables associated with this process and with the current
configuration Q(¢). Those are the internal energy E defined in (2.88) and the
heat @ defined in (2.84), a temperature field T(¢) or 6(t) of the infinitesimal
material or spatial neighbourhood of a particle at time ¢, with a constraint

T>0,6>0, (2.95)
and the entropy H of the subbody P of B defined by the integral
H = /po NdV = / pndv. (2.96)
P w(P)

Here, N(t) and n(t) are the material and the spatial entropy density per unit
mass.

If for a given dynamical process {§2, e}, corresponding entropy field n(t) and
temperature field 6(t), a heat flux h and a heat-source density field s satisfy
the balance of energy given in (2.94), the process can be defined as a thermo-
dynamic process. Here, o represents the free choice of the description and the
dependence of all variables on the position X or x is omitted. All dependent
state variables may be computed from {2, 0, E,n,h} at each point in time ¢
by means of appropriate state functions.

Rational thermodynamics according to [TRUESDELL & NOLL 1965] states that
the rate of external entropy supply into subbody P or the rate production of
entropy can be defined by

HP) = / ”‘,}S dv - %ds
P P

ps . h-n
2 dv / 7 ds. (2.97)

w(P) o9 (P)

The second law of thermodynamics states that the internal entropy of an iso-
lated system always tends to increase or stay constant:

H"=H-H" >0. (2.98)

The equality holds if and only if the dynamic process is reversible.
The integral form of the second law or CLAUSIUS-DUHEM inequality in La-
grangean description reads

d po NdV — /p°sdv+ H—TNdS>0 (2.99)
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The local form of the CLAUSIUS-DUHEM inequality in Lagrangean description
follows from its integral form with an assumption of smoothness of solutions:

po N — % + Div% >0, inB. (2.100)

The integral form of the second law or CLAUSIUS-DUHEM inequality in Eulerian
description reads

d pndy — / %dv-i— / h-nisso. (2.101)

dt 9
P(P) P(P) 8@ (P)

The local form of the CLAUSIUS-DUHEM inequality in Eulerian description
follows for sufficiently smooth solutions from its integral form:

”Tf +div§ >0, inp(B). (2.102)

It is possible to introduce thermodynamic potentials alternative to the entropy
H if the properties of the Legendre transformation are used. Assuming that
the material internal energy density U (e, N) defined in (2.89) is given, one can
define HELMHOLTZ free energy using the Legendre transformation of internal
energy as

Yo(e, N) = inf{U(s, N) - TN}. (2.103)

pn—

An alternative form of the CLAUSIUS-DUHEM inequality can be derived if it
is assumed that the conservation of mass, linear and angular momentum hold

and (2.103) is used together with the local material form of the energy balance
(2.92) in (2.100):

P:F—po(TN+¢o)—%H-GradT?_O, inB. (2.104)

2.3 Constitutive modelling and material frame-indifference

The object of investigation in Section 2.1 and 2.2, a body B, is described by its
configuration 2 and its mass distribution m and its motion and deformation
are assigned to the causes mathematically described by concepts of energy and
forces under axioms of thermodynamics. However, two physical bodies with
the same shape and mass distribution can have different motion and deforma-
tion under the influence of the same forces if they consist of different materials.
This leads to the conclusion that the principles of thermodynamics are in gen-
eral not sufficient to mathematically determine the motion of a deformable
body even if force and energy sources are known. A theory can be successfully
used for mathematical models of physical events for different materials only
if it includes a concept of material response. The mathematical apparatus of
this concept are the constitutive relations. In order to craft such an apparatus
certain principles must be set as a guidance.
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2.3.1 Change of frame and objectivity

The change of frame is an one-to-one mapping of space-time onto itself with
the restriction that the distances, time intervals and the temporal order must
stay preserved. According to [TRUESDELL & NOLL 1965] it is possible to
express the change of frame for an arbitrary origin in space and for a point
with a position vector x at time ¢ through a rigid body motion as defined in
(2.36) and a time-shift:

x* =c(t) + Q(¢) - x, (2.105)
t'=t—a. (2.106)

Here, a is a constant, c(t) is a point function and Q(t) is a second-order or-
thogonal tensor which depend on .

The transformations of an arbitrary scalar field «, vector field o and tensor
field A under the change of frame are regulated by a set of rules which, ac-
cording to [OGDEN 1997], differ for Lagrangean and Eulerian fields and are
bound by the choice of the basis. They are based on the preservation restric-
tions imposed not only on the one-to-one mapping defined above, but also on
various relations between scalars, vectors and tensors in both descriptions and
read

Lagrangean field Eulerian field

scalar ap(X,t) = ao(X,t) a"(x,t) = a(x,t)
(2.107)
vector op(X,t) = ao(X,f) a*(x,t) = Q(t) - a(x,t)

tensor AH(X,t) = Ao(X,t) A*(x,t) =Q(t)- A(x,t)- Q)T

The transformation rule for two-point (or mixed Eulerian-Lagrangean) tensor
fields F is also regulated by the choice of the basis and it reads

F*=Q(t)-F. (2.108)

The form of (2.108) depends on the actual orientation of the two-point tensor
in two configurations, i.e. if F' is an invertible function F~!" = F~1. Q(¢).
Scalar, vector and tensor valued functions and fields are said to be frame-
indifferent or objective if the change of both the dependent and independent
variables induced by change of frame follows the rules defined in (2.107) and
(2.108).

The deformation gradient F is an example of an objective two-point tensor.
Based on this fact, the objectivity of the scalar valued Jacobian J of the
deformation can be proven:

J'=detF* =det(Q -F)=detQdetF =detF =J, (2.109)
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as well as the objectivity of the Eulerian left CAUCHY-GREEN deformation
tensor:

b*=F"-FT=Q-F-FT.Q"T=Q-b-Q". (2.110)

The same logic leads to the conclusion that the velocity gradient 1 and its
skew-symmetric part, the spin tensor w, are non-objective Eulerian tensors,
whereas its symmetric part, the rate-of-deformation tensor d, is an objective
Eulerian tensor.

If an arbitrary objective Eulerian tensor A (x,t) is given, its material time
derivative after the change of frame is, according to the transformation rule
given in (2.107):

fa = 2(@aa)

dt
= QAQT+QAQT+QAQT
# Q-A.-QT. (2.111)

This shows that the material time derivative of an objective Eulerian tensor
field may not be objective. In order to secure the objectivity of rates of Eule-
rian measures, a wide range of time derivatives has been developed. Prominent
classical objective time derivatives include according to e.g. [X1A0, BRUHNS
& MEYERS 2000A] the ZAREMBA-JAUMANN, GREEN-NAGHDI, OLDROYD and
TRUESDELL rate. Introduction of a logarithmic rate by [X1A0, BRUHNS &
MEYERS 2000B] showed that for Eulerian HENCKY strain h an objective time-
derivative can be defined and it yields the stretching tensor d:

,:]og =d. (2.112)

Another concept which deals with the problem of objective time derivatives
is the LIE concept. In order to introduce this concept, the notion of push-
forward and pull-back operations must be presented. These operations give
the relations between components of a tensor in the Lagrangean and Eulerian
configuration and are bound by the choice of the basis and the nature of the
tensor field, i.e. they differ for work conjugated kinetic and kinematic tensor
fields based on the invariance of the resulting power. Generally, the push-
forward of a Lagrangean tensor ¢.(Ao) can be interpreted as its mathematical
description in terms of the basis of the current configuration and the pull-back
¢"(A) of an Eulerian tensor can be interpreted as its mathematical description
in terms of the basis of the referential configuration. Here are some examples
for both transformations:

¢.(E)=FT-BE.F'=d, 6'(d)=FT.d.F=E,
(2.113)
¢.(8)=F-S-F' =7, ¢"(r)=F1.7.FT=8§.
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The algorithm of the LIE concept as well as any other objective rate is based on
these transformation rules and may be put into words in the following manner:

1. An Eulerian tensor A is pulled back into a configuration which provides
an objective use of the material time derivative of A.

2. The material time derivative is applied.

3. A push-forward is applied to the resulting term.

The mathematical form of a LIE derivative reads
d, .
LoA = (a{d) (A)}) . (2.114)

This procedure yields a material time derivative of A which leads to objective
measures.

As an example, the LIE derivative of the KIRCHHOFF stress tensor is derived
based on the results of (2.113):

EVT=F-%§-FT=F-S-FT. (2.115)

2.3.2 Constitutive modelling

The central principle on which the material modelling is based is the the prin-
ciple of material frame-indifference which states that constitutive equations
must be invariant under changes of frame of reference. If an arbitrary mo-
tion ¢ and an arbitrary symmetric time-dependent tensor field o are paired
{®, o} to form a dynamical process for a body B, and a constitutive equation
is satisfied for this process:

x=p(X,t), oc=0o(Xt), (2.1186)

then it must be satisfied for any equivalent process {¢*, 0"} defined by

x" =@ (X,t") = c(t) + Q(t) - (X, 1),
" =0 (X,t") =Q(t) - a(X,1)- Q(t)",
t"=t—a, (2.117)

where a is an arbitrary constant, c(t) is an arbitrary point function and Q(t)
is an arbitrary second-order orthogonal tensor which depend on t.

According to [WANG & TRUESDELL 1973] additional to the principle of mate-
rial frame-indifference, guidelines in the modern approach to the constitutive
modelling include the principles of determinism, local action, equipresence,
universal dissipation and material symmetry.
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2.4 Hyperelasticity

This sections draws attention to a special class of non-dissipative material
models, namely hyperelastic models and gives a very rough review of their
basic properties.

Following [TRUESDELL & NOLL 1965] and their definition of a simple material,
any material can be recognised as an elastic material if it is simple and if the
stress at time ¢ is dependent only on the local configuration at time ¢ and not
on the history of the motion from ¢ € {0,t}. The general constitutive equation
of an elastic material has a form

P=p(F), (2.118)

where P is the first P10LA-KIRCHOFF stress tensor at time ¢, g is the response
function of the elastic material and F is the deformation gradient at time ¢.
The hyperelastic material is defined as an elastic material whose response
function g has a special form:

_ 9U(F)
~ OF

Here, ¥ (F) is a potential whose time derivative equals the stress power. Ac-
cording to the first work theorem for a homogeneous deformation process, the
stress power is a non-negative work of deformation depending only on the ini-
tial and final configuration. Assuming a mechanical process which satisfies
(2.104) for isothermal processes, this potential satisfies the identity

¥ (F) = po o (F), (2.120)

which leads to a conclusion that a hyperelastic material can be defined uniquely
using the HELMHOLTZ free energy. If the necessary material frame indiffer-
ence is taken into account alongside the material covariance as defined by e.g.
[MARSDEN & HUGHES 1994], then a possibility to describe 1o as a function
of the right CAUCHY-GREEN deformation tensor must exist and it leads to the
following statement:

9%(C) 8%o(C)
aC 8C

The principle of material symmetry demands that the material response is not
influenced by the rigid rotation with respect to the reference configuration. A
rotation Q € SO(3) is a material symmetry of an elastic body if

W(F-Q)=¥(F) and ¥(QT-C.Q)=v(C). (2.122)

p(F)=P with 'i'=P:F=S:-;-C=T:d. (2.119)

P=2F.

=2pF- (2.121)

The set § € SO(3) collects all symmetries of an elastic body out of all proper
orthogonal mappings over R3. If § = SO(3), every rigid rotation of the ref-
erence configuration is a symmetry and the elastic body is isotropic. For all
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hyperelastic and isotropic materials, the HELMHOLTZ free energy depends only
on any complete set of invariants of the right CAUCHY-GREEN deformation
tensor C

Yo(C) = o (11(C), I2(C), Is(C)) . (2.123)
One such set are the principal stretches {A1, A2, Az}
¥o(C) = o(A1, A2, A3) . (2.124)

Due to the symmetry of C, the symmetry of the second PIOLA-KIRCHOFF stress
tensor S results from the hyperelastic constitutive equation (2.121), since the
partial derivative S = 28c¥(C) can be represented by a symmetric tensor.
That way, the conservation of angular momentum is a priori satisfied.

In the present work, a neo-HOOKE hyperelastic and isotropic material model
with a polyconvex stored-energy functional ¥ of the following form

2—.
T(C)= A J 1 1_ (g +.u) logJ + %p(trC—3) (2.125)

is used. Here, A and p are the LAME constants. For more details about this
specific choice of stored-energy function and the importance of its polyconvex-
ity for the existence of solutions of constitutive equations refer to [CIARLET
1988].

Since the rate form of the hyperelastic constitutive relations plays a central
role in the incremental formulation of plasticity, starting from (2.119) and
(2.121), a rate form involving the second P10LA-KIRCHOFF stress tensor S and
the right CAUCHY-GREEN deformation tensor C can be stated:

S=C: % C or Spy= CIJKL% CkL (2.126)

with the introduction of the material elastic tangent operator C:

820(C)

T (2.127)

Crikr =4

Using (2.113), (2.115) and (2.126) leads to:
(Lo 7)ij = FuSryFsj = FirFsjFe FiLCrik Ldit = cijii di (2.128)

with the spatial elastic tangent operator cijri = FirFsjFrx F1.Cryxr and
the rate-of-deformation tensor d. It follows from the definitions (2.127) and
(2.128) that the elastic tangents introduced above, i.e. C and ¢ possess major
and minor symmetries, e.8. Ciuxr = Crox = Cyrox = CLkar.
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2.5 Theory of plasticity

This section offers a short overview of another class of a material models,
namely finite strain plasticity. According to [HILL 1950], theory of plasticity is
a mathematical treatment of stress and strain in bodies permanently distorted
in any way. It has its roots in results of experiments observing macroscopic
behaviour of plastic materials. It aims to define a set of constitutive relations
between stress and strain fields agreeable enough with experimental results and
to provide a mathematical technique for calculating a non-uniform distribution
of stress and strain in plastic solids. The plasticity of a material body describes
its fixed rigidity up to a certain stress limit after which its motion produces
a deformation similar to a fluid flow if the stress is kept above this limit
value and permanent deformation if the unloading process takes place. Unlike
elastic deformation, plastic deformation is irreversible, dissipative and path-
dependent. The major properties of the mathematical model include

1. A set of internal variables q defined by evolution equations modelling
the dissipative process in the material response.

2. A yield function f(o,q) < 0 which is the mathematical definition of
a stress limit mentioned above and which governs the onset and the
continuance of plastic deformation. The surface f(o,q) = 0 defined in
a six-dimensional or nine-dimensional stress space is known as a yield
surface.

3. Decomposition of the deformation into elastic and plastic part. There is
a large number of theories falling into the finite strain plasticity frame
and according to [X1A0, BRUHNS & MEYERS 2006] they can all be dif-
ferentiated into three classes:

e Classical EULERIAN rate formulations, e.g. [HiLL 1958], which are
based on the additive decomposition of the rate-of-deformation ten-
sor d into an elastic part d° and a plastic part dP:

d=d°+d". (2.129)

¢ LAGRANGEAN formulations with additive decomposition of the strain
field, e.g. [GREEN & NAGHDI 1965], which are based on the additive
decomposition of the LAGRANGEAN strain field into an elastic part
A® and a plastic part AP:

A=A°+AP. (2.130)

e Formulations with unstressed configuration, e.g. [LEE 1969|, which
are based on the local multiplicative decomposition of the defor-
mation gradient F into an elastic part F° and a plastic part FP;
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F=F° F° with detF°>0, detF®>0. (2.131)

Small strain kinematics renders all three classes equivalent.

This work is based on models from the class exploiting the local multiplicative
decomposition of the deformation gradient in order to provide the desired
numerical efficiency.

2.5.1 Multiplicative finite strain plasticity: fundamentals

Figure 2.4: Local multiplicative decomposition of the deformation gradient
into elastic and plastic part.

The notion of intermediate unstressed configuration is motivated by the mi-
cromechanics of single-crystal metal plasticity, with basic ideas following the
line from the fundamental work of [TAYLOR 1938] to e.g. [HILL 1965], [HiLL
& RICE 1973] and the review article of [ASArRO 1983].

From a micromechanical point of view, single crystal plasticity of a material
is a motion seen as a flow of material through deformable crystal lattice. Hav-
ing in mind the conclusion mathematically defined in (2.16) and visualised in
Figure 2.2, this motion can be decomposed into a dislocation of the material
through the lattice followed by the distortion of the crystal lattice. The total
deformation from the reference configuration Qo C R3 to the current configura-
tion © C R3 via the deformation ¢ is characterised by its deformation gradient
F. If the deformation ¢ maps the material infinitesimal neighbourhood Oy (X)
of the point P with the position vector X into the spatial infinitesimal neigh-
bourhood O(x) of the point @ with the position vector x (see Figure 2.4),
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then an intermediate configuration of the infinitesimal neighbourhood O; of
the point R can be introduced based on the micromechanical picture described
above and a local decomposition of the form

F(X,t) = F°(X,t) - F°(X, t) (2.132)

can be defined. The intermediate configuration is mathematically defined by a
local deformation with a deformation gradient F*~' and phenomenologically
interpreted as a local deformation which releases the stresses from any spatial
infinitesimal neighbourhood O(x) C 2 in the current configuration. That
leaves the local intermediate configuration O; stress-free. It also leads to the
elastic strain measures

C=FT.F°, b°=F.F°T, (2.133)
and an additive split of the velocity gradient 1:
1 = F.-F!
— Fe.pe-l pe.pFp.FP-1.po-!
= I°+F°.LP.Fe-!
1°+1P. (2.134)

Elastic and plastic parts of the velocity gradient are then split into symmetric
and skew-symmetric parts:

1°=d°+w®, I°P=dP+wP, (2.135)

with d° and dP defined as elastic and plastic rate-of-deformation tensors and
w® and wP as elastic and plastic spin tensors.

If the material is assumed hyperelastic, its stored energy function can be re-
garded in general as a function of the elastic and plastic part of the deformation
gradient and a set of strain-like internal state variables & € R™ which describe
the dissipative process in the material. Following the guidelines of the in-
finitesimal theory of plasticity, it is assumed that the stored energy functional
locally depends on the deformation through the elastic part of the deformation
gradient and in the micromechanical frame it represents the energy used for
the elastic deformation of the crystal lattice. Additional assumptions are the
material frame indifference and the decoupling of the elastic deformation from
the internal dissipation materialised through internal variables:

Y(F°,F? a) = ¥°(F°) + ¥P(a) = ¥°(C°) + ¥*(a). (2.136)
For the purely mechanical process in a hyperelastic material, (2.104) becomes

1

D=P:F—‘il=S:2

C-¥=7:d-¥>0, (2.137)
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where P is the first PIOLA-KIRCHOFF stress tensor, S the second PioLa-
KIRCHOFF stress tensor and 7 the KIRCHOFF stress tensor.

Using the kinematic relation based on the push-forward of the elastic right
CaucHY-GREEN deformation tensor C° into the current configuration accord-
ing to (2.41) and (2.113):

C°=2F°T.d° - F°, (2.138)
the time derivative of the stored energy functional is evaluated as

. OU° e .

‘I’—W.C +Q'a (2.139)
and the local dissipation D as

eT ov* e e p .
T-2F WF s | +T:d +qa20 (2140)

Here, g = —0,¥P is a stress-like internal variable conjugated to a.

Recalling the fact that elastic and inelastic deformatlon are assumed uncou-
pled, in the case of the purely elastic response ¥ = ¥, Having in mind the
standard argument in elastic constitutive theory that the inequality (2.104)
must hold for all histories of motion and temperature in the body B and
therefore becomes an identical equality (see [TRUESDELL & NoLL 1965]), it
can be stated:

ov
ace

This leads to the reduced form of the dissipation inequality in the current
configuration:

r=2FT. .F°. (2.141)

7:d°+q-&>0. (2.142)

Taking into account the fact that T is a symmetric tensor and that = = F°¢ .
S-F°T and using (2.134), the reduced dissipation inequality can be expressed
in terms of objects defined on the intermediate configuration O;:
Tid+q-a = (F-S-FT):(F-L° - F ) +q-&
= [C°-S]:LP+q-&

O | yp .
BC"]'L +q-a

= X:LP+q-&>0. (2.143)

= e

This form of the dissipation inequality appeared for the first time in [MANDEL
1972] and it introduces a new stress measure X = 29¢¥. This stress measure
is known as MANDEL stress tensor and it is generally a non-symmetric tensor
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3E01¢=0

>0
NON-ADMISSIBLE STRESSES

E;,0<0

Figure 2.5: Illustration of the elastic domain in stress space.

defined on the intermediate configuration and conjugated to the plastic distor-
tion rate LP. The MANDEL stress tensor becomes symmetric for the isotropic
hyperelastic material.

In order to complete the constitutive model, the evolution equations for the
internal variables (LP, &) are to be derived in line with the procedure known
from infinitesimal theory of plasticity. The first step is the definition of the
elastic domain and the yield function. This is the aspect of the theory where
the choice of description is of great importance. Here, a description relative
to the intermediate configuration is adopted.

The yield function is a convex and sufficiently smooth function ¢ : R®*" — R,
defined according to the empirical investigations. The dimension n repre-
sents the total number of internal variables in the material model. Admissible
stresses (X, q) are constrained to lie in the elastic domain which becomes the
admissible stress space in the case when the internal variables q are fixed:

E; = {(Z,q) eR™*"" | ¢(=,q) < 0}. (2.144)
The boundary JE, of the admissible stress space E,
8B, = {(Z,q) eR*™" | ¢(Z,q) = 0} (2.145)

is the yield surface. Stress states (X,q) € intE, lead to an elastic material
response and for those on the yield surface (X,q) € JE, a plastic material
response is possible. Stress states outside the space E, are non-admissible.
Evolution equations for (L, &) are derived based on the principle of marimum
dissipation which states that out of all possible stress states (X, q) , the actual
stress state is the one maximising the dissipation D:

_max [2 : L"+€1-d]. (2.146)
(¥,4q)€E,

This postulate yields the evolution equations:

LP =A0s¢, G=2A0q¢ (2.147)
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and the loading/unloading conditions following from the optimisation theory
and known as the KUHN-TUCKER conditions:

<0, A20, Ap=0. (2.148)

Additionally, the plastic consistency condition stating that as long as the plas-
tic flow continues, the yield condition ¢ (¥, q) = 0 must hold:

$(X,q)=0 (2.149)

yields the LAGRANGE multiplier A.

The choice of the admissible stress space defined in (2.144) and the form of the
postulate of maximum dissipation (2.146) given by MANDEL lead in general
to the nine-dimensional flow rule given in (2.147). This flow rule is marked
as questionable by [LUBLINER 1997] for the inability to fulfil the symmetry
constraint posed on the MANDEL stress measure. However, for the isotropic
hyperelastic material models the symmetry can be accounted for and the flow
rule (2.147) degenerates to six dimensions.

Flow rules (2.147) accompanying the maximum dissipation constraint (2.146)
are said to be associative or normality rules because they restrict the direc-
tion of the flow in the stress space to be proportional to the gradient of the
yield function ¢. Absence of this restriction renders non-associative evolution
equations. For many materials associative flow rule is an appropriate choice
for the modelling of the material response, but for some a generalisation of
the evolution equations is necessary. In those cases, a plastic potential g and
a hardening potential A are introduced such that

LP =A0sg, &=A0qh. (2.150)

Associative evolution equations are obtained from (2.150), if g = h = ¢.
This work will exploit the possibility to define the yield function based on an
admissible space domain E, defined in (2.144) in the following form:

#E,q) = f(X,q) — fin £0. (2.151)

Here, f(X,q) is an equivalent stress measure which is convex and homoge-
neous of degree one, i.e. f(c(X,q)) = ¢f(E,q),Ve € Ry and fini > 0 is
a function depending on the size of the elastic domain in the undeformed
material. This property of the equivalent stress measure together with the
associative flow rule and the KUHN-TUCKER conditions delivers according to
[S1Mo 1998] the dissipation D in the form

D=Afim>0. (2.152)

Considering the fact that A > 0 and the restriction f;,,;; > 0 are in force, the
second law of thermodynamics is satisfied a priori.
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1. Kinematics

P=1-1°=F°.L°.F°~! with LP=FPFP-!,
2. Constitutive equations

¥ =7°C°%) +TP(a), T=280c¥, q=-9,%".
3. Admissible stress space and the yield criterion

E. = {(Z,q) e R*" | ¢(2,q) < 0}.

4. Evolution equations

L° =A3s¢, &=A0q0.

5. Loading/unloading and consistency conditions

$<0, A>0, Ap=0, ¢(2,q)=0.

Figure 2.6: Elastoplastic model of multiplicative plasticity

The mathematical model of material response according to the theory of plas-
ticity based on the notion of intermediate stress-free configuration which is
herewith completely defined, is summarised in Figure 2.6. Next, two choices
of yield criterion which shape the elastic domain of the material model pre-
sented above are briefly addressed.

Example 2.5.1 VON MISES plasticily

One example for such definition of the yield function can be found in the
fundamental theory of vON MISES. The classical yield condition of vON MISES
reads

¢(Z,q) = [ldev (B)|| — R = ||dev ()| - q(ep) — Zini (2.153)

where R is the radius of the yield surface, dev (X) is the deviatoric part of the
MANDEL stress tensor, €, is the VON MISES effective plastic strain and Xiy; is
the yield stress of the virgin material. This yield criterion is shown to be in
excellent agreement with experiments for many ductile metals, such as copper,
nickel, aluminium and iron.

Example 2.5.2 Single crystal plasticity for a single slip system

The constitutive equations of single crystal plasticity can serve as an example
for the theory presented above. According to [ASARO 1983] the multiplicative
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decomposition (2.132) is then a composition of a deformation due solely to
crystallographic slip embodied in the plastic part of the deformation gradient
FP and the deformation due to the stretching and the rotation of the crystal
lattice with the deformation gradient F°. For a crystal with a single slip, the
plastic part of the deformation gradient FP is evaluated as

FP=I+Am®n. (2.154)

Vectors m and n are orthogonal unit vectors on the intermediate configuration
defining the slip system (m, n), with m being the slip direction and n being the
normal to the slip plane and ) is the plastic shearing on the crystallographic
slip system.

If the component of the stress tensor producing the forces on dislocations
causing them to slip is pinpointed according to SCHMID’s law, it is recognised
as a component of the shear stress and it is work conjugated to the slipping
rate. The constitutive equations are then based on the statement that the
plastic low occurs on the slip system after this critical resolved shear stress
or SCHMID stress reaches certain critical value L.:(a) and therefore the yield
condition reads:

H(E,0)=|E: (m@n)|| - Z:a). (2.155)
Keeping (2.151) in mind, terms in (2.155) can be rearranged:
#(Z,a)=|E: (m@n)| —q(a) — fini = f(X,q) — fini, (2.156)

where ¢ (a) is the yield stress depending on the strain-like internal variable
associated with the isotropic hardening/softening process in the material. Ac-
cording to (2.147), differentiating the yield function with respect to X delivers
the plastic distortion rate

LP=A0z¢=Asign[|Z: (m®n)|] (m®n). (2.157)

This mathematical description of the material response in single crystals can be
extended to systems with multiple slips. The detailed presentation of crystal
plasticity can be found in [ASARO 1983].

2.5.2 Multiplicative finite strain plasticity: numerical implemen-
tation

After the basic mathematical relations defining a material model of finite plas-
ticity are set, an adequate solution procedure should be defined. If the problem
to be solved is summarised as in Figure 2.6, its numerical implementation could
be divided into two major parts:

1. Time discretization of the interval of interest [0, 7] = UA=;[tn, tnt1]-
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DISPLACEMENT INCREMENTA U,

RETURN-MAPPING

F,,F’ o F,+1,FP o
{Fa,FL an} ALGORITHM {Frs1, Frppannil

Figure 2.7: The return-mapping algorithm in constitutive updates [SIMO &
HUGHES 1998].

2. Space discretization B® of the domain of interest B leading to the discrete
form of the principal of virtual work as given in Section 2.2.3.

In most computational algorithms, the space discretization is accomplished
by the standard finite-element method (see e.g. [BATHE 1995], [BELYTSCHKO
& MORAN 2000]) which remains independent of the particular choice of the
constitutive model.

The discrete form of the weak form of the linear momentum balance paired
with the time-dependent constitutive equations is the central problem of com-
putational plasticity. Available solution strategies are based on the local for-
mulation of the evolution equations at each quadrature point of the discrete
space model according to the finite-element method. An overview of the algo-
rithmic procedures for the numerical time integration of the evolution equa-
tions (2.147) and their properties can be found in the literature on computa-
tional mathematics, e.g. [HAIRER & WANNER 2000]. Numerical procedures
specified to the finite plasticity can be found in e.g. [SiMO & HUGHES 1998;
SmMo 1998|.

The numerical procedure for the time integration of the evolution equations
(2.147) used in this work is the return-mapping algorithm according to [SIMO
& HUGHES 1998]. Its key feature, i.e. the possibility to compute the dissipa-
tion driven variables according to a given deformation history, is schematically
represented in Figure 2.7.

The return-mapping algorithm is in essence an operator split procedure, where
the solution is evaluated by introducing an elastic loading step (the trial state).
If the resulting stress field does not belong to the space of admissible stresses
Es, a plastic corrector step must be performed. The time integration of the
evolution equations in this correction procedure is based on the use of the
implicit backward-EULER difference method for the discretization of the time
domain. According to [SIMO 1998], the choice of this iterative method is advo-
cated by its first-order accuracy and its unconditional stability, i.e. it possesses
a set of linearized stability properties necessary to secure a bounded response
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1. Initialise the state and the deformation update
(Fn,F3,q,),Fnir.
2. ELASTIC PREDICTOR STEP: Compute the trial state
FPoo=F) appi=an =Coy=F 7T .-Cny1-Fo 7L
3. Ewvaluate the yield function
$id (Suit an).
IF ¢3! (2734, an) < 0 THEN:
Set ()n+1 = (o)n & EXIT.
ENDIF.
4. PLASTIC CORRECTOR STEP: Evolution equations
Fri=FL+ 8029 z011.an41 " Fris
@nt1 = DA0qh | £p41.q041 5
AX = AMtn+1) — A(tn) .
5. PLASTIC CORRECTOR STEP: Residual
Rny1 = [Rf-:l ,R:+1] =0 A ¢n41(Ent1,9041) =0,
R:‘:l =-Fh 1 +Fa+AX0=9 |sni1.ane1 Fosrs

Rr?+1 = —an41 + AA 6qh |En+1in+1 .
6. PLASTIC CORRECTOR STEP: Linearization - algorithmic tan-
gent
cet. . = 9Pnn

1 = .
T dF 4

Figure 2.8: Return-mapping algorithm for multiplicative plasticity

of the integration procedure.

An overview of the return-mapping procedure is given in Figure 2.8. The ob-
ject of the procedure is a quadrature point x € B? of the space discretization
within a typical time interval [tn, tny1]-
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Step 1. The starting point of the numerical procedure is the assumption
that the problem can be regarded as strain driven and the initial state
(F»,F%,q,) and the updated deformation gradient F, ., are given.

Step 2. A purely elastic trial step is calculated.

Step 3. The resulting stress field Ef,’.ﬁ‘i' is used for the assessment of the trial
value of the yield function ¢f,".|".‘}'. If the trial stress state is inside the
space of admissible stresses E, or on the yield surface JE,, the loading
step leads to an elastic material response and the predicted trial state is

the actual state.

Step 4. If the yield function has a positive value, a plastic corrector step must
be performed in order to render an admissible stress state by finding a
closest point projection of the trial state onto the yield surface. Ap-
plying the backward-EULER scheme to the evolution equations of the
constitutive model of the multiplicative plasticity with the restrictions
of KUHN-TUCKER conditions (2.148) and consistency condition (2.149)
transforms the set of algebraic differential conditions into a set of purely
algebraic equations.

Step 5. A vanishing residual R, +1 and a vanishing yield function ¢,+; form
a set of nonlinear algebraic equations to be solved in order to correct the
trial state.

Step 6. Following the idea of [SIMO & HUGHES 1998], the system is solved
by a systematic application of the NEWTON iterative procedure, which
guarantees an asymptotic quadratic convergence for sufficiently smooth
functions. It is based on the linearization of the residual about the
current iterate. The linearized problem is completely specified only when
the explicit expression for the consistent algorithmic tangent C‘ffﬂ is
given.

The dimension of the problem presented above is 9+dim a+1 in a general case.
However, in the case of a hyperelastic, fully isotropic material response, the
tensors ¥, C° and Ox g are coaxial. It reduces the dimension of the problem
to 3+ dima + 1.

A detailed presentation of the numerical procedure and its performance can
be found in [SiMO & HUGHEs 1998; SiM0 1998] and will be omitted here.
A specification of the return-mapping algorithm to the modelling of localised
material failure will be presented in detail in the following sections.
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3 Single surface Strong Discontinuity Approach

A three-dimensional finite element formulation applicable for the simulation
of a highly localised material failure in solids is presented in this chapter. The
adopted finite element model captures the localised fully nonlinear kinemat-
ics associated with the failure by means of the Strong Discontinuity Approach
(SDA). In contrast to classical continuum mechanics, the deformation gradient
is additively decomposed into a conforming part corresponding to a smooth de-
formation mapping and an enhanced part reflecting the final failure kinematics
of the micro-scale. The advocated implementation of the Enhanced Assumed
Strain (EAS) concept leads to the elimination of the additional degrees of
freedom (displacement jump) on the material point level. More precisely, the
applied numerical implementation is similar to that of standard (finite) plas-
ticity. The model is not restricted by the choice of finite-element type or the
material model. Any cohesive law defining the connection between the dis-
placement discontinuity and the traction vector can be applied.

The kinematics induced by localised failure is presented in Section 3.1. The
fundamental postulates for the implementation of the strong discontinuities
are followed by a detailed description of the kinematics and its numerical im-
plementation. A proposition for an effective constitutive model is given in
Section 3.2. A detailed discussion of the numerical implementation can be
found in Section 3.3.

3.1 Kinematics
3.1.1 Kinematics of strong discontinuities

This section sets the basic notions and postulates of the kinematics associated
with the Strong Discontinuity Approach (SDA), based on the propositions
made in [MOSLER 2004¢C; MOSLER 2005A; MOSLER 2006; MOSLER 2007].
Following the idea of [OLIVER & SiMO 1994; OLIVER 1995B; OLIVER 19954],
a body B which occupies the domain Q C R? in the reference configuration
(see Figure 3.1) is assumed to be separated into two parts by a cut denoted
as 0:Q. This cut defines the subsets Q= and Q% and may represent a crack
surface or a slip plane with respect to 2. In order to guarantee a well-defined
normal vector field IN (piecewise), it is sufficient to postulate the submanifold
8:92 to be piecewise a hyperplane of class C'. The subsets Q™ and Q% are well
defined, if 8:§2 is connected and the subsets 2~ ,2* and the material surface
052 form a partition of §2:

Q=0"UuQtUuan. (3.1)

Under these assumptions, the motion of the body B can be described by a
discontinuous deformation mapping ¢, which connects each point P with a
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X2, T2
X]: )

Figure 3.1: Reference and current configurations of a body B separated into
two parts Q~ and Q* by a singular surface 8:2.

position X in the reference configuration Q to the corresponding point ¢ with
a position x in the current configuration ¢(2). Based on the assumed con-
nectivity of  and ¢ = idn + u, an equivalence between a discontinuous
deformation mapping (£2) and a discontinuous displacement field u can be
stated. This leads to the definition of the displacement field of the following

type:
ujgz € C2(OQF,RY), of=0Tua . (3.2)
In order to describe the discontinuity of the displacement field u : @ — R3,

condition (3.2) is used for the definition of the left-hand limit u™(Xo) and the
right-hand limit u™(Xo) at Xo € 8;0:

u¥(Xo) := lim u(X%), (X&i)nen € (@), XE - Xo(n— o). (3.3)

The discontinuity is restricted to the singular surface 9:£2 while u is smooth on
Q. After the limiting values of the displacement field at the singular surface
0s$2 are defined, the discontinuity [u(Xo)] of u at X is to be evaluated as the
difference

[u(XQ)]] = u+(Xo) —u (Xo), VX € d. (3.4)

A displacement mapping according to (3.2) can then be defined using a HEAV-
ISIDE function shifted to the discontinuity surface 8;Q2

1 : VX eQtuan
Hs_{o . VX e, (3.5)
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in the form

u(X) = u_(X) +Hs (ut(X) —u-(X)),

u_,uy € C°(Q,RY). (3.6)
Two independent variables u|o- = u—|p-~ and u|g+ = u4|q+ reflect a non-

vanishing jump of the deformation gradient at the discontinuity surface 0s£:

[F(Xo)] #0, Xo € 8,0. (3.7)

According to [MOSLER 2007], the displacement field of this kind and its corre-
sponding deformation mapping are piecewise continuous and it belongs to the
space of special functions with bounded variations.

The preceding concept of deformation mapping which describes the localised
discontinuities in materials is used in various finite element method (FEM)
models involving SDA, e.g. [SiMO & OLIVER 1994; ARMERO & GARIKIPATI
1995; LARSSON, RUNESSON & AKESSON 1995; OLIVER 1996; WELLS & SLUYS
2001A; WELLs & SLuys 2001B; BOrJAa & REGUEIRO 2001; MOSLER &
MESCHKE 2003A; MOSLER & BRUHNS 2004; FEIST & HOFSTETTER 2007].

3.1.2 Kinematics: Strong Discontinuity Approach

If the proposed form of the displacement field (3.6) is evaluated from the point
of its application in the numerical solution procedure for the BVP (2.79), it
could be marked as non-suitable. This is based on the fact that the essential
DIRICHLET boundary conditions cannot be exercised without implementing
the displacement jump [u]. Therefore, a reformulation of the kinematics into
a form suitable for the implementation of the DIRICHLET boundary conditions
is necessary.

Based on the assumptions and postulates of Section 3.1.1 and according to
[SiMO, OLIVER & ARMERO 1993; SiMO & OLIVER 1994; OLIVER 1996], the
displacement field describing strong discontinuities at 9;{2 can be assumed in
the form

u=1a+[u] (Hs—¢) with @eC>(Q,R?, peC?(,R). (3.8)

Here, i denotes the regular part of the displacement field in 2 and ¢ (not to
be confused with the deformation mapping ¢(£2)) is a smooth ramp function
allowing the prescription of the DIRICHLET boundary conditions in terms of
the regular part of the displacement field (1. If DIRICHLET boundary condi-
tions can be applied exclusively to the regular part of the displacement field
4, the kinematic description (3.8) becomes more convenient for numerical ap-
plications.
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Comparing the formulations (3.6) and (3.8), the correlation between the fea-
tured displacement fields could be formulated in the following manner:

u-=10-[u] p, wp=10+[u] (1-9). (3.9)

The deformation gradient F of such a deformation mapping cannot be evalu-
ated in standard manner due to the fact that the HEAVISIDE function is not
continuous at Js{2 and its gradient can only be defined in generalised form, i.e.
DHs = N . Here, ds represents the DIRAC delta-distribution at the singular
surface 3;2:

[as ¢P0d9=/<PodS, Voo € CO(Q). (3.10)
Q

Differentiating (3.8) with respect to X leads to

[[u]] dyp

F = 1+6X (Hs —¢) + [u] ® N 6 — ﬂu}]@ax

It is essential for the further development of the numerical procedure to identify
particular parts of the deformation gradient as

( oa _ 2]

(3.11)

regular part 1+ = 53X~ X ¥~ [u] ®
F= + jump part —66[[;]] Hs (3.12)
|+ singular part [u] ® N 45 .

According to [STAKGOLD 1967; STAKGOLD 1998], this deformation gradient
is to be understood only in a distributional sense.

3.1.3 Numerical implementation

After a suitable kinematic setup for the description of local material failure
via strong discontinuities is presented, a numerical implementation based on
the discretization by finite elements is to be described. The finite element
approximation of the solution of the strong discontinuity problem presented
in Sections 3.1.1 and 3.1.2 follows [SiMO, OLIVER & ARMERO 1993; Simo &
OLIVER 1994; OLIVER 1996]. It is based on the enrichment of the standard
displacement field of FEM by an additional displacement field according to the
Enhanced Assumed Strain concept presented in [SIMO, J.C. & RiFal, M.S.
1990; Simo, J. & ARMERO, F. 1992; SiMO, ARMERO & TAYLOR 1993].
The regular part of the deformation field u featured in (3.8), is approximated
in a standard finite element fashion, i.e. globally conforming

a= Y N (3.13)
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Here, N; are standard interpolation functions associated with node i, n,o4e is
the number of nodes in the finite element mesh and 5 is the nodal displace-
ment at the node 3.

In order to secure the necessary properties of the ramp function ¢ addressed
in previous section, [MOSLER 2006] suggests the definition

o= Ni, (3.14)

where nst is the number of nodes of the respective finite element which belong
to the closure of Q% depicted by Q+. This number is easily formulated if the
singular surface 9:{2 is planar in each finite element. Due to the basic properties
of standard interpolation functions, the displacement field at each node 7 of

the finite element mesh with the position vector X{ reduces to its regular part

u(X7) = a(X3), VXi (3.15)

and the DIRICHLET boundary conditions can be formulated in terms of the
regular part of the displacement field 1.

The interpolation (3.13) of G leads to the identification of the corresponding
regular part of the deformation gradient F in (3.11):

F —1+g—;(—1+Gradu (3.16)
Since this finite element formulation is based on the Enhanced Assumed Strain
concept (EAS), the enhanced part of the deformation gradient is modelled in
an incompatible fashion and the additive decomposition of the deformation
gradient F yields an incompatible enhanced displacement gradient

[
X’

According to [SIMO & OLIVER 1994; OLIVER 1996], the function of the dis-
placement jump [u] is assumed piece-wise constant (over elements), i.e.

== (Hs— )+ u ®N b — [u] ® = (3.17)

Ofu] _
% =0 (3.18)
This assumption results in an alternative form of the deformation gradient
du dy
F—1+a—x+ﬂu]]®N6—[[u]]®ax (3.19)

The displacement field and the corresponding deformation gradient based on
the restriction (3.18) render the underlying formalism as a method of incom-
patible modes, or more precisely EAS. This assumption about the spatial
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behaviour of the displacement jump is adopted in a large number of numerical
simulations based on SDA, see e.g. [SIMO & OLIVER 1994; OLIVER 1996;
ARMERO & GARIKIPATI 1996; LARRSON & RUNESsON 1996; BORrJA 2000].
In order to benefit from the algorithms of computational plasticity, the fore-
going kinematic concept based on the SDA is implemented in the context of
multiplicative finite strain plasticity. On this account, the additive decomposi-
tion of the deformation gradient given above must be replaced with a suitable
local multiplicative decomposition in accordance with the idea elaborated in
Sections 2.5.1 and 2.5.2. Following [GARIKIPATI 1996; ARMERO & GARIKIPATI
1996], the material counterpart of the displacement jump function J is intro-
duced (see Figure 3.2):

J:=F"" [u]. (3.20)

J can be understood as the pull-back of the displacement jump function [u]
from the current to the intermediate configuration by the mapping F.

Figure 3.2: Multiplicative decomposition of the deformation gradient F in a
regular and singular part [ARMERO & GARIKIPATI 1996)].

A suitable local multiplicative decomposition of the deformation gradient reads

_ FF, VXOGGSQ

F“{ F, vXeo* (3.21)
with
]E‘ = 1+Gradd—-u)®Gradp =1+ Gradi —F-J ® Grad¢ (3.22)
F= 1+J®N65. :

F is the regular part of the deformation gradient and F is associated with the
singular distribution. The later is a result of the generalised derivative of the



3.2 Constitutive relations 51

displacement jump. The distinction between the bulk material O and the
discontinuity surface 0;Q2 in (3.21) means that the appearance of bifurcation
of the mapping (3.8) at the discontinuity 3:§ leads to the local multiplicative
decomposition of the corresponding deformation gradient, while the rest of
the material outside the discontinuity is subjected to the regular part of the
deformation gradient F.

Based on the prerequisite that the regular part and the ramp function of the
deformation mapping (3.8) are smooth, the deformation gradient F has a zero
jump at the singular surface 8;(2, i.e.

[F] = [[F]] =0, vXoe€aQ. (3.23)

This fact leads to the conclusion that the material responses in two parts of the
bulk material Q* and 2~ are not independent of one another (for a detailed
elaboration of this fact see e.g. [MOSLER & BRUHNS 2004]).

Argument in line with (2.134) leads to the additive decomposition of the spatial
velocity gradient 1 := F - F~! at the discontinuity 8,

—

|

1=1T+1 with

':J.ja- )

(3.24)

i .

-1, -1

bt }
h

into 1 and T, associated with the continuous and discontinuous part of the
displacement field, respectively. The regularly distributed part of the defor-
mation gradient F is locally invertible and 1 can be computed in a standard
manner. In order to calculate 1, an inversion of a singular distribution must be
performed. Based on the idea of [GARIKIPATI 1996; ARMERO & GARIKIPATI
1996], I is to be understood as a linear mapping between two vector spaces
with a distributional component. The resulting distributional velocity gradient
has the form:

*
-~

F.Fl. P!
‘j®N’F—.155

o (F ) & N-F,
= L, [uf@N-F1§;. (3.25)

1

oV (I ]

L, [u] represents the objective, LIE-type derivative of the displacement jump
defined in (2.114).

If the constitutive model of the material behaviour under the assumption of
localised failure includes evolution equations for the material description of the
displacement jump function J, the singular part of the deformation gradient F
can be calculated and a unique local multiplicative decomposition of the total
deformation gradient can be stated.
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3.2 Constitutive relations

The kinematics describing the SDA to the localised failure in materials pre-
sented in the previous section posts a severe limitation to the use of stan-
dard constitutive modelling for the description of the material response. From
a physical point of view, the phenomenon can be separated in two distinct
phases: the phase before the local failure and the phase after the local fail-
ure. From the point of view of mathematical modelling, these two phases are
recognised as a pre-localisation phase and a post-localisation phase. Here, the
term localisation refers to the strain concentration in some critical zone in the
material due to the bifurcation of the homogeneous deformation field.

In regard of the pre-localisation phase, it is commonly assumed within the
SDA formulation that the classical continuum constitutive model chosen for
this phase is capable to predict the onset of the strain localisation (see [SIMO,
OLIVER & ARMERO 1993; SiM0 & OLIVER 1994; MIEHE & SCHRODER 1994;
OLIVER 1996; ARMERO & GARIKIPATI 1996; BORJA 2002; MOSLER 2004c]).
It is usually agreed that this event is to be predicted by the bifurcation analy-
sis. The bifurcation analysis renders, according to [S1MO, OLIVER & ARMERO
1993] among others, the local strain localisation condition as the singularity
of the properly chosen localisation tensor, together with the direction of the
localisation mode.

In regard of the response of the material to the evaluated localisation mode
after bifurcation, the solutions differ significantly. The onset of the localisation
results in a mathematical sense in the loss of strong ellipticity of the partial
differential equations governing the continuum based constitutive model. As a
result, they cease to deliver a well-posed apparatus for the analysis of the ma-
terial behaviour. The result is a well known pathological mesh dependence of
the numerical solution by finite element method ([DE BORST 1986; DE BORST
2001]). In order to overcome this difficulty, a number of approaches are de-
veloped. The driving traction T = P - N and the displacement jump [u]
along the discontinuity 0s§? can be conjugated using a localised softening law
known also as the traction-separation law and cohesive law ([DUGDALE 1960;
BARENBLATT 1962]). This cohesive behaviour can be described using a dis-
crete framework where the projection of the standard stress-strain constitutive
equations onto the singular surface defines the traction-separation law. The
introduction of a distributional form is a key feature to make the standard con-
tinuum models consistent with the appearance of the strong discontinuities.
This discrete approach is extended and elaborated by e.g. [SIMO & OLIVER
1994; OLIVER 1996; OLIVER 2000; OLIVER, HUESPE, PULIDO & SAMANIEGO
2003].

However, a number of authors dispute the consideration of the pre-localised
constitutive model in the post-localised material response ([SNYMAN, BIRD
& MARTIN 1991; MIEHE & SCHRODER 1994; ARMERO & GARIKIPATI 1996;
BoRJA 2002; MOSLER 2004cC]). For example [BORJA 2002] justifies this re-
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mark by comparing the material response of an intact rock to the material
response of the particulated material after the strain localisation. As well as
[BOrJA 2002], [MIEHE & SCHRODER 1994; ARMERO & GARIKIPATI 1996;
MosLER 2004c] opt for a traction-separation law independent of the consti-
tutive model used for the surrounding material. This completely decouples
the material response in * from the material response at 8:Q. This decou-
pling leads to the additive decomposition of the HELMHOLTZ free energy in a
manner similar to (2.136), which is a common ground for both discrete and
domain-independent constitutive models.

Following [MosLER 2006, this work is based on the softening laws indepen-
dent of the response in the bulk material. The next two sections will be used
to separately define a framework for the constitutive modelling in the virgin
material QF and at the singular surface 8.

3.2.1 Constitutive relations for X € Q%

The choice of the multiplicative decomposition (3.21) of the deformation gra-
dient F gives this operator a regular character in the bulk material Q. It
opens a possibility to model the material response in terms of the standard
stress-strain constitutive equations of the type presented in Section 2.3.2. An
additional assumption regarding the bulk material is a purely elastic material
response (cf. [MOSLER 2006]). Following the methodology highlighted in Sec-
tion 2.4, a polyconvex stored-energy functional ¥,e;(C) according to (2.125)
is postulated for the region Q*. Here, C represents the regular part of the
right CAUCHY-GREEN deformation tensor

C—3 = FT . F With Flg:}; = F|Q:i: A CIQ;I: = CIQ:}: ' (3.26)
The pure elasticity of the bulk material renders a vanishing dissipation D:
D=7:d- 0 Vreg:C=0 with d:=Tym (3.27)

and the resulting KIRCHOFF and second PIOLA-KIRCHOFF stress measures have
the form

T=2F'Bc‘preg'FT and S=26cq’reg. (3.28)

Due to the fact that those stress measures apply only to the material points
with the position in regions Q% where the singular part of the deformation
gradient vanishes, the bar over the second PIOLA-KIRCHHOFF stress tensor S
is omitted.

The assumption of a purely elastic material response in the virgin material is
not obligatory. According to [MOSLER 2006), other constitutive formulations
such as plasticity are also applicable.
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3.2.2 Constitutive relations for X € g;Q2

Relying on the key feature of the SDA, that is the kinematics (3.8) describing
the deformation in locally defected material by two independent displacement
fields i and [u], the multiplicative decomposition of the deformation gradient
(3.21) yields two independent parts ¥ and F. Based on this independence,
[MOSLER 2004C; MOSLER 2006] proposes for all material points with a po-
sition in the discontinuity surface 8:§ two separate constitutive models for
the two parts of the deformation characterised by the regular part of the de-
formation gradient F and the singular part of the deformation gradient f‘,
respectively. The constitutive model corresponding to the regular part of the
deformation is described in Section 3.2.1. Based on (3.20) and the material
invariance of the normal vector N, the constitutive model corresponding to the
singular part of the deformation gradient F' should depend on some measure
of the displacement jump, preferably on the material measure J although the
true measure fJu] can also be used.

The idea presented in the introduction to Section 3.2 concerning the additive
decomposition of the HELMHOLTZ free energy into a part characterising the
hyperelastic material response in 2% and an additional term which captures
the localised deformation resulting from the bifurcation of the homogeneous
deformation in an adequate form, leads to the relation:

(G, T, ) = Ureg(€) + Taing(J, @) s . (3.29)

The singular part of the localised deformation is introduced by the DIRAC-delta
distribution multiplied with the functional Wging of the material displacement
jump J and internal displacement-like variables ox. J and o describe the dis-
sipative process in the material.

Amplifying the idea to restrict the attention only to the localised phenom-
ena, [MOSLER 2006] further defines the localised deformation as strictly in-
elastic. This limitation yields a purely inelastic J and sets it in the family
of displacement-like internal variables. The resulting singular term in the
HELMHOLTZ free energy is then a function depending on a single argument
Weing((J)). A different approach with both elastic and inelastic parts of
the displacement jump J can be found in e.g. [MIEHE & SCHRODER 1994;
ARMERO 1999].

In order to connect the material response in the bulk material to the material
response at the discontinuity, the principal of virtual work (Section 2.2.3) is
applied to the body B with a surface of discontinuity 8;§2 characterised by a
normal N. If the body B is in static equilibrium under the action of body
forces B and applied tractions T, a proper choice of space of admissible vari-
ations 1o and integration by parts lead to the condition of continuity of the
traction vector T: =P -N

T~ (Xo) = TH(Xo) = T(Xo), Xo € 5. (3.30)
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Vectors T~ (Xo) and TT(Xo) are the left-hand limit and the right-hand limit
of the traction vector at the surface of singularity Xo € 0s§2 in the sense of
(3.3). The choice of the space of admissible test functions which leads to this
jump condition must enable numerical solutions which accurately resolute the
SDA kinematics presented in Section 3.1.3. According to [SiMO & OLIVER
1994], this can be achieved if a BUBNOV-GALERKIN-type of admissible varia-
tions is used. The condition of traction continuity (3.30) opens a possibility to
use the hyperelastic material law associated with X € Q% in the calculation
of the traction vector T(Xy).

In a similar manner as in the case of multiplicative plasticity (Section 2.5.1),
the additive decomposition of the stored energy functional (3.29), together
with restriction (3.30) and the formulation of the spatial velocity gradient
(3.24), leads to the spatial form of the dissipation in the purely inelastic ma-
terial at the singular surface 9.2

‘D=‘r:l—\Il=[(*r-f"'T-N)-£v [[u]]+q-d] 5 >0 (3.31)

or in the intermediate configuration using the MANDEL stress tensor ¥ = C-S

D=[(C-8'N)-J+q-&| &=(C-5):L+q-as20. (332

As already noted in Section 2.5.1, Q = —@a Wsing is a stress-like internal vari-
able conjugated to . Similarly to the plastic distortion rate LP in the case of
multiplicative finite strain plasticity, the tensor L represents the pull-back of
the distributional velocity gradient 1 to the intermediate configuration

L=JeNG. (3.33)

Since @ = ax(J), this internal variable and its conjugate q are also defined on
the intermediate configuration. Therefore, & is an objective time derivative.
In order to complete the constitutive model, the evolution equations for the
internal variables (J, &) are to be defined. If the formerly derived form of the
reduced dissipation inequality in (3.32) is compared to the corresponding form
derived in (2.143), it could be concluded that they are formally identical and
the computation of the evolution equations for the internal variables can be in
line with the procedure known from the theory of finite strain multiplicative
plasticity.

According to [MOSLER 2004B; MOSLER 20044], the traction continuity con-
straint (3.30) can be rewritten using the positive definiteness of a norm || e ||

¢ := || T (Xo) — T(Xo)[| = 0. (3.34)
In the intermediate configuration, this yield condition reads

¢ :=||T"(Xo) - T(Xo)||=0 with T:=C-S-N. (3.35)
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Here, the vector T is the pull-back of the traction vector T to the interme-
diate configuration. The form (3.35) of the traction continuity condition is
formally equivalent to the yield condition of standard plasticity. Based on this
equivalence, admissible stresses are constrained to lie in the space

Ez:={(T",a) €R* xR | 6 (T*,q) < 0} (3.36)

If the jump condition (3.30) is exercised on the reduced dissipation inequality
(3.32), the problem to be solved in order to obtain J and & can be defined as

findk max D(TT,q). (3.37)
(T-*-vQ)eEFf-

This postulate yields the evolution equations:
J=205+¢, &=A0q0. (3.38)

Relying on the standard plasticity procedure, the consistency condition yields
the LAGRANGE multiplier A.

For materials for which the associative flow rule is not an appropriate choice for
the modelling of the material response, a generalisation of the evolution equa-
tions is possible. In those cases, a plastic potential g('i‘+, q) and a hardening

potential h('i‘+, q) are introduced such that
J=205+9, &=Adqh. (3.39)

Associative evolution equations are obtained from (3.39) if g = h = ¢.

If the space of admissible stresses (3.36) is articulated in MANDEL stresses, the
evolution equation (3.39)1 can be replaced by the evolution equation governing
the inelastic velocity gradient L if the time invariance of the singular surface
9sS2 is taken into account

JON=X0gg0"(C-S) with ¢"(C-8,q):=¢(C-S-N,q). (3.40)

The equivalence between (3.40); and (2.147); complements the formal equiv-
alence between the equations describing the constitutive model in the pres-
ence of localised inelastic deformation and those known from standard finite
strain multiplicative plasticity. The localised inelastic behaviour materialised
through J can also be treated using damage based material models. A damage
type analysis of localised failure in materials can be found in e.g. [MOSLER &
BRUHNS 2004; MOSLER 2005cC].

Remark 3.2.1 The choice of an adequate yield function

The choice of a suitable yield function corresponding to the nature of the in-
elastic process occurring in the material is based on the fact that the elastic
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and inelastic part of the deformation are completely separated by the assump-
tions made in this and the previous section. This is the reason why the traction
continuity condition (3.30) is enforced only during the computation of the in-
elastic part of the deformation J and &, and then only to those components
of the traction vector T which are conjugated to non-vanishing components of
the material displacement jump J.

Based on this remark, the yield function appropriate for ductile materials such
as metals or geomaterials could be chosen having in mind that inelastic defor-
mations occurring in slip bands in those materials depend exclusively on the
resultant of the shear components of T

#(T,q) =||Tm||2 —q(a) with T, :=T-(T-N)N. (3.41)

This type of yield function which belongs to the class of VON MISES plasticity
models, is proposed in [MOSLER 2004B] for the geometrically linear kinematics.
It will be exploited in the numerical examples presented in Chapter 5.

In order to prevent confusion, it should be pointed out that T .= T at 8,0
is used and the + sign is omitted in (3.41).

3.3 Numerical implementation

This section offers a detailed overview of the numerical implementation of the
geometrically exact kinematics induced by strong discontinuities presented in
Section 3.1 and the constitutive model presented in Section 3.2, which are as-
sumed applicable for the description of the material behaviour in the presence
of localised failure.

Based on the existing range of scientific efforts in this particular field of ma-
terial modelling, two general directions of implementation can be observed.
Those are the interface elements and the elements with an inner displacement
jump. Interface elements allow the discontinuity of the displacement field only
at the element boundaries. Such models are proposed by e.g. [NEEDLEMAN
1990; ORrTIZ & PANDOLFI 1999]. Elements with an inner displacement jump
allow the discontinuity of the displacement field inside the element. This class
of numerical models can be further branched according to the technique of
enrichment of the displacement field into element-wise enrichment and nodal
enrichment.

Strong Discontinuity Approach - SDA advocating the enrichment of the dis-
placement field on the element level belongs to the class of element-wise en-
richments. Such models can be found in e.g. [DVORKIN, CUITINO & GIOIA
1990; KLISINSKI, RUNESSON & STURE 1991; SiM0, OLIVER & ARMERO 1993;
ARMERO & GARIKIPATI 1996].

EXtended Finite Element Method X-FEM and Partition of Unity Finite El-
ement Method PU-FEM advocating the enrichment of the displacement field
based on the special choice of an additional nodal function belong to the class
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of nodal enrichments. This class of models can be found in e.g. [Mois, DoL-
BOwW & BELYTSCHKO 1999; DoLBow, MOES & BELYTSCHKO 2002; SUKUMAR,
Mois, MORAN & BELYTSCHKO 2000].

It should be noted that there exists a significant body of contrasting com-
parative studies of the above named models, e.g. [JIRASEK 2000; JIRASEK &
BELYTSCHKO 2002; MOSLER & MESCHKE 2003B; DUMSTORFF, MOSLER &
MESCHKE 2003; OLIVER, J., HUESPE, A.E. & SANCHEZ, P.J. 2006).

As far as the SDA based on the EAS concept of [SIMO, OLIVER & ARMERO
1993; SiMo & OLIVER 1994] is concerned, one can distinguish between two
kinds of preliminary ideas regarding the numerical implementation. The ma-
jority of authors, e.g. [ARMERO & GARIKIPATI 1996; LARSSON, STEINMANN
& RUNESSON 1998; STEINMANN & BETSCH 2000; ARMERO 1999; OLIVER,
HUESPE, PULIDO & SAMANIEGO 2003; GASSER & HOLZAPFEL 2003; CALLARI
& ARMERO 2004] base their numerical models on the standard static conden-
sation procedure and eliminate the degrees of freedom associated with the
discontinuity from the calculation at the element level.

Another possibility, presented in [BORJA 2000; MOSLER & MESCHKE 2000;
MosLER & MESCHKE 2001; MOSLER 20054] for linearized kinematics, is to
eliminate those degrees of freedom already at the material point level. This
idea is extended to nonlinear kinematics in [BORJA 2002; MOSLER 2006]. It
should be noted that the model proposed by [BORJA 2002] is restricted to a
specific class of constant strain triangle finite elements and the sliding mode
of the discontinuity, whereas [MOSLER 2006] offers a model not limited by
either the type of finite element or the material interface model. The model of
numerical implementation according to [MOSLER 2006] uses standard proce-
dures known from the finite strain multiplicative plasticity for the solution of
constitutive equations based on their formal equivalence to the corresponding
equations of the plasticity based model.

The numerical model in accordance with [MOSLER 2006] will be presented in
the following sections. It includes alterations of the underlying model with
respect to the direction of the singular surface and the choice of the princi-
pal unknowns driving the localisation process. The finite element formulation
therein is specifically based on the proposition presented in [GARIKIPATI 1996;
ARMERO & GARIKIPATI 1996].

3.3.1 Fundamentals

The additive decomposition of the deformation gradient given in (3.19)

F=1+6—u+[[u]]®N65—|[u]]®g§l

X (3.42)

-~

=H
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has an enhanced part H which includes both regular and singular terms and
belongs to the space

={[u]]®N65—|[u]]®g;%| ﬂu}]ele}, (3.43)

and is therefore formally in line with the formulations according to the EAS
concept considered in [SIMO & RIFAI 1990; SiMo, ARMERO & TAYLOR 1993].
Based on this fact, the numerical approach presented in [MoOSLER 2006] fol-
lows the methodology set therein.

The starting point of the numerical implementation are the stationarity con-
ditions of the respective two field functional for the enhanced deformation

mapping

/Gradno:PdV =/poB-nodV+/T'-'qodA,

X Qe a2 (344)
/H :PdV =0.

Here, P is the first PIOLA-KIRCHOFF stress tensor, 7)¢ is a continuous test
function, B are the body forces, T* denotes the prescribed tractions across
the NEUMANN boundary 8,2 and H is a variation of the enhanced part of the
deformation mapping.

The SDA kinematics is approximated in accordance with (3.13) and (3.14) and
the continuous test functions 7o by

Anode

M=) Ning,, (3-45)

i=1

where ng ; are the related nodal values.

The second equation in (3.44), the so-called Lz-orthogonality condition, is
in general not fulfilled for the enhanced strains HcH (the virtual work
of the stress on these strains is in general case not zero). Instead of using
the standard Galerkin method, [GARIKIPATI 1996; ARMERO & GARIKIPATI
1996] apply the Petrov-Galerkin type of variation for the enhanced part of the
deformation mapping H € H, H # H:

. 1 1
Hi=-1AON+ BN, (3.46)

Here, V* is the volume of the finite element e, A, is the volume of the localisa-
tion surface 8:Q, i.e. As := |, 8.0 2 dA, N is the normal vector corresponding

to 8:2 and B is the variation of the displacement jump [u]. The tensor H
is constructed in such manner that it satisfies the patch test [TAYLOR, SiMO,
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ZIENKIEWICZ & CHAN 1986] and the resulting Lz-orthogonality condition is
equivalent to the weak form of traction continuity across the singular surface

1 1
W/P-NdV_A—Sf'rsdA. (3.47)
Qe 8

The implementations of most finite element models treating the existence
of strong discontinuities such as [SIMO, OLIVER & ARMERO 1993; SiMO
& OLIVER 1994; ARMERO & GARIKIPATI 1996; LARSSON, STEINMANN &
RUNESSON 1998; ARMERO 1999; OLIVER, HUESPE, PULIDO & SAMANIEGO
2003] follow the numerical procedure suggested in the original EAS concept.
However, [MOSLER 2005A; MOSLER 2006] proposed a different solution strat-
egy. The idea is to turn the Lo-orthogonality condition (3.44); into a traction
continuity condition, which in its strong form bears the formal equivalence to
the yield conditions of standard plasticity. The first step in this direction is
the introduction of the average value of T=P -N

ave(T) := % /P -NdV. (3.48)
Qe

Recalling (3.18) and having in mind that Ts = Ts([u]]) leads to the simplified
form of the right-hand side of (3.47)

— f T,dA=T.. (3.49)
sasQ

With (3.48) and (3.49), (3.47) is recast into

¢ = ||ave(T) — Ts|]| =0 (3.50)
or, based on the same considerations which lead to (3.35), into

¢ = ||lave(T) — Ts|| = 0. (3.51)

Based on the choice of the space of admissible stresses (3.36), this equation is
a special form of the statement

¢ (ave(T),q) < 0. (3.52)

The discussed numerical implementation will be applied in the standard finite
element procedure for the 4-node tetrahedral constant strain elements. The
main feature of this class of finite elements is that the regular part of the
displacement field is spatially constant on the element level, i.e. Grada =
const. The consequences of this choice are

Grad @t = const = Grad ¢ = const = F = const
= C = const = S = const = T = const = ave(T) = T. (3.53)
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Based on this conclusion, the weak form of the traction continuity (3.52) can
be assumed equivalent to its strong form

¢(T,q) <0, (3.54)

and the stationarity conditions in the loading regime (A > 0) have the form

/Gradno:PdV =/poB-nodV+ /T'-nodA,
e oo (3.55)

- Qe
¢(qu) =0.

This set of equations confirms the formal equivalence of the proposed material
model with the model of standard finite strain plasticity and opens a possibility
to choose a method of numerical implementation from the variety of known
and reasonably well developed computing methods. [MOSLER 2005A; MOSLER
2006] adopts the return-mapping algorithm according to [SiMo 1998; SiMO &
HucHES 1998]. The method, as presented in 2.5.2, solves the set of equations
according to the algorithm shown in Figure 2.8. If the elastic predictor step
signals an inelastic loading step, the traction continuity condition (3.55)2 is
solved for constant 4. With the results of that computation, the condition
(3.55)1 is solved. This procedure will be presented in detail in the next sections.
First, the choice of the possible orientation and the topology of the singular
surface 3,82 is advocated and then the specific algorithm is presented. The
trial step is defined, followed by the differentiation of an elastic unloading step
from the inelastic loading step and introduction of the linearization procedure.

3.3.2 The normal vector N and the topology of the surface 3:{2

The kinematics and the constitutive model presented in previous sections of
this chapter are labelled suitable for the description of strain localisation ma-
terialised in a singular surface 3;{2. Up to this point, a complete material
model is developed starting with an assumption that the local topology of the
singular surface, i.e. the normal vector N is known. However, the scientific
effort to predict and compute the formation, the orientation and both local
and global topology of such discontinuity in the material is decisively large.
The criteria for the prediction and description of the singular surface of order
zero could be classified in at least five general groups, namely energy-based
criteria, stress-based criteria, strain-based criteria, transition from weak to
strong discontinuities and the bifurcation analysis. An overview of the sig-
nificant contributions to the solution of this problem as well as a detailed
presentation of a possible choice for the prediction of formation of disconti-
nuities in rate independent media can be found in [MOSLER 2005B; MOSLER
2007].
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Figure 3.3: A possible choice for the singular surface 3,2

In this work, the choice of the topology and the orientation of the singular sur-
face 8:82 is based on the fact that the mechanical behaviour of many materials
depends on the distribution of pre-existing micro-defects. For instance, the ul-
timate load of jointed rocks is influenced by the roughness and orientation of
pre-existing slip surfaces. Additionally, the evolution of those internal surfaces
is very important. The choice of a material model presented in this chapter is
based on these considerations. As for the local topology of the singular surface
9;(, the discontinuities are assumed already formed.

In an effort to simulate pre-existing discontinuities which are the result of some
previous evolution processes, the pre-existing internal surface could be for ex-
ample defined element-wise by a stochastically distributed normal vector N
as well as the initial material strength, i.e. q(t = 0). However, the numerical
model for the micro-scale with a single stochastically generated time invariant
localisation surface in each element can lead to both non-physical results and
to locking effects.

In order to enlighten this behaviour, a brief definition of the numerical length
scale, known as the characteristic length l. presented in [MOSLER & MESCHKE
20038] is given. If the softening response in the material is governed by the
stress-strain relation

¢g=-Hé&, (3.56)

where & is a strain-like internal variable and H is the softening modulus, this
softening modulus depends on the fracture energy per unit of crack surface Gy
and the geometry of the finite element (see [PIETRUSZCZAK & MROZ 1981]).
The fracture energy per unit of crack surface Gy can be defined by

Qy

E E
gf = A_s_ V lc= / q(a) dalc. (3.57)
S~ a=0
ar

E represents the total dissipated energy in an element with the volume V
necessary for the formation and the propagation of a macro discontinuity with
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area As up to the final failure, g¢ is the fracture energy per unit of volume, ay
is the parameter characterising the complete softening in the material and [,
is the characteristic length. The total dissipated energy F is evaluated based
on the following assumptions:

e The strong discontinuities kinematics is assumed (see Section 3.1.2).
e The ramp function ¢ has the form (3.14).
e Constant strain finite elements are used for the spatial discretization.

e The direction of the crack is defined by the normal N.
According to [MOSLER & MESCHKE 2002), the total dissipated energy E reads:

E= / Gt Gradp-N dV . (3.58)
Qe

Application of (3.57) in (3.58) leads to
le =(Gradp-N)!, (3.59)

If this numerical length scale is taken into account, the stochastically gener-
ated time invariant normal vector N can lead to a non-physical, negative or
zero characteristic length [/, based on the angle between two vectors N and
Grad ¢. The possibility of locking is not surprising in this case, since the
stochastically generated internal surfaces 02 are, in general, non-conforming
(see Figure 3.4a). More precisely, only for selected problems, the local surfaces
span a globally continuous failure surface. The continuity of 9;Q is essential
for finite element formulations based on the SDA, as reported for instance in
[JIRASEK & ZIMMERMANN 2001]. Different approaches to the solution of such
mechanical problems can be found in the literature. Most of the proposed
methods belong to a group of solutions known as tracking algorithms [OLIVER
1995A; OLIVER 2000]. Several authors propose algorithms for computing a
globally continuous topology of 0.2, cf. [OLIVER, HUESPE, SAMANIEGO &
CHAVES 2002]. In this global tracking algorithm, single or multiple crack sur-
faces are stored in an additional scalar valued field of unknowns. This requires
the solution of a “thermal-like” problem before each mechanical loading step.
In principle, those techniques could be adopted. However, the number of dif-
ferent surfaces 0.2 in the whole model is considerably large resulting in a
prohibitive numerical effort. Furthermore, the internal surfaces may interact
or cross each other.

In this work, a different method is advocated. It is based on the so-called
Multiple Localisation Surface Approach. The main property of the numerical
model presented here is that the number of possible orientations of the locali-
sation surface per element is set to four. Each of the four possible orientations
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Figure 3.4: Continuity of the singular surface 9:§2 across elements: a) stochas-
tically generated discontinuities; b) discontinuities parallel to the
element faces

of 850 is chosen such that it is a plane parallel to one of the faces of the tetrahe-
dral finite element. Figure 3.3 shows one possible choice of the singular surface
0:€2. Analogously, the other three possible orientations are generated. As a
consequence N is parallel to Grad ¢. More precisely, N = Grad ¢/||Grad ¢||
and hence, N - Grady = ||Grad ¢||. On the one hand, this procedure im-
proves the numerical implementation of the proposed model significantly. For
instance, since N is parallel to Grad ¢, the resulting stiffness matrix is sym-
metric. Furthermore, if the characteristic diameter of the finite elements goes
to zero, N - Gradp — co. As a result, snap-backs as reported in [JIRASEK
1999] can be avoided, cf. [MOSLER & BRUHNS 2004]. Additionally, the space
of admissible internal surfaces spanned by the proposed numerical model is
relatively rich. More specifically, the continuity of 3s§2 can be guaranteed (see
Figure 3.4b). It should be noted that the finite element discretization can be
generated such that the normal vectors of the facets defining the tetrahedra
are stochastically distributed.

3.3.3 Return-mapping algorithm - elastic predictor step

According to the scheme given in Figure 2.8, the elastic predictor step is actu-
ally the computation of a trial step characterised by purely elastic deformation.
This constraint influences the variables associated with the strain localisation
in the material. The description of the deformation mapping assumed for the
trial step has the form

A=0 < J=0, 4=0, q=0 (3.60)
— Fny1=1+Cradilipy; — Fayq-Jn ®Grade. '

The trial value of the deformation gradient F':,r+1 is computed from (3.60). At
this point, a new variable characterising the localisation process is introduced.
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Based on facts that N is parallel to Grad ¢ and N = 0, a variable named jump
deformation tensor is defined

e =JQ®Gradyp, é® =1905¢®@Gradyp. (3.61)

Along with €P, the existing form of the regular part of the deformation gradient
F can be rewritten as

atr

Foy1 =14 Gradiing — Foyp - €®n =A™ [1 4 Grad tin4] ,

Aikpg := Likpg + [Lijpg €3] | (3.62)

tn
Here, I is the fourth order identity tensor. Based on I_"'f,r.,, 1, the right CAUCHY-
GREEN trial tensor C, and the second PIOLA-KIRCHHOFF trial stresses S, |
can be computed and used for the calculation of the trial traction vector

Tor1 =Chii-Sh -N. (3.63)

The trial value of the discrete loading condition (3.52) is then given as

tr

¢ :=¢(Thi1,qh41) >0 with q;., =q,. (3.64)

According to the scheme in Figure 2.8, a non-positive trial value of the yield
function ¢* < 0 signals a purely elastic loading step. For all variables whose
trial values are calculated, (¢),+1 = (@)%, is set and the material response
is computed according to Section 3.3.5. A positive trial value of the yield
function ¢* > 0 signals an inelastic loading step and an inelastic corrector
step must be performed.

3.3.4 Inelastic corrector step

Since the conditions defined in (3.60) are not valid in the case of inelastic
loading, a backward-EULER integration is applied to the evolution equations
(3.38)2 and (3.61). The backward-EULER scheme transforms the set of alge-
braic differential conditions into a nonlinear set of purely algebraic equations.
The jump deformation tensor €” and the internal displacement-like variable o
at time t,4) are computed from:

epn+1 = epn + AAn-{»—] a'f ¢|n+1 ® Gl‘ad (p, (3.65)
an+l = Qn + AAn-}»l aq ¢|n+1 . (3-66)

Hel‘e, AAn-i-] = An-{-l (tn+l - t",)-
The definition of the residual R in the return-mapping algorithm is

R :— Rep i —€P 41+ €Pn + Adnt1 05 Gln+1 @ Grad (3.67)
) ]R.a ' —On4l +a, + Al\n-‘-l aq ¢|n+l ) '
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A vanishing residual R, 41 and a vanishing yield function ¢n4+; form a set of
nonlinear algebraic equations to be solved in order to correct the trial state

R=0 A ¢n41=0. (3.68)

Following [SiMO 1998; SiMO & HUGHES 1998|, the system is solved by a
systematic application of the NEWTON iterative procedure. It is based on the
linearization of the residual about the current iterate.

If it is assumed that the current iteration is the iteration (k) the valid starting

values of the traction vector T,,_H, the internal variable q,, +1 and the yield
function qbn 41 are

l -
TEH)-I = T::+1 ) qs:-i)-l = Qn+1 ) ¢$;l4).1 = Pnt1- (3.69)

For the choice of the yield function according to (3.41), following second deriva-
tives vanish

ai‘@q ¢|"+1 =0, aq®"I" ¢|n+l =0, aq<8>q ¢|n+l =0. (3.70)

For an arbitrary choice of the yield function, these derivatives should be in-
cluded in the linearization procedure.

For the sake of clarity, the indices describing the current time iteration step
n+ 1 and the current NEWTON iteration step (k) will be omitted in the deriva-
tion of the linearized residuals.

The residual tensor R is linearized with the chain rule with respect to T, q
and A, for a fixed i from (3.67) and (3.70):

dR{{ = ~—def;+dAXdz¢: Grady; + AX Ozt dir dTk Grad
= TS de,p +dAX G},
dRY = -8qaijdq; +dAXq¢:
= Dy;7'dg; + dAX 8q ¢, (3.71)
where
Gi; = 05 ¢: Grad p;,
Tzﬂp —Lijip + ngko Gkolp (3.72)

If the traction vector is transformed according to the identity T=C.S-N =
¥ . N then

Gt]ko = AA a'i‘@'i‘ (;bik N, Grad Y. (3.73)

The fourth order tensor G* in (3.72) linearizes the MANDEL stress tensor X
with respect to the jump deformation tensor €P. This linearization is derived
at the end of this chapter, in Section 3.3.7.
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The choice of independent variables for the linearization procedure is not
strictly restrained to the set (T, q, AX). According to [MOSLER 2006], choos-
ing the MANDEL stress tensor  instead of the traction vector T is also possible
and delivers the formal equivalence to the standard multiplicative plasticity.
However, the dimension of the residuals increases with this change. For the
isotropic softening (dim ¢ = 1) the dimension of the problem to be solved in-
creases by a factor greater then 2. As a consequence, this alternative choice
of independent variables has not been utilised in this work.

In order to switch from the tensor description to the matrix description of the
problem, following transformations are necessary:

p P 3 P __ P

. C C
TC = T with TG = TG 1)aa4i (k-1)s341 (3.74)

G'=g' with G} =g{i-1).3+;-
The resulting residual vector R can be derived as
dRf" =T§ dEY +dAr g,
dRf = D;; ! dg; + dAA 9q ¢ . (3.75)

The linearization of the yield function ¢ (T, q) follows the same procedure and
leads to

dp = 05¢:dT;+ 0q¢; dg;

Fy, def, + 8q ¢i dg; (3.76)
= f{dEP 4+ 0q¢: dq;, (3.77)

where
Fi,=03¢i Nj G, Fii = flic1yess; - (3.78)

In the matrix notation, these results have the form
dR=A"1-A+dar® VM, dp=VeT A, (3.79)

where the notations

- ™ 0 () dEr 1%
Al:= [ 0 D-! I , A= dq (3.80)
n+1 n+1
and
gt *) T t (k)
VM := , V¢ := [f*;0 3.81
[ 6q¢ ] n+1 ¢ [ q¢] n+1 ( )
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are used. The linearized form of the set of equations (3.68)

R+A"A+dANE), VM =0, ¢+VeT-A=0 (3.82)
is solved and the update of the LAGRANGE multiplier dAz\S,':),l is computed
from

$—veT A-R|P

dAx®) = = AXEED = AR 4 gan®)
n+1 V¢T . .A. . VM . +1 +1 n+1
(3.83)
The update of of the state variables is calculated from (3.82);
(k)
A, =-D7.A.(R+dAX VM) . (3.84)
n+
where
(k) p 11(k)
p/= |1 0 . A= | 4B : (3.85)
0 -D [|.., da |f..,
and consequently
p 7|(k+1) p 1|k p 11k
I 0 9 4l 30
O n+41 o n+1 a n+1

The whole procedure is summarised in Figure 3.5.

3.3.5 Elastic unloading

The negative trial value of the yield function (3.64) leads to the conclusion
that the material response is elastic and the predicted trial state is the actual
state. The solution of an elastic loading step Qi+ is the solution of the set of
equations

fGradno:PdV =/pr‘170dV+ /T'~nodA,
Qe 8,02

2, (3.87)

P _ P
€ny1 = €n -

Since the material description of the principle of virtual work is not the best
choice from the computational point of view, relation (3.87); is pushed-forward
to the current configuration such that the spatial form of the given set of
equations reads

/gradn:TdV =/poB-nodV+/T'-'nodA,
850

Qe Qe
P _ P
€ni1 = €En -

(3.88)



3.3 Numerical implementation 69

1. Ewvaluate the residuals (3.67) and the yield function

_ [ RrR®
R"{ R® }

2. Check convergence

(k)

?
n+1

(k) _ ,tr
¢n+l = ¥n+1 -

IF ¢{}), < TOL, and ||R|||Y), < TOL, THEN: EXIT

3. Calculate elastic moduli (2.127) and consistent tangent moduli (3.80)
4. Obtain the increment to the consistency parameter dAX (3.83)
5. Obtain the incremental state variables A, (3.85)

6. Update the state variables (3.86) and the consistency parameter
(3.83)

Set k — k+ 1 and Goto 1.

Figure 3.5: Return-mapping algorithm - plastic corrector iteration

Here, the push-forward of Grad 7o, denoted by gradn is based on the inter-
polation (3.45). It takes the form

Tnode
gradn = Z 75; ®Grad N; -F~1. (3.89)

i=1

Following the standard procedure of the displacement based finite element
method, the displacement field in4+1 satisfying the conditions of the (3.88) is
computed through the iterative NEWTON algorithm. In the process, the global
residual at the global node I € {1,...,n4}

Nele —
Ri= A [ [GradNi-F~'].rdV
=1
T e (3.90)
—/N,-poBdV— / N; T dA
Qe 8s9¢
has to be driven to zero Ry = 0 for all global nodes. Here, A denotes

the assembly of all element contributions at the local element node i (i =
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1,...,Nnode) to the global residual at the global node I. The linearization
of the residual Ry is calculated with the update of the regular part of the
displacement field At as the independent variable:

R;|,+ K| Ady|,,,=0, VILJ=1,...,ng. (3.91)

Here, K'Y denotes the IJ component of the global stiffness matrix, i.e.

oR;

KIJ = —.
311J

(3.92)

The update of the regular part of the displacement field at global node J is
calculated from

ﬁn+1 = ﬁn + Aﬁn+1 (3-93)

within each iteration cycle.
The components of the stiffness matrix K’ are obtained starting with the
transformation of the rate form of the equation (3.87);

/Gradno:PdV=/pOB.nodv+/T‘-nodAzo (3.94)
Qe Qe e

into

/gradn: [T-T+L’.u 'r] dV=/poB-nodV+ / T .nodA=0, (3.95)
Qe Qe 80

where the relations (3.88), (2.115) and (3.24) are utilised.

Based on the symmetry of the spatial elastic tangent operator c : c¢iju =
Fi1FyiFix Fi.CrykL, the LiE-type derivative of the KIRCHOFF stress tensor
can be rewritten following (2.128) and (3.95):

/gradn: ﬁ-‘r+c:ﬂ dV=/poB~nodV+/T*-nodA=0. (3.96)
Qe Qe 80N

The regularly distributed part of the spatial velocity gradient 1 is the only
element of this equation to be linearized with respect to Ad. The iterative
nature of the procedure leads to the following relation

I1=dF-F!. (3.97)
The linearization yields

- OF .
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The implicit equation (3.62) defining the deformation gradient F is linearized
for fixed € with the result

dF,.41 = A™!: Grad Atfip4, (3.99)
and (3.97) is rewritten as

T=(A"!:Grad Alin4) - F! (3.100)
or, equivalently,

T1=L°: Grad Alin+1  with L = A, Foi' . (3.101)

The stiffness matrix K’ can be evaluated from (3.96) based on (3.101). If the
standard distinction between the geometric and material part of the stiffness
matrix is made, K'Y is the sum

K" =Kl + K - (3.102)

In the case of linearized kinematics, Ké;’o = 0. In index form, the geometric
tangent operator ngo is defined as

(ki) = A [ (Grad Ni), F3' e Loy (Grad N;),dV (3.103)
a e=1

Qe

and the material tangent operator KM, as

(Kmat)ab= A / (Grad Ni), F' Cades Lisp, (Grad N;),dV . (3.104)

e—l

3.3.6 Linearization

According to [SiMO 1998; SiMO & HUGHES 1998|, the linearization of the
algorithm presented in Section 3.3.4 is essential for the preservation of the
quadratic rate of asymptotic convergence characterising the NEWTON method.
This numerical procedure is presented in Section 3.3.5 for the case of an elastic
loading step. In the case of an inelastic loading step, the procedure is similar.
In order to evaluate the regularly distributed part of the spatial velocity gra-
dient 1in the rate form of the principal of virtual work (3.96), the regular part
of the deformation gradient F has to be linearized using the return-mapping
algorithm as presented in Section 3.3.4 with respect to a set of independent
variables (T, q, At). All calculations are performed on the basis of the con-
verged state of the inelastic corrector step.
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Assuming the residual in the form (3.67), the linearization yields

dRS = —deb; +dAX 34 ¢: Grad g; + AX Oggz dik ATk Grad p;
= TH, ded, + dAX G} + USj,,Grad Aday
dR = —0qaijdg; +dAX0qe:
= D;;7'dg; +dAXdq¢:. (3.105)
G* and TC are the tensor operators defined in (3.72) and
UG ap = GijkoQrosp - (3.106)

Tensor Q is derived at the end of this chapter, in Section 3.3.8. The vector
form of dR< can be derived as

dR:" =TS dE® + U D} +dAM gt
dR{ = Di; 7" dg; + dAX 8q ¢, (3.107)
where the transformation rules for T¢, g' and EP can be found in (3.74) and

Grad At = D" with Grad A'&U = D?i—l)t3+j y

(3.108)
UC = UC with ngz = Ug—l)*3+j.(k—l)t3+l .
The linearization of the yield function ¢ (T, q, AQ) leads to
d¢ = Ozx¢:idT;+ 0q¢:dg;
= F, de}, + Fj;, Grad Adup + 84 ¢: dg; (3.109)
= fIdEP + f! D} +0q¢: dg; . (3.110)
F! and f* are defined in (3.78) and
Fip =016 Nj Qijips  Fij = fli—1)ea4; - (3.111)

In matrix notation, these results take the form
dR=A"1 A 4+dAM1 VM + VU,
d¢=Ve¢T-A+Ve,T D", (3.112)

The definitions of A™!, VM, A and V¢ can be found in (3.80) and (3.81),
and

VU = [ UC(;D" ] ve,T = [f]. (3.113)

Next, the set of equations

R+A~' A+dArsy1 VM+VU=0
¢6+VeopT - -A+Ve,T-D'=0 (3.114)
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is solved for dAMX,+1, keeping in mind that the converged values of the residual
R and the yield function ¢ are equal to zero and that the matrix A~! has the
diagonal form:

-VoT . TC 1. U +ve,T

dAMny1 = i
1 VoT-A VM

. D, (3.115)
n+1l

Here, VT is the upper submatrix of the matrix V" which contains the

vector f*.

The diagonal form of the matrix A~! allows the separation of relation (3.114);
into two independent parts if the upper and the lower submatrices of each
addend are used. The identity

TC . dEP + dAXny1 VM™ +UC . D® = (3.116)
gives as a consequence the relation

dEP = L . D", (3.117)
where

_TC-1.yM* (—V¢T* .TC-1.yC + V¢uT)

LC =
Vo' - A.-VM

-TC-1.U°. (3.118)

VM* is the upper submatrix of the matrix VM which contains the vector g*.
The reverse transformation of the matrix LE yields the tensor L, i.e.

LE = LC with L = LG 1)sas (k—1)e3+1 (3.119)

and the linearization of the jump deformation tensor € with respect to the
update of the regular part of the displacement field Grad Aii can be completed

dePrp = L, Grad A, . (3.120)

The introduction of this result in (3.131) leads to

dF;; = Pijer Grad Aty (3.121)
where
]Pijqr = A—lijlp (Hlpqr - Ek ILLC?pqr) . (3.122)

Based on (3.97) and (3.122), the regularly distributed part of the spatial ve-
locity gradient 1 can be evaluated:

T=L':Grad Alinyy  with Lijy =P F'. (3.123)
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Following the same line of thought as in Section 3.3.5, the stiffness matrix
K'’ can be evaluated from (3.96) based on (3.123). The index form of the
geometric tangent operator Kt’;go is defined as

(Kg’io) L= A [ (Grad N:), F3 7ae Liews (Grad Ny), dV (3.124)
a e=1
Qe

and the material tangent operator K27, is given by

(km) = A / (Grad i), Fi3 cader Lissg (Grad N;), dV . (3.125)
QO

e=1

With the global linearization algorithm, the numerical implementation of the
material model proposed in Sections 3.1 and 3.2 is completed for the appli-
cation of constant strain type of finite elements. The more general case ex-
tended to higher order finite elements is discussed in detail in [MOSLER 2005A;
MOsLER 2007].

3.3.7 Linearization d¥/deP

The goal of this section is to derive the moduli GM connecting the jump
deformation tensor €P to the MANDEL stress tensor X for a fixed conforming
displacement field 1. Starting from the identity 3 = C - S, the linearization
can be performed in three steps.
Step 1. Linearization of ¥ with respect to the right CAUCHY-GREEN tensor
C:
dzko = (]I;?;:,. Sjo + ij ‘;‘ Cjqu) déqr = Akcoqr qur,
. p (3.126)

g

. aC
= Akoqr

where [I*¥™ is a symmetric fourth order identity tensor and C is the material
elastic tangent operator defined in (2.127).

Step 2. Linearization of the right CAUCHY-GREEN tensor C with respect to
the deformation gradient F:

dc-'qr - Sﬂqun F}ﬂrmn FJq)) dan = Tqrmn dan . (3127)

= Tqrmn

Step 3. Linearization of the deformation gradient F as defined in (3.62) with
respect to the jump deformation tensor €P:

dFmn = (=A ' mnip Fu) deP, = Al nip dePsy.

. AF
=. Amnlp

(3.128)
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Finally, the linearization of the MANDEL stress tensor ¥ with respect to the
jump deformation tensor €® has a form

dike = AE.:)qr Tqrmn ATI:;nlp deplp = Gﬁélp dep;,, .
- — (3.129)

3.3.8 Linearizations dX/de? and dX/Grad Ad

The goal of this section is to derive the moduli Q connecting the update of the
regular part of the displacement field Grad A to the MANDEL stress tensor
.

Starting with the result of the previous section

d¥g, = Afoqr Tqrmn dan ) (3130)

and linearising the deformation gradient F as defined in (3.62) with respect
to the jump deformation tensor €” and the update of the regular part of the
displacement field Grad A

dan == (_A_lmnsp Fgl) dep[p + A_lmnsp Gl‘ad A'ﬁ:sp
A v g (3.131)
= A::lnlp
leads to the final form
dZko = Ghagp dePip + Qpogp Grad Aty . (3.132)

Here, the tensor operator Q is to be evaluated as

Qkosp = Agoqr Tqrmn A—lmnsp . (3133)
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In this chapter, the three-dimensional finite element formulation discussed in
Chapter 3 is extended to accommodate a localised material failure composed
of several planar singular surfaces 80P B =1,...,n, by allowing their si-
multaneous propagation. The procedure is named multiple localisation surface
approach or MLSA. As in Chapter 3, the numerical implementation is based
on the standard return-mapping algorithm of multisurface plasticity according
to [SimMo 1998; SiMo & HuGHEsS 1998]. Since all notations, procedures and
derivations presented in Chapter 3 extend straightforwardly to multisurface
material failure, the developments in this chapter will be less detailed and
serve mostly as a review of the same ideas transformed and expanded to ac-
commodate the multisurface description of the problem. At the end of this
chapter, the choice of principal unknowns in the return-mapping algorithm is
explained on the basis of an numerical example.

4.1 Kinematics

The kinematics of MLSA is defined in line with the assumption that the basic
notions and postulates of the kinematics associated with the Strong Discon-
tinuity Approach (SDA). It is based on the propositions made in Chapter 3
remain unchanged. Similarly to the single surface approach, a displacement
field of the type (3.8) is adopted. However, considering ns active localisation
surfaces within the respective finite element, (3.8) results in

u=10+ Z i[ull(ﬁ) (HS(B) —_ SO(B)) ) (4.1)
B=1

As a consequence, the deformation gradient defined in (3.11) becomes

F=1+Grada - "_Z_s (I[u]](m ® Grad qo(m) + "Es ([[u](m ®N(ﬁ)) 6.
p=1 i=1
(4.2)

Here, N® represents the normal to the singular surface 82, [u]® is the
corresponding displacement discontinuity, ¢® is the ramp function and &, ®
is the DIRAC delta distribution associated with the localisation surface 8.2,

4.2 Constitutive relations

Analogously to Section 3.2, the material response in the bulk material Q%
is modelled as purely elastic and the material response at each of the active
discontinuity surfaces 8;9(? is governed by means of traction-separation laws.
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Following identical lines as in Section 3.2, these interface laws capturing the
softening response associated with the localisation surface 8,Q(?) are based on
an admissible stress

EQ = {(T,a?) e B x R™|¢(T,q”) <0}, (43)
where

_ . +

76 = (FT P. N“’)) , (4.4)

and on the evolution equations

(8 :
J® =28 g0 6, @B =2 g P, (4.5)

respectively (compare to Section 3.2.2). Since the restriction (T(ﬁ ),q(ﬂ)) €
IESI’? ) has to be fulfilied for all 8 € {1,...,n,}, the admissible stress space Ex

is defined as the intersection of all subspaces IE,(-I-‘? ), i.e.

Er:=[EL. (4.6)
i=l1

4.3 Numerical implementation

This section offers an overview of the numerical implementation of the geo-
metrically exact kinematics of multisurface strong discontinuities presented in
Section 4.1 and the constitutive model presented in Section 4.2. As in Chap-
ter 3, the orientation and the topology of the singular surface are chosen in
accordance with Section 3.3.2, i.e. parallel to the sides of the tetrahedral finite
element (see Figure 3.3). The formal equivalence of the proposed material
model with the model of standard finite strain plasticity stated in Chapter 3
stays unchanged for discontinuity enrichment and the return-mapping algo-
rithm according to [SIMO 1998; SiMO & HUGHES 1998] is again the algorithm
of choice. This procedure will be presented in the next sections. The trial step
is defined in Section 4.3.1, followed by the definition of an inelastic loading
step in 4.3.2 and the introduction of the linearization procedure in Section
4.3.4.

4.3.1 Return-mapping algorithm - elastic predictor step

The assumption that the localised material failure may follow a multiple sur-
face path leads to the redefinition of the purely elastic deformation defined in
(3.60):

A9 =0 =3P =0, a®=0, ¢P=0, f=1,..,n,

ng

— F:;r.*_l =1 + Gl‘ad ﬁn-{»—l - F::_;_] . Z JSIB) ® Gl‘ad (p(ﬁ) .
8=1

(4.7)
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The trial value of the deformation gradient F',,, is computed from (4.2). The
jump deformation tensor €P is evaluated based on the fact that N js parallel

to Grad ¢® and N® 0,v@3=1,...,n,

e = Z JP @ Gradp®, &P = Z 2@ 04(9) #® ® Grad @ . (4.8)
=1 B=1

Here, nac: is the number of active singular surfaces, nace < ns. Using €P,
the existing form of the regular part of the deformation gradient F can be
rewritten as

atr

Fi,=1+Gradtine: — Fryy - €?n =A7": [1 4 Graditny] ,
Aikpg = Tikpq + [Lijpq €5i][, - (4.9)

Based on the evaluated F‘ff+1 , the right CAUCHY-GREEN trial tensor C’ff_,_l and
the second PIOLA-KIRCHHOFF trial stresses S&,, can be computed and used
for the calculation of the trial traction vector in each of the active directions
of localisation

TOF =C¥,, 8%, - ND (4.10)

The trial value of the discrete loading condition (3.52) at each of the potentially
active singular surfaces 8:Q®) reads

¢(ﬂ) tr._ ¢(ﬁ) (Tffgl",qsl‘:!;') >0 with qifgltr = qslﬁ) . (4.11)

Based on the algorithm presented in Chapter 3, a non-positive trial value of
the yield function ¢®* < 0 renders a non-active singular surface. If all four
possible singular surfaces have a negative trial value of the yield function,
a purely elastic loading step is signalled. For all variables whose trial value
are calculated, ()n+1 = (®)ny, is set and the material response is computed
according to Section 3.3.5.

A positive trial value of the yield function ¢®* > 0 signals a potentially
active singular surface. The total of all potentially active singular surfaces
with a positive trial value of the yield function defines a trial set of n,c active
surfaces BSQE,EZ

J&, = {Be{l,...,nac} | 6P (TP, ) > 0}. (4.12)

Each elastic trial step which results in nac, > 0 requires an inelastic corrector
step.
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4.3.2 Inelastic corrector step

The inelastic corrector step in the case of multisurface material failure follows
the formalism presented in Section 3.3.4. The correction of the trial step is
numerically achieved by implementing the return-mapping algorithm based
on the backward-EULER integration of the evolution equations (4.5). The
jump deformation tensor €P and each of the internal displacement-like variables

a®  B=1,...,na at time t,4; are evaluated as
Nact
ni1 =€n+ > AN, 830 ¢ |ns1 ® Grad P, (4.13)
B_.
szl =af + A)‘iflzl 9 q8) 1 - (4.14)

Here, A)\fﬂ_)l = /\fﬂl (tnt1 — tn).
The next step of the return-mapping algorithm is the definition of the residual

R
R
R = 4.15
() w»
where
Nact
Rep = —€ n+1 + Gpn -+ Z AAn-i-l 6T(g) ¢(B)|n+1 ® Grad (p(ﬂ) (416)
B=1
and
5114)-1 + 0‘(1) + A’\n+1 aq(l) ¢(1)|n+1
R%:=¢( ... . (4.17)
S:ﬁnft) + a(nnct) + AA(ﬂacz) 8q(nact) ¢(ﬂact)|n+l
A vanishing residual R, 41 and vanishing yield functions d)fle ,B8=1,...,acs
define a set of nonlinear algebraic equations to be solved
R=0 A ¢, =0,8=1,...,0%.a. (4.18)

The linearization of the residual about the current iterate using the NEWTON

iterative procedure starts w1th the trial values of the traction vector Ts,lf,.ll) )

the internal variable qn +1 ) and the yield function ¢,(1':_11).

21 =(8)(1)t 1 /(1 81 8)Q1
TOP =200, a2 = a0, #00 =60, (@19)

If all featured yield functions have a form

HTD, ¢ = (T)D |2 - ¢@ (), (4.20)
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following second derivatives vanish
O5rgq® 8 lnt1 =0,
Bqmer® ¢ lns1 =0,

048 gq(® ¢P|ns1 =0. (4.21)

For an arbitrary choice of the yield function, these derivatives should be in-
cluded in the linearization procedure.
The indices describing the current time iteration step n + 1 and the current
NEWTON iteration step k£ will be omitted in the derivation of the linearized
residuals for the sake of clarity.
The linearization of the residual tensor dR with respect to T(m, q'®? and
A,\(ﬁ), B=1,...,nac is evaluated for a fixed i1 from (4.17) and (4.21)
Tact
P
dRg = &+ > dAND 55 ¢{” Grad !
B=1
Nact
+ Z ALB aT(ﬁ)ogT(l’) ¢££) T(ﬁ) Grad ¢ (B)
ﬁ_
Nact

= TGy del, + Y dAX? G,

=1
a8
dRE” = —0e ol dgi® +dAXD) § ) ¢
= D¥14¢® +dAXD 9 () ¢, B=1,...,Muce, (4.22)
where
GYP = 8105y 6 Grad ol
T1le ]Itle + Guko Gkolp (423)

If the traction vector is transformed according to the identity T’ = & - S
N® = 5. N® then
Nact
Goro=Y_ AP 0ty s 855 NI Grad o . (4.24)
=1

The fourth order tensor GM in (4.23) is derived in Section 3.3.7.
The transformation rules for the change from the tensor description to the
matrix description of the problem are:

e — EP with €} = E[;_}).34;5>

: c c
T = T¢ with T3k = TG 1ye345,(k—1)s3+1 » (4.25)
Gt(ﬁ) — gt(ﬁ) With G::(,ﬂ) g(tz(ﬁ)l)*:]-}-_, y :3 = 1’ v vey Nact -
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The vector representation of the residual R reads

Mact
B=1
(8) -
dR?" = DD 71 dg{? +dAN® 8 s ¢, B=1,...,nact . (4.26)

The yield functions ¢#) (T(ﬁ),q(ﬁ)) , B =1,...,nac are linearized according
to

d¢(ﬁ) — 6T(ﬁ) ¢(ﬁ) dT(ﬁ) + aq(ﬂ) ¢(3) dq(ﬁ)
Fl t(8) delp + aq(ﬁ) ¢(ﬁ) dq(ﬁ) (4.27)
= fHP dEP + 0 ) ¢ dg®, (4.28)
where
Etpw) = Oqe) B\ N(ﬁ) Giiip s z,(ﬂ) f(t,(ﬂi),,HJ (4.29)
In the matrix notation, these results take the form
dR=A"1-A+VM-dAAY),, dp=Ve¢T-A, (4.30)
with the notations
TC 0 (k)
(1)-1
A7l = 0 D : (4.31)
(nace)—1
D ’ n+1
dEP (k) (k)
dq? k daxt®
A = ,dAx®) .= , (4.32)
v dA ) (ract)
dq(n 2 n+1 mtl
i gt® gt(act) 1%
8 ¢
VM = (4.33)
aq(“nct) ¢("nct)
L < In4l
and
RPN SR CY (&)
! q
VoT = (4.34)
ft("nct.) : q(1) ¢( Nact)

n-+41
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The update of the LAGRANGE multiplier dAart®) nt1 is computed from the lin-
earized form of the set of equations (4.18)

R+A'-A+VM-dAA® =0, ¢+VesT-A=0 (4.35)
as
(k)
¢-V¢'-A-R - " "
dar® = = = AAEY = AaD), +daal), . (4.36)
Vo' -A-YM |

The update of the state variables A, is calculated from (4.35),
(k)

Ao =-D’-A. (R+ VM - dAAS,':zl) , (4.37)
n+1
where
(k) p 71(R
D’ = [(IJ %] Ay = [‘LE ] , (4.38)
- n+t R | P
and consequently
EP (k+1) EP (k) dEP (k)
(1) (1) (1)
@ = “ + | de . (4.39)
(nact) (ract) (nact)
Qe < In41 o n+1 do ‘ n+l1

4.3.3 Determination of active singular surfaces

The set of potentially active singular surfaces entering the inelastic corrector
step Jik. is not necessarily constant if the trial value of nae; > 1. The condition
¢(ﬂ)"(T(B ), q® ) > 0 does not necessarily lead to A)\ffgl > 0 and d)fle =0
in the converged state of the inelastic corrector step n + 1 for each of the
singular surfaces signalling activity in the trial state. According to [SIMO &
HuGHES 1998], if the trial value T:,r_i_l characterising the corner point between

two spaces of admissible stresses Eg) and IE,%’) falls in the corner region of
the stress space spanned by the gradients of the respective yield functions (in
the case of associative flow rules), the converged values of A)\f,lfl) > 0 and
the actual stress state Ty is at the intersection of two yield surfaces. If its
position is outside this corner region and in one of the characterlstlc half stress

spaces spanned by the gradients of the yield functions ¢n +1 , this half space

defines the inactive surface signalled by AA(E ) +1 < 0. This fact leads to the
conclusion that the actual set of active dlscontmuities Jact C Jits, which needs
to be modified in the inelastic corrector step.
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The trial set of active singular surfaces Ji%, is altered at each step of the iter-

ative solution presented in this chapter. If the spec1ﬁc working set of singular

surfaces entering the inelastic corrector step is .llazt‘" (; ) = J%,, its update can

be evaluated following one of the two alternative procedures:

Procedure 1 The working set is updated at the end of the iterative procedure.

1
The working set of active singular surfaces .]]a':;"o) Jir. remains un-

changed during the iterative process until it converges to the consistent
solution. After the characteristic residual of the NEWTON procedure is

driven to zero, the converged values of A,\gﬂzl are checked V3 € .Hg',_f:' iy ),

If all A)\(‘G +1 > 0 the working set .]If:c‘:' . ) becomes the actual set J&™

act H

the ﬁnal converged state is defined and the corrector step is finished. If

A)s,H_, < 0 the B-singular surface is removed from .IIS::' 0) leading to a
new working set of active singular surfaces Jf,'c':' h ). The complete cor-
(n+1) (n+1)

rector step is repeated with J.., ,’. The working set J must be

modified until all A)\fﬁzl > 0.

act,t

Procedure 2 The working set is updated during the iterative procedure. The

non-negativity of the consistency parameter A)‘fﬂgk“) is checked at the

end of each iterative step (k). If any A,\Sﬁgkﬂ) < 0 the F-singular

surface is removed from .U‘(,',_f:' %) and the iteration is restarted from

k = 0 with the updated working set.

The correction of the trial set of active singular surfaces Ji%, in the algorithm
presented in this chapter follows Procedure 1. In that manner, the actual set of
active singular surfaces Ji%, for each inelastic global iteration step is evaluated
based on the converged state of the local corrective procedure.

The whole procedure for the determination of active singular surfaces is sum-
marised in Figure 4.1.

4.3.4 Linearization

In order to evaluate the regularly distributed part of the spatial velocity gra-
dient 1 in the rate form of the principal of virtual work (3.96), the conforming
part of the deformation gradient F is linearized with respect to a set of in-
dependent variables (T*”,q®,Af), B = 1,...,7ce. The return-mapping
algorithm is performed using the converged state of the inelastic corrector
step.

The linearization of the residual R given in (4.15) leads to
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1. Evaluate the residuals (4.15) and the yield function

_ | RY
{5

2. Check convergence

(k)
k 1
, Bt = B VB E T -
n+l

IF @)% < 1oL, v8 € I&F) and (R||¥), < TOL.
THEN: EXIT

3. Calculate elastic moduli (2.127) and consistent tangent moduli (4.81)

4. Obtain the increment to the consistency parameters dA)\fﬂl 4.36)

5. Obtain the incremental state variables A, (4.38)

6. Update the state variables (4.39) and the consistency parameters

(4.36)

Set £k — k + 1 and Goto 1.

7. Check the converged values of consistency parameters A)\ﬂik“) V3 €

l[(n+l)

act,i

IF AXBED 5 1oL, v8 € J0F D THEN:

act,i

EXIT
ELSE Update .Hg';:il_')_l = {B € jg:::il) | A/\szik-i-l) > 0}

Set £k =1 and Goto 1.

ENDIF

Figure 4.1: Multisurface return-mapping algorithm - plastic corrector iteration

dRfy = —def; + ) dAXD 856 ¢ Grad }”
B=1
act
+3° AN 810 g1 ¢ AT Grad o (4.40)
#=1
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Nact

dR§ = T{y, def, + U, Grad Adiap + > dAXP GHP . (4.41)
ﬁ_
dRia(ﬁ) _ —aq(ﬁ) a(ﬁ) dg (ﬂ) +dAND) aq(ﬁ) ¢£ﬁ)

= D©- ldq(ﬂ)+dA,\(a) B 8, B=1,...,Nact, (4.42)

where G*, T¢ and U€ are the tensor operators defined in (4.23) and (3.106).
The vector form of dR can be derived as

Nact
dR{" = TG dER + UG D} + Y dAX®) g},
g=1

drR?” = DD =1 dg® +dAXD 8 0 6P, B=1,.. .\ Ttact,  (443)

where the transformation rules for T, gt and EP can be found in (3.74) and
for D* and U in (3.108). _
The linearization of the yield function ¢ (T, q, AdQ) leads to

d¢(ﬁ) — '1-‘(3 ¢(5) dT(ﬁ) + a ¢(ﬁ) dq(B)-
= FP ded, + FiP Grad Aty + 8 o ¢ g (4.44)
— ft(ﬁ) dEP +fu(5) D! +6 ) ¢(ﬁ) dq(ﬂ) (4.45)
where F! and f* are defined in (4.29) and
Fll;’(ﬁ) = 05 d)gﬁ) NJ(.B) Qijlp ’ F:;-('B) f;:(ﬁl))~3+3 (4.46)

The linearizations of R and ¢ take the form
dR=A"1'" A+VM .dAX,+: + VU,
dp=Ve¢'-A+Ve,T-D". (4.47)

The definitions of A}, VM, A and V¢~ can be found in (4.31)-(4.34), VU
is given in (3.113) and

fu(l)
ve,T = . . (4.48)
gu(nact)

The solution of the set of equations
R+A 1 A4+VM-dAM 11 +VU=0
p+VepT - A+Ve,T-D'=0 (4.49)

is the update of the consistency parameter dAAn 41

R v/ T*'TC—I'UC+V T
dAry = 22 T 2 .D". (4.50)
V¢ -A-VM

n+1
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Here, VT is the upper submatrix of the matrix V¢ which contains the

vectors £ B =1,..., nac.

The separation of the relation (4.49); into two independent relations relating
the upper submatrices of each addend is based on the diagonal form of the
matrix A~! and leads to

TC .dEP + VM" - dAXn41 + U - DU = 0. (4.51)

The rest of the linearization procedure is given in the sequence (3.117)-(3.123)
and the final forms of the geometric stiffness matrix Ké;!o and stiffness matrix
K!/, are given in (3.124) and (3.125). That way, all computations necessary
for the the solution of the (n + 1)-st loading step G,+1 are completed and the

standard finite element procedure can be applied.

4.4 Explicit multiple surface SDA

The numerical procedure for the evaluation of the material response in the case
of localised multisurface failure, presented in previous sections of this chapter,
can be reformulated if the implicit relation (4.7) describing the regular part of
the deformation gradient F is transformed into an explicit relation of the type

Ng
Frni1 =1+ Grad tins: —Fngr - Z Jf,ﬁ) ® Grad <p(6) . (4.52)
. p=1

Fn+1

This kind of transformation is possible only if an equivalence between the
formulations (4.7) and (4.52) can be established. In the case when the single
surface localisation (ns = 1) has a form of a slip plane (e.g. (3.41)) with the
orientation proposed in Section 3.3.2, the definition (4.7) degenerates to the
definition (4.52) based on the orthogonality of vectors J and Grady. If the
regular part of the deformation gradient resulting from the implicit formulation
(4.7) is named F* and the one resulting from the explicit formulation (4.52) is
F°, this equivalence can be proven by

F,; = Fij - Fiik Jk Grad Y

= Fy - (I:’,-k — F}, J, Grad cpk) Ji Grad p;
= FE;— Fy Jr Gradp; — Fy J; Grad ¢ Ji Grad p;
| SR

0
Fi; — Fi. Ji, Grad @;
F . (4.53)

Here, the indices n and n + 1 describing the iteration step have been omit-
ted for the sake of clarity. In reference to the multisurface localisation, the
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formulation (4.52) represents the idea that the total inelastic contribution to
the regular part of the deformation gradient can be evaluated as a sum of
contributions of individual localisation processes 8 = 1...n,. The similarity
between two formulations in the case of multisurface material failure will be
shown through the results of a numerical simulation in Chapter 5.

If definition (4.52) is utilised in the numerical procedure presented in previous
sections of this chapter, the procedure must be reformulated accordingly.
Starting with the elastic predictor step of the return-mapping algorithm pre-
sented in Section 4.3.1, relation (4.9) is altered in the following manner

=tr ~ tr A tr e ~ tr
Fn+1 = Fn+1 - Fn+1 -ePp = A Fn+l )
e O — P — . p
Adjip = Lijip [szlp ekj] |tn . (4.54)

This change in the predictor step leads to some necessary alterations in the
local linearization procedure presented in Section 3.3.7. The linearization of
the deformation gradient F as defined in (4.52) with respect to the jump
deformation tensor €P can be defined as

dpmp = - Aml deplp 9 (4-55)

and the linearization of the MANDEL stress tensor ¥ with respect to the jump
deformation tensor €® has the form

dZre = _Ak(?oqr Tqrmp le dfplp = Gﬂc’)lp depip .
\ — (4.56)
= Gkotp

Consequently, the global linearization procedure presented in Section 3.3.8
must be reformulated to accommodate the regular part of the deformation
gradient F in the form (4.52). Starting with the new form of the linearized F
with respect to the jump deformation tensor € and the update of the regular
part of the displacement field Grad Ad

dF mn = —Fmi dePin + Afpnap Grad A,y (4.57)
leads to the final form

Here, the linearization operator G*' is defined in (4.56) and the operator Q is
to be evaluated as

Qkosp = Akc,oqr Termn Afnnsp . (4.59)

If the elastic predictor step calculated according to this transformation is cor-
rect, the elastic unloading procedure given in Section 3.3.5 can be performed
if the fourth order tensor L.° connecting the regularly distributed part of the
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spatial velocity gradient 1 to the update of the regular part of the displacement
field Grad A is evaluated according to

Ljtp = Afkip Frj' - (4.60)

Aside from the change of the linearization tensor operator G*' given in (4.56),
the original corrective procedure in the case of an inelastic loading step showed
in Section 4.3.2 stays uninfluenced by this alteration.

The linearization algorithm given in Section 4.3.4 remains unchanged except
for the fourth order tensor P defined in (3.122). The definition of this tensor
is now

Pijip = Afjip — Fu LLC‘_;'lp . (4.61)

In the case of the explicit formulation, the inversion of the fourth order tensor
A appearing in (4.9) can thus be avoided. This simple strategy significantly
improves the numerical performance of both the local and the global NEWTON
procedure in the case when this tensor operator and consequently the tangent
of the iterative procedure are ill-conditioned.

4.4.1 Inelastic corrector step

The determination of the active set of singular surfaces Jace in the case of
multisurface material failure, presented in 4.3.3, is numerically achieved by
implementing the return-mapping algorithm based on the backward-EULER
integration of the evolution equations (4.5). The actual choice of active singu-
lar surfaces during or at the end of the iterative process relies on the assump-
tion that the vanishing residual and the corresponding state variables of the
iterative procedure always correspond to the actual state. However, the NEwW-
TON iterative procedure guarantees an asymptotic quadratic convergence only
for sufficiently smooth functions. This section offers a comparative analysis
between the converged solution of the local NEWTON iterative procedure and
a solution obtained from a specific variational formulation (such as [ORTIZ &
STEINER 1999]), in the case when the function to be linearized satisfies this
condition only to a certain extent. This analysis is useful for the estimation of
the possible numerical problems related to this basic property of the iterative
procedure in question. Once the possible numerical instabilities are recognised,
an effective solution is offered.

According to prerequisite of the explicit MLSA, following assumptions are
made for numerical examples presented below:

e purely elastic material response in the bulk material (see Section 3.2.1)

e multisurface localisation by means of vVON MISEs-type of yield surface
given in (3.41)
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e orientation of the localisation surface proposed in Section 3.3.2

e softening response characterised by the internal variable ¢® with an
exponential evolution of the type

(8)
¢ (®) = fou - exp (__"‘H ) : (4.62)

with the material strength f., and the softening parameter H

The fact that the vON MISEs-type yield functions are utilised for the descrip-
tion of the singularities in an uniaxial tension test, the material displacement
jump J® B8 =1...n, is assumed to have a constant direction perpendicular
to the normal N(®

I® = AXP MP) with MP).N® =0, (4.63)

According to the constitutive model presented in Section 3.2.2, the HELMHOLTZ
free energy is additively decomposed into a part characterising the hyperelastic
material response in Q% and an additional term which describes the localised
deformation at the singular surface 0:€2 in the form given in (3.29). The inte-
gration of (3.29) leads to

Ih — /W(C’Jl...nacg’al...nacg) dV
Q
Q

+y / o) 3P, a?)dA. (4.64)
ﬁ=lasQ(B)

In this manner, the HELMHOLTZ free energy of the whole system is decomposed
into a part corresponding to the bulk material and a part corresponding to
the singular surface 0:€2. Since the evolution equations (4.5) which describe
the characteristic material response obey the normality rule, the constitutive
update can be obtained from a variational principle. If the variational con-
stitutive update presented in [ORTIZ & STEINER 1999] is applied to the case
of VON MISES plasticity, the minimisation of the potential Z, with respect to
the state variables (J,a) delivers the reduced potential which only depends
on the rate of the deformation. For constant direction of the displacement
jump J, the reduced potential is a function of AX. Since the yield function
¢ is a positively homogeneous function of degree one, the minimisation of the
potential Z; is equivalent to the given yield condition:

arg iAanh(C,J,a) <= AA>0:¢(T,q)=0. (4.65)
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In other words, the minimum of the above defined potential corresponds to
the solution of the resulting set of algebraic differential equations (4.18) in
the NEWTON iteration scheme. Based on this statement, the converged solu-
tion of the NEWTON-type iterative procedure presented in Section 4.3.2 can
be compared to the solutions of the minimisation problem obtained via state
of the art optimisation algorithms. However, since this work does not exploit
this kind of variational constitutive formulation to any major extent, and the
scientific field covering the standard dissipative media is significant, the pre-
sentation of the principles and methods of variational constitutive modelling is
omitted. The reader is referred to [MOSLER 2007] for a comprehensive survey
of variational updates.

The bulk part of the HELMHOLTZ free energy W,..(C) is evaluated using the
stored-energy functional defined in (2.125). The singular part is evaluated
from

3\11('3)

(3
¢®(a?) = sing (O )

(4.66)

Oa(B)

= 0.5 [m]

= 1.0-10" [kN/m?|
= 0.2

= 500 (kN /m?]
= 0.0008 [m]

Figure 4.2: Numerical model of one-element shear test: setup

In order to perform a comparative analysis between the results of a numerical
simulation by MLSA and the results of the minimisation procedure, a single
element model is designed and the results of the local iteration are compared
to the results of the minimisation of the potential defined in (4.64). The nu-
merical model is presented in Figure 4.2. A single element with a characteristic
dimension L is pulled incrementally in shear in y-direction up to 0.01 m. The
material parameters are chosen such to ensure a target-function Z; with mul-
tiple local extrema.

After the beginning of the localisation process, one specific iteration step is
singled out for the comparative analysis and the results of a single inelastic
corrector step are evaluated based on the minimisation of the potential Zj.
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According to the calculated trial state, the trial set of active singular surfaces

. includes two potentially active singular surfaces, i.e. one with the normal
in z-direction (3 = 1) and the other with the normal in y-direction (3 = 4).
The prescribed displacement field, the material parameters and the trial state
are the input for the evaluation of the integral Z; and for the optimisation al-
gorithm. The 3D-plot of the resulting integral Z;, as a function of LAGRANGE

multipliers AANY) and AA? is given in Figure 4.3.

AXD) [m]

3.10714

Figure 4.3: 3D plot of the potential Z), as a function of AX*) and AX®

The same function is given as a 2D contour plot in Figure 4.4. NEWTON
iterative procedure renders a converged set of two actually active singular
surfaces. The resulting values of LAGRANGE multipliers (AA | AXW) =
(1.0386994 - 107°,1.0386994 - 10~°) are depicted in Figure 4.4 by point 1.
The set of LAGRANGE multipliers (AA?, AX® = 215982 - 107°,0) which
minimises the potential Z; is depicted as point 2 in the same figure. The dis-
crepancy of the results can be explained after a closer look at the function 7.
If the parameter AA?) is taken to be a linear function of the parameter A"
for the sake of graphical description, the result for the potential Z),(AA?)) is
given in the diagram a) in Figure 4.5. The diagram shows a function with
two extrema, a local maximum in point 1 and a global minimum in point 2.
This leads to the conclusion that the converged state of the local iteration in
the corrector step in the MLSA numerical analysis corresponds to the local
extremum of the potential 7Zj, whereas the optimisation algorithm succeeds
in finding a globally minimising set (AA | AX*)) and excludes the singular
surface (4) from the trial set of active singular surfaces J... leading to the
set. Jaet with a single surface singularity in direction (1). If this updated set
of active surfaces is given as the trial state to the optimisation algorithm and
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3-1074

AXY [m] 00

.

-3.1074 0.0 3.10°49
AXD [m]

-3-107¢

Figure 4.4: 2D contour plot of the potential Z as a function of AA!") and
AN

the corrector step of MLSA, the integral Z,(AX(?) becomes a function of one
variable with a single global minimum at AXY) = 2.15982 - 1073, recognised
by both the MLSA and the optimisation algorithm.

Similar comparative analysis is then performed on an element belonging to a
spatial discretization in an actual numerical simulation, in order to analyse the
influence of the material parameter H characterising the softening response on
the smoothness of the function Z;. An uniaxial compression test on a simple
cuboid structure is simulated using two different softening parameters. The
geometry of the finite element discretization with 42 elements, as well as the
material parameters are given in Figure 4.6. The element chosen for the com-
parative analysis is the darkened element in Figure 4.6.

The displacement field corresponding to the downward displacement of the
top of 1.8 - 10~2 m, the material parameters and the trial state with a single
potentially active singular surface are the input for the evaluation of the inte-
gral Z,, and for the optimisation algorithm. The resulting function Z, (AA("),
the output of the MLSA corrector step (point 1) and the optimisation proce-
dure (point 2) are depicted in the diagram a) in Figure 4.7 for the softening
parameter H; = 0.001 m and in the diagram b) for the softening parameter
Hs = 0.05m.

The analysis of the diagram b) shows that both numerical procedures deliver
the same output (AND,Z,(ANY))) = (2.1697 - 107¢,0.0525) and lead to a
unique correction of the trial step. Diagram a) displays once more a differ-
ence in the output values of two algorithms. The coordinates of point 1 are
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a) 1.04 . 1073
[1]
I
1.036 - 10~3 [2]
0.0 3.1074
AXD [m]
b) 1.11-1073
Ih
1.04 -1073
0.0 3.1074
AXD [m]

Figure 4.5: Potential Z;, as a function of AX!); one element shear test:
a) return-mapping algorithm and b) minimisation procedure

(AXD, T, (AAD)) = (-2.693 - 107°,0.05278). Its position defines a local ex-
tremum of the function Z,. (AXYD,Z,(AXNYV)) = (1.2865946 - 1073,0.0484)
are the coordinates of point 2. Its position defines the global minimum of the
function Z,. Based on the algorithm for the update of the trial set of active
surfaces Jiv, presented in Section 4.3.3, the negative converged value of the
consistency parameter signals the reduction of n..c by one and the update of
the Ji%,. However, in this particular case, the reduction of nac, by one leads
to nace = 0. This is a non-physical solution, since the offset of an inelastic
corrector step by the predictor step guaranties that a minimum of one singular
surface actually evolves. This leads to the conclusion that the local corrector
step of the MLSA results in a non-physical solution if it converges to the local
instead of the global extremum of the characteristic potential function Z,.

The difference in the smoothness of the target function stemming from the
variance of the softening parameter H leads to a reasoned judgement that the
definition of this specific material parameter can strongly influence the perfor-
mance of the numerical procedure through the convergence rate of the applied
iterative procedure. Since the material parameter H is a constant which, ac-
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cording to the fracture energy concept (see [MOSLER, J. & MESCHKE G.
2004; MosLER 2002] for details) depends on the total dissipated energy, frac-
ture energy, characteristic length and material strength, it is to be evaluated
and kept constant throughout the simulation. In order to prevent the kind
of numerical instability presented above, an alternative form of the inelastic
corrector step can be used.

L = 3.0 (m]

E = 20-10" [kN/m?
v = 0.45

Jiu = 20 [kN/m?]
H;, = 0.001 [m]

Ho = 0.05 [m]

Figure 4.6: Numerical model of uniaxial compression test: setup

The correction of the trial step is numerically achieved by implementing the
return-mapping algorithm based on the backward-EULER integration of the
evolution equations, presented in Section 4.3.2. To rule out an eventual exis-
tence of negative converged consistency parameter in the case of single surface
failure, the consistency parameters A)\fi)l = )\fﬁl (th+1 — tn) are defined as

a square
3 8) \*? :
axE; = () (4.67)

The jump deformation tensor € and each of the internal displacement-like
variables o'® | 3 = 1,...,ns at time t,4; are in this case evaluated as

My

&5 3 8 ; :
€1 =P + Z (afﬂl) a'f‘(d) ¢{13)|n+i ® Grad 50("3) ; (4.68)

f=1

(8)

a * ‘ :
Qpp1 = Of:(dd} + (ﬂflii) 3q(a) cf»‘m)lnﬂ . (4.69)
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a) 6-1072

b) 2.107!

In
(2]

—-2.10"% 0.0 2.10"3
AXY) [m]

5.10"2

Figure 4.7: Potential Z, as a function of AX!); uniaxial compression test: a)
H, =0.001m and b) H» = 0.05m

The resulting linearization of the residual dR in the matrix notation is given
by

dR=A"1-A+2VM-A?.dal¥),, dp=VeT. A (4.70)
with the notations given in (4.31), (4.32), (4.33) and
(k)

e
A7 .= (4.71)
{ a(nact) ] el
The update of the LAGRANGE multiplier is defined as
da® (k)
dal®), := [ - ] , (4.72)
da("act) a1

and it is computed from the linearized form of the set of equations (4.70)

R+A'-A+2VM-A%-dal?), =0, ¢+Ve ' -A=0 (4.73)
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as
(k)
- Vo AR
dal®, = id = d (4.74)
2V¢" - A - VM. A1 1
The update of the state variables A, is calculated from (4.73),
(k)
A, =-D’ A - (R+2VM.A?.da) . (4.75)
n+

Tensors D’ and A, are given in (4.38), and (4.39) gives the final form of the
update of the state variables.

a) 6-10"2
7
h m
(2] [2]
4.8-1072
-5.10"% 0.0 5.10"3

VAXD [m-1/2)

b) 5.25564.107°

I
(2]
-5.107% 0.0 5.1073

VAXD [m~1/?)

5.25555 - 102

Figure 4.8: Potential Z, as a function of vV AA(1); uniaxial compression test:
a) H, =0.001m and b) H> = 0.05m

Implementation of this alternative version of the inelastic corrector step pre-
vents the appearance of negative values of the consistency parameters A(®), g =
1,...,nact. This fact influences the process of determination of the active sin-
gular surfaces given in Section 4.3.3 in such way that the inactive surface is

2
now signalled by A/\iﬁz = (afﬂl) = 0. These surfaces are recognised and

singled out after the iterative procedure has converged to zero, and the trial
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set of active surfaces is updated if necessary.

The example presented in Figures 4.6 and 4.7 can be used to show how this
kind of intervention reflects on the numerical instabilities mentioned before.
The same numerical simulation is performed once more with the quadratic for-
mulation of the consistency parameters. The result is given in Figure 4.8 for
both values of softening parameters. Both diagrams show that the quadratic
formulation of the parameters AA® neutralises the original discrepancy be-
tween two numerical procedures. For the softening parameter H; = 0.001 m
both algorithms deliver the same output (a{*?, Z,(a?)) = (0.035869, 0.0484)
and lead to a unique correction of the trial step. The same conclusion can be
made for the softening parameter H2 = 0.05 m, where the minimising couple
of variables has the values (a‘V,Z,(a")) = (0.0015178,0.0525). Both sets of
results define the global minimum of the function Zj.

If the diagrams a) or b) in Figures 4.7 and 4.8 are compared to each other,
the influence of the quadratic definition of AA® on the shape of the target
function Z, in the region of interest can easily be recognised. By using the
root of AA®, the function Z, becomes a symmetric function with respect to
the Z,-axis. The difference in the smoothness of the function Z, after the
variation of the softening parameter H remains.

If the interventions presented in the last two sections of this chapter, namely
the explicit formulation and the quadratic procedure for the inelastic corrector
step, are incorporated in the original algorithm of MLSA, possible numerical
instabilities can be identified and regulated inside the framework of MLSA,
without any major changes in the algorithm.

4.5 Principal unknowns driving the localisation process

The choice of independent variables for the linearization procedure in the
present work is the set (T,q,A)). For this set of variables, the continuity
condition (3.55)2 is solved (for fixed @) when inelastic loading is signalled by
the elastic predictor step. The appropriate algorithm is given in Section 3.3.4
for the single surface SDA and in Section 4.3.2 for MLSA. In both cases, the
solution is driven by the set of unknowns (e?, q, A)) (see relations (3.80) and
(4.32)). However, other choices of principal unknowns for the return-mapping
algorithm are also possible. [MOSLER 2006] chooses the set (T, q, A\). An-
other possible choice is the set (3, q, AX), where X denotes the MANDEL stress
tensor. In order to advocate the choice made in this work, the differences be-
tween two local inelastic corrector steps in MLSA based on sets of unknowns
(e?,q,A\) and (2, q,A)) will be briefly presented. The resulting alteration
of the global localisation procedure is then relatively straightforward and will
not be presented here.

The alternative choice (X, q, A)\) of the driving set of unknowns in the return-
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mapping algorithm influences the linearization of the residual R given in (4.22)
Nact
dRG = —def; + > dAN® 856 ¢{”) Grad p{”
g=1

Nact

+ Z AP a'i‘“”@'i‘(ﬁ) ¢Sf) T(ﬁ) Grad (,0('3)

p=1
= Tij, dSf, + nz dAax® Gi? (4.76)
g=1
Tensor G is given in (4.23) and
Tiitp = Gijip + Giip . (4.77)

Fourth order G® can be found in (4.24) and the fourth order tensor G
is derived in Section 3.3.7. The linearization (4.28) of the yield functions

P (Tm),q(ﬁ)) ,B8=1,...,Nact Nnow has the form

d¢(/3) — a’i‘(ﬁ) ¢£ﬁ) dT('B) + aq( 8) ¢(l3) dq(ﬁ)
= F.0dsP + 0,0 ¢ dgi?, (4.78)
where
=
in(m = 03, d’fﬂ) ngm J E(ﬂ) f(,(Bl)),3+J (4.79)

In the resulting set of equations (4.30), the operator A™!, the vector of state
variables A and V¢ 7T have the form:

= 0 - (k) = (k)
_ D -1 da‘V
A= 0 , A= q ,
ac _1 ( BC)
D(nact) Hors dg(Pact -
(4.80)
(k)
T £= dq) o
Vo = . 4.81
fz(nact) . a ¢("act) ( )
’ q®) n+1

Here, tensor to vector transformation ¥i; = £F;_,).3; is utilised for the MAN-

DEL stress tensor . The update of the LAGRANGE multiplier dAA +1 is com-
puted from (4.36) and the update of the state variables A, is calculated from
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(4.38). Together with already defined and unchanged procedures for the elas-
tic unloading and the predictor step, this alterations of the original inelastic
corrector step and corresponding changes in the global linearization procedure
lead to the solution of (n + 1)-st loading step Gi,4+1 and the standard finite
element procedure can be applied.

This form of MLSA is then tested in numerical simulations of the behaviour
of a soft rock already damaged by some unknown loading history in a triaxial
compression test. Different unstructured spatial discretization with constant-
strain tetrahedral elements are utilised in the simulation of the experimental
setup (see Section 5.1). An evaluation of the numerical results shows that an
abrupt stop in the iterative procedure occurs due to the loss of convergence.
A thorough investigation of possible causes for this kind of behaviour of the
numerical scheme, lead to the following conclusion. In the specific case of
multisurface preexisting micro-cracks, the loss of convergence in the local it-
eration of the numerical procedure based on the unknowns (%, q, A\) can be
attributed to the singularity of the tangent operator A in some elements of
the mesh. By studying the structure of this tangent, the singularity can be
directed to the moduli G (Section 3.3.7) connecting the jump deformation
tensor €P to the MANDEL stress tensor ¥ for a fixed conforming displacement
field 4. One possible solution in pursuit of regularity is to use the symmetry
of the MANDEL stress tensor £ and the right CAUCHY-GREEN tensor C and
reduce the order of the tangent operator A. However, due to non-symmetry
of the jump deformation tensor €® and the fact that the inverse of the lin-
earization (3.127) of the right CAUCHY-GREEN tensor C with respect to the
deformation gradient F

dFgr = Tyrmn dCmn (4.82)

cannot be calculated directly (only through pseudoinverse), this solution strat-
egy is not suitable for this specific problem. In order to avoid loss of infor-
mation due to the symmetry of the MANDEL stress tensor, the set of principal
unknowns is defined as (€P, q, A\).
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In this chapter, a finite element formulation presented in Chapters 3 and 4
is tested on different three-dimensional simulations of the often used bench-
mark problems in the numerical analysis of the localised material failure at
finite strains, namely the uniaxial tension or compression test (see [ARMERO
& GARIKIPATI 1996; GARIKIPATI 1996; LARSSON, STEINMANN & RUNESSON
1998; BORJA 2002; MOSLER 2006; FEIST & HOFSTETTER 2007]), and the L-
shaped panel (see [LACKNER 1999; HUEMER 1998; MENRATH 1999; MOSLER,
J. & MESCHKE G. 2004; JAGER, STEINMANN & KuHL 2008]). Despite
the fact that numerous contributions to SDA have been presented over the
years, three-dimensional implementations and their applications are relatively
rare [MOSLER 2002; CHAVEZ 2003; FEIST & HOFSTETTER 2007; SANCHO,
PLANAS, FATHY, GALVEZ & CENDON 2007].

The uniaxial tension test presented in Section 5.2 is used as a test example for
the comparison of the implicit and the explicit Multiple Localisation Surface
Approach methods defined in Chapter 4, as well as for the thorough investiga-
tion of the basic numerical properties of the MLSA, such as the convergence
behaviour and the spatial discretization sensitivity. The numerical analysis of
the failure of a L-shaped panel in Section 5.3 includes the comparative analysis
of implicit to explicit MLSA formulation, as well as the results of three dif-
ferent simulations in terms of load-displacement diagrams, softening response
and overall deformation of the numerical models.

The numerical example presented in Section 5.1 is the evaluation of the ulti-
mate loading based on the standard triaxial compression test of a soft rock
sample, which is a benchmark for the numerical analysis of the material be-
haviour in geomaterials (see e.g. [BORJA, REGUEIRO & LAl 2000] for the
results of a two-dimensional simulation based on the SDA kinematics in the
infinitesimal regime).

5.1 Triaxial compression test of a soft rock sample

In order to present the applicability and the performance of the numerical
method presented in Chapter 4, namely the multiple surface SDA, the nu-
merical algorithm is now used to simulate the behaviour of a soft rock already
damaged by some unknown loading history in a triaxial compression test. The
initial damage in the material is understood in the sense of pre-existing micro-
cracks. In order to simulate the initial state of the material, the compressive
strength f,, is element-wise stochastically distributed. The micro-cracks form-
ing in the material can assume one of the four possible direction defined in
Section 3.3.2. In this manner, an arbitrary pre-loading history of the examined
material, which leads to a certain level of damage, can be accounted for. The
intention of the numerical analysis presented in this section is to prove that,
despite the connection of the localisation process to the geometry of the finite
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element spatial discretization, the resulting macroscopic material response can
be uniquely evaluated.

The dimensions and the material paraineters of the numerical model are given
in Figure 5.1.

b = 4

d = 4 [cm

h = 8 [em]

P = 1 (kN /cm?)
E = 1500 [kN/cm?)
v = 031

fio = 4.0-6.0 [kN/cm?
H = 03 [cm)|

Figure 5.1: Numerical model of a triaxial compression test: setup

In accordance with Section 3.2.1, a hyperelastic neo-HOOKE-type model is
adopted for the material in QF. The inelastic material behaviour at each
of the localization surfaces 9:Q'® is modelled using a VON MISES type yield
function

¢(T('3),Q('5)) _ H(T)E:;’J)HQ _ q(B)(a(ﬁ)) (5.1)
with
(,]—:‘)Sf) = T(ﬁ) _ (T(ﬁ) _N)(ﬁ) N (5.2)

The softening response, characterised by the internal variable ¢‘? has the
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exponential evolution of the type

B)(,(8) !
P = - (22
H
with the compressive material strength fi, and the softening parameter H.
"The condition for the propagation of the discontinuity 3:Q'® is in accordance
with Section 3.3.3 the positive value of the corresponding yield function, i.e.
é{ﬁ)(i‘w}, 7P >0 A ¢ = max ¢'""). This singularity condition yields the

possibility of a multiple surface singularity inside each finite element although
the single surface approach is utilised in each iteration step, both globally and
locally.

In order to show the independence of the final result of the numerical simu-
lation on the spatial discretization, two different unstructured discretizations,
mesh I with 3588 and mesh I with 5884 constant-strain tetrahedral elements
are considered for the determination of the maximum allowed load. Both
models are displaced downward at the top boundary, at prescribed increments
and up to the ultimate load. It should be pointed out that the element-wise
stochastic distribution of the compressive strength renders two quantitatively
different samples of the material with arbitrary distributions of pre-existing
cracks.

6.6:10~% I 9.9.10°2

9.z, 102 8.1.1074
Qrpax [cm)

mesh [ mesh 11

Figure 5.2: Distribution of the internal variable a,,: for both meshes

The distribution of the internal variable .., which represents the maximum
of the relative displacements in each of the four possible localisation directions,
is given in Figure 5.2 for both meshes. The difference in the final distribution
of singularities which can be observed in Figure 5.2 highlights the fact that
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the initial states of two numerically modelled samples are not identical, based
on the supposed pre-loading history of the localised material failure.

250 T T T T
;_r”

i_i;:_; 200 i };1!‘:1(1.1' S i
.3

g 150 =1
Bel

.5 100 | -
§ mesh [ —
§ 50 - mesh [ = = —=—

0

1 1 1 |
0 0.05 0.10 0.15 020 025

Displacement u [cm]|

Figure 5.3: Load-displacement diagram for both meshes

The resulting load-displacement diagrams, showing the reaction force at the
top F' with respect to the vertical displacement at the top u, are displayed
in Figure 5.3, The estimated ultimate load for mesh I is reached for the ver-
tical displacement of the top u = 0.12565 cm and has the intensity FY,. =
211.77kN. For the spatial discretization with the finite element mesh [I, the
ultimate load is evaluated at F,‘:!{u = 214.94kN for the vertical displacement
of the top of u = 0.1339 cm.

T'he difference between two spatial discretizations in the obtained average ma-
terial response to the compressive load is then calculated to be 1.5%. Hence,
the resulting ultimate compressive loading can be considered as uniquely de-
termined and the overall mechanical response resulting from the numerical
simulation based on the multiple surface SDA as independent of the consid-
ered discretization of the micro-scale.

5.2 Uniaxial tension test of a notched bar

This section includes a numerical analysis of the formation and the propa-
gation of shear bands in a bar. The geometry and the material parameters
are illustrated in Figure 5.4. The bar is clamped on its bottom boundary
and subjected to a vertical displacement on its top boundary, at prescribed
increments.

Based on the choice presented in Section 3.2.1, a hyperelastic neo-HOOKE-
type model is adopted for the material in Q*. In order to analyse slip band



5.2 Uniaxial tension test of a notched bar 105

L = 1 [m)

E = 1.0-10" [kN/m?]
v = (.2

fuw = 1000 [kN/m?]
H = 0.001 {im]

Figure 5.4: Numerical model of an unjaxial tension test: setup

formation in the material, the numerical model presented in Chapter 4 is
utilised. The inelastic material behaviour at each of the localisation surfaces
s is modelled using a VON MISES type yield function

ST, ¢ = ||(T) |5 — ¢ (o) (5.4)
with
(DS =T — (27 @ N =

The softening response is characterised by the internal variable ¢® with an
exponential evolution of the type
ol®

(B, (BYy _ _=
g7 (") = fu cxp( H)

with the material strength in tension fi, and the softening parameter H. The
condition for the propagation of the discontinuity 8.0 is, in accordance
with Section 3.3.3, the positive value of the corresponding yield function, i.e.

(5.6)

¢(’3)(T(B),q('3)) > 0. This form of the singularity condition leads to a possible
multiple surface singularity inside each finite clement, treated both globally
and locally by the MLSA as defined in Chapter 4.

The assessment of the mesh dependence of the final result of the numerical
situlation is based on three different spatial discretizations, mesh [ with 2400,
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mesh 1 mesh I mesh IT1

Figure 5.5: Numerical study of the tension test: finite element discretizations

mesh II with 4590 and unstructured mesh III with 4541 constant-strain tetra-
hedral elements. Model I is also used to show that the difference between two
formulations presented in Chapter 4, namely the implicit and the explicit for-
mulation of the MLSA, is nearly vanishing. All finite element discretizations
are illustrated in Figure 5.5.

A comparative analysis is performed in relation to the assumption utilised
in Section 4.4 in order to set a starting point for the explicit formulation of
MLSA. Namely, it is assumed that the implicit formulation of the regular part
of the deformation gradient (4.2) and the explicit formulation (4.52) lead to
nearly the same result in the case of a slip-plane type of localisation even for
the multisurface localisation failure. In order to show this similarity, both the
implicit and the explicit numerical model are alternatively used in the simu-
lation of an uniaxial tension test on the spatial discretization mesh I.

The actual multisurface material failure occurring in the model is illustrated
by the converged value of the vector of internal variables al®) representing
the relative displacements in each of the four possible localisation directions
and corresponding to the upward displacement of the top of 2.0 - 10™% m, for
an arbitrarily chosen element (25)

R Tl 8.10415321 - 10~

a'? 1.77766857 - 1073

a® = | 1.3925358-107° (5:7)
ey 0.0
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Additionally, in order to prove the necessary asymptotic quadratic conver-
gence of the local NEWTON iteration procedure in the case of multisurface
singularities, the evolution of the EUCLIDEAN norm R! of the residual vector
R/, obtained by combining both parts of (4.18) is listed in Table 5.1 for the
same global iteration step (2.0 - 1072 m) and the same element (25).

[teration i Residual R;
1 24.2425661
2 5.48514838 - 10~4
3 1.31274192 - 1077

'T'able 5.1: Convergence profile of the local NEwWTON-type iteration for the el-
ement 25; displacement increment of magnitude Au = 0.00005 cm;
EUCLIDEAN norm of the residual R!; convergence tolerance 1-10~%

0.0

Cmar [M]

implicit explicit

Figure 5.6: Distribution of the internal variable o, for the mesh I using the
implicit and the explicit formulation of MLSA

The distribution of the internal variable a;,q., which represents the maximum
of the relative displacements in each of the four possible localisation direc-
tions, is given in Figure 5.6 for both the implicit and the explicit numerical
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2.0.1073

0.0

u [m)]
implicit explicit
Figure 5.7: Deformed shape (magnification factor 100) and the scalar plot of

the total displacement for the mesh I using the implicit and the
explicit formulation of MLSA

6000 | | : T

B
o
=
=
|

2000

implicit

Reaction force F' [kN]

explicit — — =

I L

O 1 |
0 005 0.10 0.15 020 0.25

Displacement u [cm]

Figure 5.8: Load-displacement diagram for the mesh Iusing the implicit and
the explicit formulation of MLSA
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procedure at the upward displacement of the top of 2.0 - 1072 m. The result-
ing load-displacement diagrams, showing the reaction force at the top F with
respect to the vertical displacement at the top u, are displayed in Figure 5.8.
The deformed shape of the geometry (magnification factor 160) and the scalar
plot of the total displacement of the finite element discretization are given in
Figure 5.7. Comparison of the results illustrated in those three figures shows
that both procedures deliver an identical softening response and it leads to
the conclusion that the implicit and the explicit definition of the MLSA can
be assumed equivalent in the case of a slip-plane type of multisurface localised
failure.

The evaluation of the mesh dependency of the MLSA method is performed
via explicit MLSA. It is based on two basic criteria. The first criterion is the
number of elements in the finite element discretization of the given geometry
for two similarly structured meshes (mesh I and mesh II). If the resulting
distributions of the internal variable amq; given in Figure 5.9 are compared,
a qualitative agreement between two discretizations may be stated. In order
to make this statement stronger, the resulting deformed shapes and the total
displacement illustrated in Figure 5.10 are compared to each other. Both spa-
tial discretizations lead to the expected mode-II failure, resulting in formation
of shear bands with normal vectors oriented at approximately 45° to the di-
rection of maximum principal stress, analogous to the analytical solution.
The second criterion is the level of structuralization of the mesh (mesh II and
mesh III). The resulting distributions of the internal variable amaz for the
structured mesh II and for the unstructured mesh IIT are given in Figure 5.11
and the deformed shape and the total displacement plot in Figure 5.12. Based
on these two figures, it could be concluded that both discretizations predict a
mode-II failure with shear bands oriented approximately at 45° to the direction
of maximum principal stress. The resulting shear band in the unstructured
mesh is slightly less articulated than the perfectly formed shear band in the
structured mesh. However, two meshes can be assumed equivalent in regard to
the qualitative evaluation of the material softening by multisurface localised
failure.

Additional information about the independence of the results of the numeri-
cal simulation by means of MLSA from the finite element discretization can
be obtained from the resulting load-displacement diagrams for meshes I, I/
and II1, showing the reaction force at the top F with respect to the vertical
displacement at the top u, which are given in Figure 5.13. The estimated
ultimate load for the mesh I is reached for the vertical displacement of the
top © = 0.14075cm and has the intensity FI ., = 5640.03kN. For the spatial
discretization with the finite element mesh II, the ultimate load is evaluated at
FIl = 5444.43kN for the vertical displacement of the top of u = 0.1375cm,
and for the spatial discretization with the finite element mesh III, the ulti-
mate load is evaluated at FILL = 5309.0kN for the vertical displacement of
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0.0

Cmnax [ITIJ

mesh 11 mesh |

Figure 5.9: Distribution of the internal variable o, for meshes I and I/

the top of u = 0.13655cm. The difference in the obtained ultimate compres-
sive load between spatial discretizations is then calculated to be 2.46% for
two qualitatively different meshes (mesh II and mesh [1I') and 3.6% between
two quantitatively different meshes (mesh I and mesh II). Consequently, the
resulting ultimate loading can be considered as uniquely determined and the
results of the numerical simulation based on the MLSA can be assumed inde-
pendent from the finite element discretization.

The convergence profiles for the global iteration based on the NEWTON-type
numerical procedure are given in lable 5.2 for the load step corresponding
to the upward displacement of the top u = 0.1786cm. First few steps show
the known property of the NEWTON iterative scheme, namely its conditional
quadratic convergence. However, based on the complete evolution of the given
maximum norms, an asymptotic quadratic convergence can be assigned to the
linearization procedure presented in Section 4.4.

5.3 L-shaped panel

This section includes a numerical analysis of an L-shaped panel by means
of MLSA (see Chapter 4). The geometry and the material parameters are
illustrated in Figure 5.14. The panel is subjected to a vertical displacement
on its right-hand face, at prescribed increments.
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2.0-10° 2.0-107°

0.0

u [m]

mesh I1 mesh [

Figure 5.10: Deformed shape (magnification factor 100) and the scalar plot of
the total displacement for meshes I and /7

Relative error of the residuals R;

Iteration ¢

mesh | mesh 11 mesh 111
1 2.77763 1.48142 2.13091 - 107!
) 1.39047 107!  1.15165-10"'  3.56515-107°

3.26807 - 107! 2.49267-107'  4.90471-10"?

6 1.42375-10"!  6.20148-10"% 9.10678 - 1072

7 5.75583-10~% 1.01518-10~% 4.64601 - 10~
8 1.45152 1077  7.79825-10"% 2.06204 - 107

Table 5.2: Convergence profile of the global NEwTON-type iteration; displace-
ment increment of magnitude Au = 0.00005 ¢m; relative error of
the residuals in the maximum norm; convergence tolerance 3- 1077

In compliance with Section 3.2.1, a hyperelastic neo-HOOKE-type model is
adopted for the bulk material in QF. The inelastic material model exploited
for the description of the crack opening at each of the localisation surfaces
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Figure 5.11: Distribution of the internal variable a,,.. for meshes IT and 11/

029 is of voN MisEs type with the yield function according to (5.4). The
post peak response associated with the localisation surface 9.0 is controlled
by the exponential softening law (5.6).

A comparative analysis with intention to prove the similarity between the
implicit and the explicit formulation of the MLSA is performed on mesh I
with 1452 constant-strain tetrahedral elements (see Figure 5.15). The results
in terms of the distribution of the internal variable a,.. representing the
maximum of the relative displacements out of all four possible localisation di-
rections, load-displacement diagram, the deformed shape and the scalar plot
of the total displacement are depicted in Figure 5.17. T'he distribution of a0
and the scalar plot of the total displacement u are given for the prescribed
displacement of 2.745-10™* m. Load-displacement diagrams show the reaction
force at the right side face of the model I with respect to the vertical displace-
ment of this face u. The deformed shape of the geometry has a magnification
factor 100. Based on the presented results, it can be concluded that both
procedures deliver an identical softening response. 'herefore, the implicit and
the explicit definition of the MLSA can be assumed equivalent in the case of a
multisurface localised failure in the form of sliding modes. Taking into account
the conclusions made in this and previous section, numerically more efficient
explicit formulation of MLSA can be is chosen as a preferable numerical tool
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2.0-1072 2.0-107%

0.0

u [m]

mesh 11 mesh 111

Figure 5.12: Deformed shape (magnification factor 100) and the scalar plot of
the total displacement for meshes II and II]
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Reaction force F' [kN]

2000 -
l —_—
[l —
[l —
(] 1 1 1

0 005 0.10 0.15 0.20 0.25 0.30
Displacement u [cm]

Figure 5.13: Load-displacement diagram for meshes I, I and I1]

in the implementation of MLSA in the case of slip-planes-type multisurface
localised failure.
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L = §h [m]
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Figure 5.14: Numerical model of L-shaped panel: setup
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[Migure 5.15: Numerical study of L-shaped slab: finite element discretizations

The influence of the spatial discretization on the performance of the MLSA is
evaluated based on the results for the above mentioned mesh I and additional
two meshes - mesh I/ with 756 constant-strain tetrahedral elements and mesh
11 with 2114 constant-strain tetrahedral elements (see Figure 5.15). The
distribution of the internal variable a,,q, for all three meshes is illustrated in
I'igure 5.18 for the prescribed displacement of u = 0.2745 cm. This distribution
simulates the shear band formed in the slab under the given load. According
to the experimental results for concrete presented in [WINKLER, HOFSTET-
TER & LEHAR 2004] for a similar setup, the characteristic crack topology
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should have a slightly curved shape in the corner region of the panel followed
by a horizontal propagation. This form of the crack propagation can be ob-
served in all meshes and a qualitative agreement between three discretizations
may be stated. As an additional information, the resulting deformed shapes
magnified by 100 and the total displacement, showing noticeably good agree-
ment, are illustrated in Figure 5.19. Load-displacement diagrams are depicted
in Figure 5.16. The estimated ultimate load for the mesh I is reached for
the vertical displacement of the right face u = 0.1165cm and has the inten-
sity FI .. = 8.65813kN. For the spatial discretization with the finite element
mesh II, the ultimate load is evaluated at FLI, = 9.16672kN for the vertical
displacement of the right face of u = 0.118550 cm. Corresponding results for
the mesh IIT are F!! . = 9.03823kN for u = 0.14425cm. These results yield
a difference of 4.5 — 5.5% in the evaluated ultimate loading between the given
spatial discretizations. Adding the similarity of the post-peak response in the
presented simulations to the similarity of the determined ultimate load leads
to the conclusion that the results of the numerical simulation based on the
MLSA can be assumed independent from the finite element discretization.
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Figure 5.16: Load-displacement diagram for meshes I, IT and II1
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Figure 5.17: Comparative analysis: implicit and explicit MLSA (mesh I)
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Figure 5.18: Distribution of the internal variable a,q. for meshes mesh I, 11
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Figure 5.19: Deformed shape (magnification factor 100) and the scalar plot of
the total displacement for meshes mesh I, II and 11



6 Summary and outlook

6.1 Summary

The Multiple Localisation Surface Approach (MLSA), a geometrically nonlin-
ear finite element approximation for highly localised deformation in structures
undergoing material failure in the form of strain softening, is presented in
this thesis. The basis for its numerical implementation in this class of prob-
lems is defined through the elaboration of the Strong Discontinuity Approach
(SDA). In contrast to classical continuum mechanics, the deformation gradient
is additively decomposed into a conforming part corresponding to a smooth
deformation mapping and an enhanced part reflecting the final failure kinemat-
ics. The advocated implementation of the Enhanced Assumed Strain (EAS)
concept leads to the elimination of the additional degrees of freedom (displace-
ment jump) on the material point level. More precisely, the traction continuity
condition at the singular surface is re-written in the form that carries a formal
equivalence to the yielding condition known from standard plasticity. Hence,
the resulting set of constitutive equations can be solved using well-known algo-
rithms of computational plasticity, such as the return-mapping algorithm. No
assumptions regarding the type of finite elements or the interface law connect-
ing the displacement discontinuity with the conjugate traction vector have to
be made. The implementation presented in this dissertation concerns constant-
strain tetrahedral elements. However, the approximation of the displacement
field can also be of higher order.

The main property of the presented numerical application is the simultane-
ous propagation of multiple intersecting discontinuities within each finite el-
ement. The choice of the topology and the orientation of singular surfaces
inside each finite element is based on the fact that the developed numerical
scheme should also be suitable for the description of the mechanical behaviour
of materials with an arbitrary distribution of pre-existing micro-defects. Since
the element-wise stochastically distributed pre-existing internal surfaces are,
in general, non-conforming, the numerical procedure can experience locking
and non-physical results. Therefore, the topology and the orientation of the
discontinuities in a three-dimensional setting are defined based on the following
criteria:

e Multiple planar localisation surfaces inside each finite element are al-
lowed.

e Localisation surfaces are always oriented parallel to one of the finite
element sides.

The chosen topology of the intersecting discontinuities yields a symmetric tan-
gent operator in the finite element application. It leads to an enriched space
of admissible internal surfaces spanned by the proposed numerical model. In
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this manner, the presented algorithm can also be applied to the description of
the mechanical behaviour of materials with pre-existing micro-defects under
loading.

Based on two alternating definitions of the conforming part of the deformation
gradient, an implicit and an explicit formulation of the Multiple Localisation
Surface Approach are developed. The implicit formulation allows the incorpo-
ration of any plasticity based cohesive law and can be applied to a broad range
of damage theories as well. The explicit formulation corresponds to the special
case of plastic deformations occurring in slip bands and can be employed for
numerical simulations of localised failure in a wide range of materials, such as
ductile metals and geomaterials. Both the explicit and the implicit formula-
tion of MLSA can be implemented using an alternative quadratic procedure
for the inelastic corrector step, where the nonnegativity of the LAGRANGE mul-
tiplier is enforced. If this procedure is incorporated in the original algorithm of
MLSA, possible numerical instabilities can be identified and regulated inside
the framework of MLSA, without any major changes in the algorithm. The
comparative analysis between the constitutive update according to the local
return-mapping algorithm and the constitutive update based on the variational
formulation is used for the verification of the stabilisation techniques.

The basic properties of the proposed numerical solution, namely its applica-
bility and numerical performance, are investigated through several fully three-
dimensional numerical examples. In the first example, the numerical algorithm
is used for the simulation of the behaviour of an already damaged soft rock in a
triaxial compression test. The initial damage in the material is represented by
pre-existing micro-cracks. The analysis is used for the determination of the ul-
timate load. The second numerical example is an analysis of the formation and
the propagation of shear bands in a bar under uniaxial tension. In the third
numerical example, a three-dimensional analysis of the crack propagation in
the L-shaped panel under loading is investigated. The results of the numerical
examples give rise to the conclusion that the difference between the implicit
and the explicit formulation nearly vanishes in the presence of a multisurface
localisation in the form of shear bands. Based on the resulting distributions
of the internal variable describing the softening response in the material, as
well as the load-displacement diagrams, the proposed numerical procedure
can be assumed independent of the spatial discretization. Consequently, the
suggested numerical framework can be applied in numerical simulations of a
wide range of problems involving localised material failure in the geometrically
nonlinear regime.

6.2 Outlook

In this dissertation, a finite element based procedure for the numerical simula-
tion of the multiple surface material failure at finite strains is presented. The
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numerical algorithm is based on the application of the Strong Discontinuity
Approach. Possible directions for future work may include:

o extension to higher order elements

e variational formulation

The numerical implementation presented in this work is associated with con-
stant strain finite elements. An extension to higher order elements may lead to
the generalisation of the procedure and improve its applicability. In the case of
single surface SDA, such an extension can be found in [MOSLER 20054] for the
linearized kinematics and in [MOSLER 2007] for the geometrically nonlinear
problems.

In order to overcome the limiting properties of the return-mapping algorithm,
a variational constitutive update can be applied for the update of the softening
response. A brief prospect of the possible structure of this alternative form of
MLSA is already presented in Section 4.4.1. However, the respective modifica-
tions need to be theoretically systematised and tested on different numerical
examples.
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