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ist zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den
Strafbestimmungen des Urheberrechtsgesetzes.

c©2013 Muhammad Sabeel Khan, Institut für Mechanik, Ruhr-Universität Bochum

Printed in Germany



Dedicated to my parents
and my wife Bushra Sabeel





Summary
This thesis presents an investigation of two complementary cases of material microstructures:
formation of rotational microstructures in granular media, and the detwinning of martensitic
microstructure. In both the cases a small-deformation framework is used for the analysis
throughout this work. Due to their different modeling aspects as well as their applications
are concerned, this work is divided into two main parts.

Granular materials tend to exhibit distinct patterns under deformation consisting of counter-
rotating particles. In the first part, we are going to model this phenomenon on a continuum
level by employing the calculus of variations, specifically the concept of energy relaxation.
Our approach is based on the material model of a so-called Cosserat continuum. The fact
that the macroscopic shear is influenced by micro-rotational deformations of the particles
enables us to propose an interaction energy potential contributing to the material strain en-
ergy. The energy of the material is now enriched by adding this interaction potential. As
a result the total energy becomes non-quasiconvex, thus giving rise to the development of
microstructures occurring both in the displacement and micro-rotation field.

It turns out to be possible to derive an exact quasiconvex envelope of the potential by em-
ploying the direct methods in the calculus of variations. It is worth mentioning that there
are no further assumptions necessary here. Moreover the computed relaxed energy yields
all the possible displacement and micro-rotational field fluctuations as minimizers. We show
that the material behaviour can be divided into three different regimes. Two of the material
phases are exhibiting microstructures in rotational and translational motion of the particles,
respectively, and the third one is corresponding to the case where there is no internal struc-
ture of the deformation field. Following the principle of minimum of potential energy the
elastic response of granular materials is modeled within the framework of Cosserat elastic-
ity, and by following the principle of minimum of dissipation potential the rate-dependent
inelastic behavior of granular materials is modeled within the framework of Cosserat vis-
coplasticity. The properties of the proposed model are demonstrated by carrying out numer-
ical computations. Simulations are presented on the determination of possible formation of
microstructural zones in a granular medium.

In the second part, we model the phenomenon of detwinning of martensitic microstructure
in phase transforming inelastic crystalline materials. The material can undergo a phase tran-
sition between two martensitic variants, associated with these phases is a two-well energy
potential for the characterization of material response and the description of its equilibrium
configuration. Relaxation techniques are employed to compute an analytical expression for
the partially relaxed energy corresponding to the two-well non-convex energy potential. To
quantify for the inelastic response a rate-independent dissipation function is introduced. The
modeling approach is based on the energy principles where an incremental variational for-
mulation of the proposed model is presented for the simulation and investigation of detwin-
ning microstructure. Numerical computations are performed using finite element method to
demonstrate on the distribution of detwinning microstructure in a single crystal.



Kurzfassung
Die vorliegende Arbeit beschäftigt sich mit der Erforschung von zwei Komplementärfällen
der Material-Mikrostrukturen, nämlich die Ausbildung der Drehmikrostrukturen von granu-
laren Medien, und die Entzwillingung der martensitischen Mikrostruktur. Bei unserer Anal-
yse sind beide Fälle im Rahmen der infinitesimalen Verzerrungen berücksichtigt worden.
Mit Rücksicht auf die unterschiedlichen Modellierungsaspekte, und auch auf die verschieden
Anwendungen ist diese Arbeit in zwei Hauptteile aufgeteilt.

Granulare Medien neigen dazu, unter dem Einfluss der Verformung, unterschiedliche Muster
von gegendrehenden Partikeln darzulegen. Im ersten Teil dieser Arbeit wird ein kontinu-
umsmechanisches Model von diesem Phänomen unter Einsatz der Methoden von Variation-
srechnung, beziehungsweise der Energierelaxierung entwickelt. Unsere Methode basiert auf
der sogenannten Cosserat-Kontinuumstheorie. Da die makroskopische Scherdehnung von
mikroskopischen Drehverformungen beeinflusst ist, schlagen wir ein Wechselwirkungspo-
tential vor, welches wiederum zur Dehnungsenergie beiträgt. Die Energiefunktion wird
durch Einsetzen der Wechselwirkungsenergie erweitert. Hierdurch wird die Gesamtenergie
nicht-konvex, was wiederum zu Mikrostrukturausbildung führt, die sich in Form von
mikroskopischen Verschiebungen und Drehungen zeigt.

Es zeigte sich, dass die direkten Methoden der Variationsrechnung uns ermöglichen, eine
konvexe Hülle des Potentials exakt herzuleiten, ohne zusätzliche Annahmen zu treffen. Hinzu
kommt, dass alle möglichen Mikro-Fluktuationen des Verschiebungs- und Drehungsfelds als
Minimierer der relaxierten Energie geliefert werden. Wir zeigen, dass das Materialverhalten
in drei verschiedene Bereiche aufgeteilt werden kann. Zwei davon weisen Verschiebungs-
und Drehmikrostrukturen auf, und das dritte entspricht dem Verschiebungsfeld, welches
keine innere Struktur besitzt. Das elastische Verhalten des granularen Materials wird mit
Hilfe des Prinzips vom Minimum der Potentialenergie im Rahmen der Cosserat Kontinu-
umstheorie modelliert, und das ratenabhängige inelastische Verhalten durch das Prinzip vom
Minimum des Dissipationspotentials im Rahmen der Cosserat-Viskoplastizität. Danach wer-
den die Eigenschaften des entwickelten Modells durch numerische Beispiele demonstriert,
welche mit der Bestimmung der möglichen Mikrostrukturgebiete im granularen Medium zu
tun haben.

Im zweiten Teil dieser Arbeit wird ein Modell für Entzwillingung der martensitischen Mikro-
struktur in inelastischen, kristallinen Materialien entwickelt. Das Material kann eine Phasen-
transformation zwischen zwei Martensitvarianten erfahren, die zwei Gleichgewichtszustände
von der Zwei-Quellen Energie potentielle charakterisieren. Relaxierungsmethoden wer-
den verwendet, um einen analytischen Ausdruck der teil-relaxierten Energie zu berech-
nen, der dem nicht-konvexen Potential zugehört. Eine raten-unabhängige Dissipationsfunk-
tion wird vorgestellt, um die inelastische Reaktion zu erklären. Die Methode basiert auf
dem Energieprinzip, und auch auf der inkrementellen Variationsformulierung des Modells.
Dadurch wird die Entzwillingung der Mikrostruktur untersucht. Finite Elemente Berechnun-
gen werden durchgeführt, um die Verteilung der Entzwillingung von Mikrostruktur in einem
Monokristall herauszufinden.
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Nomenclature

The notations and symbols mentioned in each chapter has the same purpose of use in other
chapters unless it is specified.

Notations & Symbols in Chapter 1 and 2

I integral functional
ξ deformation field
Ψ non-quasiconvex energy potential
Ψrel relaxed energy potential
u displacement field vector
ϕ microrotation field vector
Ω volume possessed by the material body
W 1,p space of p-integrable functions .OR. Sobolev space
ul sequence of displacement field variables
inf infimum
lim limiting value
W energy density
R set of real numbers⋃

union symbol
∞ infinity symbol
Rn set of n-tuple real numbers
∇ gradient or divergence operator
∈ belongs to
vol(-) volume of (-)
∂Ω surface of the volume Ω
Wc convex energy potential
Wpc polyconvex energy potential
Wqc quasiconvex energy potential
Wrc rank-one convex energy potential
⊗ tensor product
Wrel relaxed energy potential

Notations & symbols in Chapter 3

C fourth order constitutive tensor of elastic constants
C fourth order constitutive tensor of elastic constants
S second order tensor
ei unit vector in ith coordinate direction
α a material parameter
β a material parameter related to the particle size
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ε second order strain tensor
tr(·) trace of (·)
σ force-stress tensor
µ couple-stress tensor
E third order permutation tensor
I interaction energy potential
ε second order strain tensor
κ curvature strain tensor
e Cosserat strain tensor
dev(·) deviatoric part of (·)
arg argument
Wenh enhanced energy function
` potential of external forces and couples
λ Lame’s constant
µ shear modulus of elasticity
µc Cosserat shear modulus of elasticity
µ bending modulus
µc coupled shear modulus or bending modulus
λ Cosserat material dilatancy parameter
∂ partial derivative
min minimum
Wrel relaxed energy
Wrel

1 relaxed energy corresponding to material regime 1
Wrel

2 relaxed energy corresponding to material regime 2
Wrel

3 relaxed energy corresponding to material regime 3
sym(·) symmetric part of the tensor (·)
asy(·) anti-symmetric part of the tensor (·)
˙(·) total time derivative of (·)

∆ dissipation potential
∆1 dissipation potential related to material regime 1
∆2 dissipation potential related to material regime 2
∆3 dissipation potential related to material regime 3
Ψ Helmholtz free energy
G Gibbs free energy
d

dt
time derivative

D total dissipation functional
`ext potential of external forces and couples
ω Cosserat rotation tensor
ϑ angular velocity

Notations & symbols in Chapter 4

δ a small variation operator
Γ boundary surface
I second order unit matrix
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I fourth order unit matrix
(·)n previous time step
(·)n+1 current time step
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J in+1
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A assembly operator

Notations & symbols in Chapter 6
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sign signum function
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1. Introduction

1.1. Motivation

It is always of interest to know the general analytical solution of the following non-quasiconvex
energy minimization problem

inf
ξ

I (ξ) =

∫
Ω

Ψ (∇ξ)︸ ︷︷ ︸
non−quasiconvex

dV − ` (ξ) ; ξ ∈ W 1,p∈(1,∞) (Ω,Rn)

 . (1.1)

The minimizers of such non-quasiconvex energy minimization problem do not exist in gen-
eral, which is highly due to fine scale oscillations of the gradients of infimizing deforma-
tions. Physically, the socillatory behavior of these infimizing deformations can be seen as a
distortions of finite element meshes [GM11, MLG04]. Thus leading to the development of
microstructures in the materials. Formation of such microstructures can be seen as extended
microstructures [Bag41, GN04] which is distributed through the material domain or the lo-
calized microstructures as seen in [BH01, dB91, M9b, TW93, TS98]. One possible way to
solve the non-quasiconvex energy minimization problem (1.1) is to apply the direct numer-
ical schemes as suggested by [AP01, Bar01, CCO08, CP97, CR97, Chi99, CC92, CKL91,
DW00, Ped96, Rou96], hence leading to the mesh dependent minimizers which are of no
practical interest in general. Moreover, minimization using direct numerical procedures do
not guarantee the attainment of these minimizers. To avoid such problems, different method-
ologies have been suggested in literature. One possibility is to use regularization technique
which is based on the gradient-type enhancement of the original non-convex energy function
in (1.1). Regularization method has its own limitations as far as the physical properties of the
unrelaxed problems are concerned. Contrary to this is the method of relaxation which is more
effective and natural way to treat the non-quasiconvex energy minimization problem. There
are two ways to relax the original non-quasiconvex energy minimization problem (1.1). Ei-
ther to enlarge the space of admissible deformations

(
W 1,p∈(1,∞) (Ω,Rn)

)
to the space of

parametrized measures [Ped97, You37], or, to replace the original non-quasiconvex energy
Ψ (∇ξ) with its relaxed energy envelope Ψrel (∇ξ). A detailed discussion on the methods of
relaxation is presented in Chapter 2. If possible to compute the exact relaxed envelope of the
corresponding non-quasiconvex energy in the energy minimization problem (1.1) one do not
only guarantee general solutions of the associated energy minimization problem but also can
predict on the formation of both the extended and localized microstructures in the materials.
In this study, we investigated two complementary cases of material microstructures where it
is possible to construct the exact relaxed energies of corresponding non-quasiconvex energy
function. By doing so we do not only ensure the existence of the minimizers to the arising
non-quasiconvex energy minimization problems but also guarantee the mesh objectivity of
these minimizers. Moreover, we are able to characterize both the extended and localized
microstructures within the materials.
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Figure 1.1.: Granular patterns: sand ripples (in first column), sand ridges (in second column).
Copyrights of Martyn L Gorman, “www.abdn.ac.uk/talpa/Sand/Welcome.html”.
These photographs are used with permission.

1.2. Rotational microstructures in granular materials

In nature granular materials are found to exhibit distinct patterns under deformation such as
sand dunes [Bag41, NO93], granular ripples [BMD87, NO93, San09, TZ05] (see Figure 1.1)
and shear bands [BH99, dB91, dBS91, HB03, M9b, MV87, Tej97, TB96] etc. Formation
of these granular patterns is highly governed by the interaction among the counter-rotating
granular particles. These counter-rotating granular particles play a very crucial role in the
development of material microstructures [Bar94, TPM05, TW05]. Formation of such mi-
crostructures is thus called rotational microstructures in granular materials. To observe the
formation of these microstructural patterns thus requires an extensive study on the intrigu-
ing phenomenon of counter-rotations of particles at the micro-scale. Because of intricate
nature of particle rotations and complex behavior of the granular materials under deforma-
tion it is therefore difficult to understand the intergranular cohesive interactions of these
particles completely. In literature almost no comprehensive study appears that completely
discuss the intergranular interactions and arising phenomenon in detail which can truly jus-
tify the naturally observed microstructural patterns in the granular materials. Although some
researchers have realized the significance of interparticle contacts and the rotational phe-
nomenon of granular particles in modeling the granular structures. For a comprehensive
review few of them are mentioned here. In developing a micro-mechanical model for gran-
ular material behavior Suiker et al. [SdBC01a] formulated a constitutive theory featuring
the microstructural effects governed by the particle displacements and rotations. One of
the possible application of this theory is emphasized in [SdBC01b]. Tordesillas and Walsh
[AT02] discusses the intergranular interactions and incorporate the rolling resistance and
contact anisotropy in the micropolar model for granular materials where they devised a ho-
mogenization scheme to capture the material microstructures. Also an elastic and elasto-
plastic analysis of granular material microstructures has been presented by them [TW05]
where again a homogenization procedure on particle scale is developed using a micropo-
lar continuum model. Walsh et al. [WTP07] use a micromechanical approach in modeling
the mechanical behavior of granular materials where the micro-scale behavior of interpar-
ticle contacts are linked to the macroscopic free energy density of the granular material.
They computed the free energy by averaging it at each interparticle contact which assumed
to behave as a spring-slider system. Based on their micromechanical model [CM91] in a
Cosserat continuum Chang and Ma [CM92] studied particle rotations in a granulate medium
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to derive elastic material constants using interparticle stiffness. Within the framework of
Cosserat elasticity [Eri68, Min64, Now70] they use rotation and stretch springs for transmit-
ting contact moments and forces at the interconnected granulates. Pasternak and Mühlhaus
[PM01] also consider the particle rotations at the interparticle contact and model particulate
medium based on the idea where particles are connected through translational and rotational
springs. Among the other works are [AMVH+06, PV11] and also see references therein.
From these studies it is easier to realize that the phenomenon of particle rotations in granular
structures is essentially important to study in modeling the granular structures. No unified
theory appeared in literature that appropriately consider and discuss the particle rotations
in a granular assemblage, thus demonstrating on the intricate nature of particle interactions.
All the previous studies that appeared in literature for modeling the mechanical behavior of
granular materials with consideration of particle rotations at the micro-scale are based on the
micromechanical approach. Moreover, the established theories are no doubt able to model
the material microstructures to some extent, but are not able to distinguish among the mi-
crostructural and non-microstructural regimes in a deforming granular material. Based on a
continuum approach we present a material model taking into account the counter rotation of
the particles leading to the development of microstructural regimes in a deforming granular
structure.

In the first part of the thesis we are going to model the phenomenon of particle rotations in a
granular assemblage. For this purpose we discuss the intergranular kinematics and propose
an interaction energy potential. This interaction energy potential takes the effect of counter-
rotations of the granular particles at the continuum scale. Thereby introducing two new ma-
terial parameters related to the interparticle friction and the length scale of the granular mate-
rial. This length scale parameter for example can be considered as a particle size of a granular
medium likewise we consider the grain size in a polycrystalline material and a fiber length in
fibrous material. Granular materials shows important length scale effects as experimentally
seen by Anderson et al. [ACL94], Anderson and Lakes [AL94], Buechner and Lakes [BL03]
and Lakes [Lak86]. For the modeling of such materials who exhibit length scale effects
the classical/Boltzmann continuum theories are not sufficient [AS06], since the constitutive
equations in these theories are independent of length scale parameters. The continuum the-
ories that incorporate the length scale effects are the generalized/higher order continuum
theories [Eri02, Mau92, FS06, KE71, KE76, Min64, Now69, Now68, Now70, SE64, Ste94,
Sto69, Sto72] whose constitutive relations are embedded with the length scale parameters.
Thus generalized continuum theories are requisite to best capture the real deformation mech-
anism of granular materials and are capable to describe their mechanical behavior. These the-
ories of microstructured media are well developed by Eringen [Eri02, Eri68, ES64], Forest
[FS06], Mindlin [Min64], Toupin [Tou62, Tou64], Truesdel and Toupin [TT60], Vardoulakis
and Sulem [VS95] and are used extensively in modeling the mechanical behavior of granular
materials where many interesting phenomenon are predicted during the deformation of these
materials. Cosserat continuum theory [CC09, Sch67, Var09] is a special case of general-
ized continuum theory which has been proved successful and attained maximum attention of
many researchers [AAE10, CM91, dB91, DSW93, PV11, PM01, MNR99, M9b, M6, Tej97]
in modeling the behavior of granular materials with microstructures. It has been used to an-
alyze the granular material microstructures using different constitutive settings. An elasto-
plastic Cosserat constitutive theory has been applied by de Borst [dB91], de Borst and Sluys
[dBS91], Dietsche et al. [DSW93], Ehlers and Volks [EV97], Mühlhaus [M9b] and Mühlhaus
and Vardoulakis [MV87] for the observation of microstructures of localized deformations in
a granular material. Bauer and Huang [BH99], Huang and Bauer [HB03], Tejchman [Tej97],
Tejchman and Bauer[TB96] have used hypoplastic constitutive framework of Cosserat con-
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tinuum in the observation of localized deformations in granular materials. An updated review
on the application of Cosserat continuum theory in the analyiss of localized deformations in
geomaterials can be found in the book by Vardoulakis and Sulem [VS95]. It has been adopted
to model the granular material microstructures by Chambon et al. [CCM01] where they em-
phasized on its applications in particular towards the modeling of geomaterials behavior. In
a Cosserat continuum theory each material point has an independent micro-rotational motion
in addition to its translational motion.

We use Cosserat theory for the continuum description of the granular material in our work.
The resulting interaction energy potential from the consideration of intergranular interac-
tions and their counter rotations is embedded with the Helmholtz free energy of the Cosserat
continuum. Thereby providing an energy potential on the macroscale taking into considera-
tion the counter rotations at the micro-scale for the modeling of granular materials. The total
energy potential at the continuum scale thus becomes nonconvex and the associated energy
minimization problem leads to many local minimizers. In the solution of arising nonconvex
variational problem thus needs the implication of relaxation methods. For this purpose to
assure the existence of unique minimizer of the related energy minimization problem an ex-
act relaxed potential is derived by employing the direct methods in the calculus of variations
[Dac89]. Thereby guaranteeing the solution to the resulting nonconvex variational problem
and transforming it into a quasiconvex variational problem. It is important to note that the
resulting solution from the developed quasiconvex variational problem would be the same
as if possible could be achieved from the nonconvex variational problem. In deriving the
exact relaxed energy we come up with a three regime granular material where two of the ma-
terial regimes/phases are with microstructure in independent micro-rotational motions and
the translational motions of the continuum particles and the third one is corresponding to
the regime where there is no internal structure in the material. This is in accordance with
the well known fact that the microstructures in the granular materials occurs at high trans-
lational and rotational deformations [AVA06]. Hence depending upon the translational and
micro-rotational motions of the granular particles we are able to classify the granular mate-
rial microstructures into two categories, a microstructure due to translational motions and a
microstructure due to micro-rotational motions of the granular particles. Thus we develope
a granular material model at continuum scale that is able to characterize the development of
microstructural and non-microstructural phases in a granular medium. Furthermore, it en-
ables one to differentiate the regimes of the material that are related to the energy dissipation,
material flow, and material failure.

1.3. Detwinning of martensitic microstructures

Detwinning is a well recognized mechanism of inelastic deformations which has been ob-
served experimentally in a number of crystalline materials. For an example, see Figure 1.2
which demonstrate on its formation in a mixture of Copper and Silicon alloy, Figure 1.3
and 1.4 for its formation in nanocrystalline copper material. For more experimental results
see [HZWL08] and references there in. For the most recent and a detailed overview on the
experimental observation of detwinning in different crystalline solids, their mechanism and
the factors affecting the formation of detwinning, theoretical approaches to simulate the ex-
perimental observed detwinning microstructures using mathematical models, the reader is
referred to the work of Zhu et al. [ZLW12] and references cited in.
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Figure 1.2.: Transmission electron microscopy (TEM) micrographs (a) of deformation twins
formed in a Cu-3% Si alloy, (b) a magnified image at the boundary of the band
(c) high magnified image in the inner part and (d) corresponding dark-field im-
age. Reprinted from [HZWL08] with permission of Zhang, Z. F.

In the second part of the thesis, we model the phenomenon of detwinning in phase trans-
forming inelastic solids. Our modeling approach is based on the energy formulation where
the deformation behavior of inelastic materials is described by the specification of two en-
ergy potentials. Such an approach to model different material behaviors has been considered
in the work of Bartels et al. [BCC+06, BCHH04], Carstensen et al. [CHM02], Conti et
al. [CDK09, CHO07], Conti and Ortiz [CO05], Conti and Theil [CT05], Gürses and Miehe
[GM11], Hackl [Hac97], Hackl and Fischer [HF08], Hackl and Hoppe [HH01], Hackl et al.
[HHK12], Miehe and Lambrecht [ML03], Miehe et al. [LMD03, MLG04], Mielke [Mie04],
Mielke and Roub́ic̆ek [MR06], Ortiz and Repetto [OR99]. The two energy potentials com-
prises of elastic free energy potential of the material and the dissipation potential. Con-
sideration of two martensitic variants and the corresponding energies leads to work with a
non-convex energy potential. A partially (in the sense that it is not minimized with respect to
the internal variables which in our case are the volume fractions of each martensitic variant)
relaxed energy is computed which is further used along with the dissipation potential in a
two field minimization problem. A time incremental formulation of this minimization prob-
lem as suggested by Carstensen et al. [CHM02], Hackl et al. [HHK12] is introduced where
the original minimization problem is splitted into a two step algorithm. In the first step,
the displacement field is obtained via a pure elastic problem and afterwards in the second
step an update for the volume fraction of each of the martensitic variant is computed via the
minimum-principle of dissipation potential (see Hackl and Fischer [HF08]) as its stationarity
conditions while working within the framework of rate-independent inelasticity.
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Figure 1.3.: Deformation twins in an ultrafine grain and a nanocrystallite of UFG-Cu.
Reprinted from [HWW+06] with permission.

Figure 1.4.: Deformation twins in NC-Cu where the arrows indicates the elongated nanocrys-
tallites. Reprinted from [HWW+06] with permission.

1.4. Structure of the thesis

This thesis is organized as follows. Following the motivation and introduction from Chap-
ter 1, theory of relaxation is presentedin in Chapter 2. Special emphasis has been placed
on its possible applications in solid mechanics and state of the art in modeling the mate-
rial microstructures. Generalized variational principle, different notions of convexity, both
the analytical and numerical theories and methods for computing relaxed potentials of the
associated non-quasiconvex potentials are discussed.

In Chapter 3, following an introduction to continuum theories, specifically, the generalized
continuum theories for modeling the granular materials with microstructures, a continuum
model for granular materials within the framework of Cosserat continuum is developed. Re-
laxation methods have been employed to construct an analytical expression for the quasi-
convex envelope of the non-quasiconvex energy potential resulted from the consideration
of intergranular interactions. Numerical computations have been performed to obtain re-
sults demonstrating on different properties of the computed relaxed potential. Finally, a
Cosserat-viscoplastic approach based on the principle of minimum of dissipation potential is
considered for modeling the rate-dependent response of granular materials.

In Chapter 4, variational formulation of the proposed models and related numerical pro-
cedures based on the finite element method for their implementation on computer are ad-
dressed. In Chapter 5, numerical results obtained from both the Cosserat-elastic and Cosserat-
viscoplastic models are presented and discussed in different cases. Numerical simulations
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are shown to demonstrate on the possible distribution of granular material microstructures in
these cases.

In Chapter 6, a simple model for modeling the detwinning phenomenon of martensitic mi-
crostructure in phase transforming inelastic solids is outlined. A rate-independent response
of the material is considered. Variational formulation based on the principle of minimum
of potential energy and the principle of minimum of dissipation potential is presented. The
model is implemented using finite element method and the numerical results shown in Chap-
ter 7 for the case of a single crystal NiTi alloy exhibits on the distribution of detwinned
martensitic variants in a two-dimensional settings.

Finally, the conclusions are drawn in Chapter 8. Many possible directions to be investigated
and open issues to be addressed in future have been outlined in this Chapter.
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2. Relaxation of non-convex potentials and the material
microstructure

2.1. Introduction

The experimental evidence on the exhibition of microstructure in many advance materials
in material science, structural mechanics and especially in geomaterials is now an open se-
cret [Bag41, BJ92, AT09, Lak83, Lak86, Lak95, OKNN82]. In formulating a mathematical
model for the description of mechanical behavior of these materials with microstructures of-
ten leads to work with non-quasiconvex energy potentials [BJ87, Bha03, BCC+06, BCHH04,
CCO08, CHM02, CP97, CDK09, CHO07, CO05]. For instance, in modeling the mechanical
response of the granular materials exhibiting internal structures, in the first part of this thesis,
new finding and measures are presented which lead to deal with the non-convex variational
problems within the framework of Cosserat continuum theory. The consideration of counter
rotating particles in a granular material leads us to an innovative idea which allows us to pro-
pose some new measures for the characterization of the underlying microstructure within a
granular material. The major finding is an interaction energy potential taking into account the
intergranular interaction of the particles in a Cosserat continuum. This newly defined inter-
action energy potential is added to the existing free energy potential in a Cosserat continuum.
As a consequence we have to work with a non-convex energy potential. In the second part
of this thesis, we address the phenomenon of deformation twinning (also called mechanical
twinning in literature) microstructures by modeling the phase transforming inelastic materi-
als. The approach is based on the energy principles which requires the specification of two
energy potentials called the free energy of the material and the dissipation potential. The free
energy of the inelastic material (already assumed to have twinned microstructure) has a two
well structure in this case. As a result we had to work with a non-convex energy potential in
the related minimization problem. Associated to these non-convex energy potentials are the
non-convex variational problems whose study is thus significant.

Relaxation methods have been employed to treat these nonconvex variational problems in
particular in this thesis and in general for the analysis of materials with microstructures
[BJ87, BCHH04, Dac89, HH01, Koh91, LMD03]. Here in this chapter, the reader is intro-
duced to the theory and methods of relaxation of non-convex potentials for the analysis of
materials with microstructures. The chapter is organized as follows. In Section 2.2 some no-
tions of convexity are introduced briefly in connection to the generalized variational principle
of continuum mechanics. Section 2.3 emphasize on the connection of material microstruc-
ture to the non-quasiconvexity of its associated energy potential. Finally, the use of relaxation
theory for the characterization of material microstructure is presented in Section 2.4.
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2.2. Generalized variational principle and different notions of convexity

This Section is devoted to present some mathematical concepts and definitions that are con-
nected to the following integral functional

I(u) =

∫
Ω

W (∇u) dV − `(u) (2.1)

when it is considered with its associated minimization problem

inf
u

{
I(u) : u = u◦ on ∂Ω and u ∈ W 1,p(Ω,Rn)

}
(2.2)

where W is the stored energy function of the corresponding material, `(u) is the potential
of external forces and W 1,p(Ω,Rn) is the space of all admissible deformations (Sobolev
space), here p ∈ (1,∞) is associated with the growth of the energy function. Study of these
kind of minimization problems in the field of continuum mechanics have been proved suc-
cessful in modeling many engineering material behaviors [CCO08, CHM02, CT05, CHO07,
CDK09, CO05, Dac89, Dac82, Dac01, DeS04, DD02, Dol99, DR95, DW00, GM11, HH01,
JK89, KS82, M9, Mie04, ML03, MLG04, LMD03, MR06, OR99, SBH03]. The ques-
tion arises that under which conditions or constraints on the energy function W the above
variational problem admits minimizers. This query leads to search those properties and con-
ditions on the energy function W that assures the solution to these variational problems. A
well established fact (the consequence of Generalized Weierstraß Theorem) that the above
minimization problem admits minimizers is that the integral functional I(u) in (2.1) must
be weakly sequentially lower semi-continuous (wslsc). Weakly sequentially lower semi-
continuity of the functionals of type I(u) has already been delineated in the work of Acerbi
et al. [AF84], Dacorogna [Dac89], [Dac82] and Zeidler [Zei90]. It is defined as

Definition 1. (Weakly sequentially lower semicontinuity of I(u)). Let I(u) be an integral
functional defined as in equation (2.2) and ul be any sequence in W 1,p, then I(u) is said to
be weakly sequentially lower semicontinuous if

for every ul ⇀ u ∈ W 1,p ⇒ lim inf
l→∞

I(ul) ≥ I(u),

here ⇀ means weak convergence in W 1,p

In one dimensional case where u is a scalar variable the restriction on the energy functional
W for I(u) to be weakly sequentially lower semi-continuous is the convexity of W . A
convex function in a scalar variable is defined as follows

Definition 2. (convex function). A real-valued function W : Rn → R∪{+∞} is said to be
convex if it satisfies the condition

W (λε1 + (1− λ)ε2) ≤ λW (ε1) + (1− λ)W (ε2), ∀ ε1, ε2 ∈ Rn and λ ∈ [0, 1] .

In general, the energy function W is not a scalar-valued function, instead it is a vector-
valued function. In case of vector-valued function I(u) is weakly sequentially lower semi-
continuous if the following properties for W holds

• W be continuous
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• W satisfy the growth condition: for any A ∈ R, u ∈ Rn W (∇u) ≤ A(1 + ‖∇u‖p),
where n < p <∞

• W satisfy the coercivity condition: there exist some scalars B, C ∈ R, with C > 0
such that W (∇u) ≥ B + C(‖∇u‖p), where n < p <∞

• W should be quasiconvex

Before the work of Morrey in 1952, it was established that the sufficient condition for the
integral functional I(u) to be weakly sequentially lower semi-continuous is the quasiconvex-
ity along with the properties mentioned above. In his paper [Mor52] he gave the definition
of quasiconvexity (see Definition 2.2) and right afterwards (in Theorem 2.1) the proof that
quasiconvexity of energy function W is necessary for the lower semicontinuity of the inte-
gral functional I(u). Hence after his work one can conclude mathematically that under the
continuity, growth and coercivity conditions for W the integral functional I(u) is weakly
sequentially lower semicontinuous if and only if W is quasiconvex and this implies

W is quasicovex ⇔ I(u) is weakly sequentially lower semicontinuous.

Thus notion of quasiconvexity appears to be a natural restriction on the energy function W
for the weakly sequentially lower semi-continuity of integral functional I(u). The quasi-
convexity of energy function W is the fundamental property that ensures the existence of
minimizers in the energy minimization problem (2.2), and thus implies the ellipticity of the
Euler equations (I ′(u) = 0) for the integral functional I(u). For existence theorems in elas-
ticity for example see the work of Ball [Bal76], Ciarlet [Cia88] and Dacorogna [Dac89].
Here we state the definition of quasiconvexity as introduced by Morrey in [Mor52].

Definition 3. (quasiconvex function). A vector-valued function W : Rn×n → R is said to
be quasiconvex if for any open domain (a unit ball is sufficient) D ⊂ Rn it satisfies

W (ε) ≤ 1

vol(D)

∫
D

W (ε+∇ε̃) dV , ∀ ε̃ ∈ W 1,∞ such that ε̃ = 0 on ∂D.

The notion of quasiconvexity [Mor52] is by definition a nonlocal criteria, which makes it
difficult to check or even to contradict for most of the energy functionals. For this reason
many other notions of convexity are introduced which are more easier to check or even to
contradict in comparison to quasiconvexity criteria. Among these are the polyconvexity and
the rank-one convexity, for detailed discussion on the topic see for example [Dac89]. The
relation among the different notions of convexity is easy to remember in a (C-P-Q-R) relation
as

Convexity ⇒ Polyconvexity ⇒ Quasiconvexity ⇒ Rank − one convexity.

Here it is important to note that the converse is not true in general (vectorial case) i.e.

Convexity : Polyconvexity : Quasiconvexity : Rank − one convexity,

however, for the scalar case all the above notions of convexity coinsides. Among them the
rank-one convexity is easiest to check which is defined as

Definition 4. (rank-one convex function). A vector-valued function W : Rn×n → R is said
to be rank-once convex if the function f : R→ R defined by
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f(t) = W (A + t (a⊗ b))

is convex in t ∈ R such that rank(a⊗ b) ≤ 1, where A ∈ Rn×n and a,b ∈ Rn.

The convex, polyconvex, quasiconvex and rank-one convex envelops of the energy function
W are defined as their pointwise supremum, which are bounded above by their respective
non-convex energy function W . The definitions of these envelopes reads

Definition 5. (convex, polyconvex, quasiconvex and rank-one convex envelopes). Let
W : Rn×n → R be a convex, polyconvex, quasiconvex or rank-one convex function, then for
every deformation gradient ε ∈ Rn×n

W c = sup {cf(ε) : W ≥ cf(ε) ∀ convex functions cf} ,

W pc = sup {pf(ε) : W ≥ pf(ε) ∀ polyconvex functions pf} ,

W qc = sup {qf(ε) : W ≥ qf(ε) ∀ quasiconvex functions qf} ,

W rc = sup {rf(ε) : W ≥ rf(ε) ∀ rank-one convex functions rf} .

For completeness of a brief review on different notions of convexity we conclude with a
result due to Sverak [Sev92] that if an energy function is rank-one convex it does not means
that it is also quasiconvex.

2.3. Non-quasiconvex potentials and the material microstructures

Development of microstructures in a wide range of materials are predicted experimentally
[BJ92, Bha03, BJS97]. If possible, the mathematical description of these material mi-
crostructures is very crucial since it provides with the mathematical tools for the numerical
simulations of these materials, with which one can observe and analyze the material macro-
scopic behavior without expending high experimental cost. Mathematical models have been
proposed to predict the microstructural behavior of many advanced materials. For exam-
ple, for the materials related to the phenomenon of shape memory and ferroelasticity the
models first introduced by Ball and James [BJ87] and afterwards developed by [ACB04,
Bal88, BJ92, Bha01, BJS97, GP98b, GP98a, GHH07, GMH02, HH08, JK89, Koh91]. Such
models determining martensitic microstructures are also formulated by Bhatacharya [Bha03]
where multi-well energy potentials are characterizing the solid-solid phase transitions where
in the transition zone one can observe fine scale oscillations in the infimizing sequences and
thus the occurrence of microstructure. In modeling the strain softening materials Gürses
and Miehe demonstrate on the formation of microstructures due to the emergence of non-
convex energy minimization problem. The mathematical modeling of materials exhibiting
microstructure leads in a natural way to deal with nonconvex energy potentials. The develop-
ment of the associated nonconvex energy minimization problems leads to the understanding
that the formation of these microstructures is essentially due to the fine-scale oscillations
of the gradient of corresponding infimizing deformation sequences. These fine scale oscil-
lations of the gradients of infimizing deformation sequences are directly connected to the
non-existence of solutions of the corresponding energy minimization problems.
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In continuum mechanics there are increasing number of problems where the energy func-
tion in the associated minimization problem fails to fulfill the condition of quasiconvexity.
This non-quasiconvexity of the energy density can be due to many reasons, e.g., in the case
of strain-softening plasticity models it can be due to non-monotonic constitutive function
[GM11], in single slip plasticity models it can be due to the single slip constraint on the de-
formation of crystal [CO05], [CT05]. This renders the variational problems non-quasiconvex
and thus lacks the minimizers. In simple words, the solution to the these problems does not
exists which is another indication of the ill-posedness of the mathematical model. The gen-
eral theory is that the minimization problem (2.2) predicts a microstructure in the material if
the related energy function W is non-quasiconvex in the associated integral functional I(u).
This occurrence of material microstructure is due to non-existence of the minimizers of the
integral functional I(u) and the fine scale oscillations of gradients of the related infimizing
sequences (∇uh). Mathematical modeling of a finite-strain elastoplastic material addressed
with associated energy minimization methods often leads to work with nonconvex potentials.
Carstensen et al. in [CHM02] have shown that modeling of finite-strain elastoplasticity even
with a single slip system and von Mises plasticity using non-quasiconvex energy functionals
leads to the non-attainment of energy minimizers of the associated minimization problem,
and hence the formation of microstructures within a material.

There are three main issues that are connected to the convexification of a material energy.
These issues comprises of mesh dependency of solutions, existence of unique minimizers
of corresponding minimization problem and stability conditions of the relevant mechanical
problem. Material stability is directly influenced by the convexity of its energy functional.
The convexification of the energy functional not only helps to predict on the formation and
distribution of material microstructure but it also substantially reduce the mesh dependence
of the solution of its corresponding variational problem in consideration. Analysis of a mate-
rial behavior with finite elements using non-quasiconvex energy minimization method results
in strong mesh dependent solutions. The issue of non-existence of unique minimizers of the
corresponding energy minimization problem is raised due to lack of quasiconvexity of its
related energy functional. In such a situation when the free energy of the material in con-
sideration is not quasiconvex the material forms different patterns of microstructures (see
Ball and James [BJ87, BJ92]). Numerical solutions of the non-quasiconvex minimization
problem using finite element method leads to mesh dependent results and also the oscilla-
tions in the gradients of the minimizing deformations is observed. Moreover, Bartels and
Prohl in [BP04] observed that the minimizing deformations sequence generates a compli-
cated branching structure which is difficult to solve numerically. For these reasons, it is
better not to use direct numerical simulations of non-quasiconvex minimization problems
rather the non-quasiconvex minimization problems can be replaced by the relaxed one to
void these complications and difficulties.

One possible recipe to avoid such oscillations of the infimizing sequences is to introduce
regularization in the original energy minimization problem. For instance, the nonconvex
energy function W (∇u) in (2.1) can be replaced by W (∇u) + ε ‖∇u‖2 for a small ε > 0.
But these methods do not work in all situations and have their limitations, and therefore are
not suitable in general situations. The alternative to this is the method of relaxation where
the original nonconvex energy minimization problem is replaced with its quasiconvexfied
energy minimization problem and thus guaranteeing the existence of solutions. Of course,
the direct numerical minimization of the non-quasiconvex variational problems is possible in
some cases [AP01, Bar01, CCO08, CP97, Chi99, CC92, CKL91, DW00, Ped96, Rou96]. A
detailed discussion on the relaxation techniques and methods is provided in the subsequent
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Sections.

2.4. Relaxation of variational problems in continuum mechanics

In the mathematical modeling of solid materials behavior many cases arises where the free
energy of the material comes out to be non-quasiconvex. Hence relaxation methods need to
be employed in such situations. Some examples are pointed out by Raoult in [Rao10], among
them are the modeling in nonlinear elasticity using Saint Venant-Kirchhoff energy density
(which fails to be quasiconvex in three dimension, see for instance [Rao86]), In deriving
slender structure models and in deriving a continuum model of a given discrete atom lattice
behaving similar macroscopically. Other cases are mentioned in [SBH03, CO05, CT05,
CDK09, CO05, DD02, HH01, MLG04, KS86a, KS86b, KV87, Wil81]. In this Section,
we study relaxation theory and the use of relaxed potentials for the macroscopic analysis
of materials exhibiting microstructures. For the analysis of the macroscopic response of a
material the use of relaxed energies in continuum mechanics has proven successful. The
relaxed energy which is in mathematical terms often named as quasiconvex envelope of the
microscopic energy function, has been found useful for the macroscopic analysis of materials
having internal structures. The influence of internal structure of a material on its macroscopic
behavior is often efficiently analyzed by the use of relaxed potentials corresponding to its
minimization problem.

Minimization using relaxed variational problems has its own advantages over the unrelaxed
variational problems. One prominent advantange is the integration of all possible preffered
oscillations of infimizing sequences into the relaxed problem, which appear beneficial in
finding the minimizers. The relaxed potential has a smaller value than the unrelaxed poten-
tial for any selected mesh size. Among many possible local minima the characterization of
global minima is more easily distinguishable, since the relaxed minimization problems have
less possible local minima than the unrelaxed minimization problems. The existence of a
minimizer is ensured in the relaxed energy minimization problem. And if the corresponding
energy function is convex in vectorial case then this minimizer is unique. The minimizer of
a relaxed variational problem is the same as that of non-quasiconvex (unrelaxed) variatioal
problem (if it exists in case of unrelaxed problem, which might be the case). This is because
the new relaxed problem naturally inherit the minimizers of the original non-quasiconvex
energy function in a natural way by the implication of mathematical relaxation. Another
possible and the most important advantage of using relaxed variational minimization prob-
lems is the mesh independency of its minimizers. The minimizer which is the weak limiting
value of its infimizing sequence is therefore mesh independent. Where in the minimization
problems using unrelaxed potentials this is not the case in general, if the minimizer exists
these are very critical with the selection of mesh size. This means that the solutions to
unrelaxed variational minimization problems are highly mesh dependent and therefore not
reliable in practical situations. Thus relaxed variational minimization problems are more
effective and reliable for the macro-mechanical analysis of the corresponding materials.

Relaxation theory has its applications in many advanced engineering problems. For the
macro-mechanical analysis of inelastic materials exhibiting microstructures relaxation meth-
ods have been successfully applied see for instance the work of Conti et al. [CHO07, CO05,
CT05], DeSimone et al. [DeS04, DD02], Hackl et al. [HH01], Miehe et al. [GM11,
MLG04]. For instance its application to the structural design optimization is highlighted
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in the technical literature of Kohn et al. [KS86a, KS86b, KS83]. Another possible area
of application could be the homogenization of inelastic solids, see for detailed discussion
e.g. the work of Miehe et al. [MSL02], Murat et al. [MT85] and Kohn et al. [KS82].
Kohn et al. [KS86b] and Willis [Wil81] have thrown some light for its useful application for
the macro-mechanical analysis of composite solids. An interrelation between the relaxation
theory for design optimization, homogenization of elastic solids and composite materials
has been summarized and presented in a series of three papers [KS86a, KS86b] by Kohn
and Strang, thus drawing attention to its application in these areas. Kohn and Vogelius in
[KV87] applied relaxation theory for the inverse analysis problem of Impedance Computed
Tomography. Another possible application could be the modeling of strain softening mate-
rial behavior where the instabilities leads to deal with non-quasiconvex energy minimization
problems. In this regard see for example the work of Gürses et al. [GM11] and Lambrecht
et al. [LMD03] where they address the instabilities in strain softening material using re-
laxed incremental variational problem. Further it can be applied to damage mechanics, e.g.,
see the work of Francfort and Marigo [FM93] who uses energy relaxation for the modeling
of stable damage evolution in a brittle material. Other related work demonstrating on the
possible application of relaxation theory in damage mechanics can be seen in the work of
Baldassari et al. [SBH03], Francfort et al. [FG06], Gürses et al. [GM11], Lambrecht et al.
[LGM ] and Mielke et al. [MR06]. The relaxed analysis on the formation of shear bands
in strain-softening elasto-plastic solids is treated by Miehe et al. [ML03]. Their approach
to the localization phenomenon using relaxation theory is demonstrating on its use in the
strain softening inelastic materials. Its application to the modeling of dislocation dynamics
in single crystals can be found in the work of Conti et al. [CO05]. Further applications
towards the modeling of finite strain elastoplasticity using single crystal plasticity are em-
phasized by Carstensen et al. [CCO08]. Other related literature can be found in [CDK09].
Relaxation theory has been applied prosperously in the modeling of martensitic microstruc-
tures. For the analysis of microstructure in martensitic crystals using relaxation theory see
for example the work of Ball and James [BJ87, BJ92], Bartels et al. [BCC+06], Carstensen
et al. [CP97], Gobbert and Prohl [GP98b, GP98a], Govindjee et al. [GHH07, GMH02],
Hackl and Heinen [HH08] and Kohn [Koh91]. Other than its mechanical applications a vast
range of engineering problems are addressed by the relaxation theory. Its use in finding the
solutions to many non-convex problems in optimization theory is promising. There is no in-
tention to provide with a complete list of applications of relaxation theory, although only few
of them are mentioned here. Its applications in optimal control theory, in non-cooperative
games, in designing algorithms for modern machine learning, in combinatorial optimization
and intriguing use in optimal problems for communication systems is remarkable.

2.4.1. Relaxation of non-convex potentials - Theory and Methods

In mathematical terms the process of relaxation means replacing the ill-posed problem with
a well posed one. Here by well posedness of the problem means its solution exists and is
guaranteed. Specifically, two approaches are used so far for dealing with ill posed problems
to make them well posed. The general concept is either to replace the original nonconvex
function W in the minimization problem (2.2) with at least its quasiconvex envelope or to
enlarge the space of admissible deformations with the space of parameterized measures.

The technical literature on the subject shows that the idea of replacing the original nonconvex
potential W in the minimization problem (2.2) goes back to L.C. Young. In 1937 he [You37]
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suggested to use a lower-quasiconvex envelope QW of the original nonconvex energy func-
tion W . This reformulates the original problem into a relaxed problem without changing its
essential characteristics (about these essential characteristics we would talk about later in our
discussion). The relaxed version of the problem in (2.2) is thus stated as

inf
u

{∫
Ω

W rel(∇u) dV − `(u) : u = u◦ on ∂Ω and u ∈ W 1,p(Ω,Rn)

}
(2.3)

where W rel(∇u) is the quasiconvex envelope of W . The second technique suggested by
him for the formulation of minimization problem without taking care about the lower semi-
continuity of the integral functional (I(u)) is to replace the space of admissible functions
(Sobolev space) by the space of parameterized measures, in this way one can enlarge the
space of a priori solutions, but this is not a good idea in many situations since it can change
the problem into a completely new problem which may be of no interest anymore as far
as its physical applications are concerned. His first suggestion of replacing the original
nonconvex energy function with its corresponding quasiconvex envelope was appealing and
therefore adopted to many applications later e.g., see in the work of Bartels et al. [BCC+06],
Carstensen et al. [CCO08, CHM02], Conti. et al. [CDK09, CHO07, CO05, CT05], DeSi-
mone et al. [DeS04, DD02], Hackl et al. [HH01], Kohn et al. [Koh91, KS86a, KS86b, KS82,
KS83, KV87], Lambrecht et al. [LGM , LMD03], Miehe et al. [ML03, MLG04, MSL02]
and Müller [M9]. Nevertheless the idea of enlarging the space of admissible deformations
has its own significance in many engineering problems. The effort in this direction can be
seen in the literature of Carstensen et al. [CP97, CR97, CR00]. Energy relaxation techniques
allows us to find an approximate solution of the original non-convex problem which lacks
the unique solution.

The effect of relaxation on the physical behavior of the material is realized by its macro-
mechanical features. Relaxation extract all possible information of material microstructure
pertinent to its macro-mechanical behavior. After reformulating the original non-quasiconvex
energy minimization problem to a relaxed one, the new problem is now more effective, effi-
cient and well defined for practical applications.

Analytical computation of the relaxed energy

The computation of exact analytical formulae for the relaxed (quasiconvex) energy W qc

functions corresponding to non-quasiconvex variational minimization problems in contin-
uum mechanics is not an easy task. The difficulty arises due to the non-local definition (3) of
the quasiconvex energy function. Moreover, for a space dimension n= 2 (or 3) in (3) the en-
ergy density is defined on a four (or nine)-dimensional matrix spaces, which can be reduced
using invariance property under rotations.

The exact analytical results for the relaxed energy are known only for few variational prob-
lems in the literature so far. For example the work of DeSimone and Dolzmann [DD02]
where they give an exact envelope of the relaxed energy potential for the free energy of the
nematic elastomers undergoing a transition from isotropic to nematic-phase. Dret and Raoult
in [DR95] compute an exact quasiconvex envelope for the Saint Venant-Kirchhoff strored en-
ergy function expressed in terms of singular values. The resulting quasiconvex envelope is
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not only rank-one convex and polyconvex but also convex. Some analytical examples of
quasiconvex envelopes are also mentioned by Raoult in [Rao10] for different models in non-
linear elasticity. Kohn and Strang [KS86a, KS86b] gave an exact formula (see Theorem 1.1
in [KS86a]) for the relaxed energy for a variational problem which has its emergence from
the shape optimization problems for electrical conduction. Another exact relaxed result is
mentioned by Conti and Theil in [CT05] where they give two results (Theorem 3.1 (quasi-
convex envelope for two dimensional case), and Theorem 3.2 (the coinciding rank-one and
polyconvex envelopes for the general three dimensional case)) for the incremental noncon-
vex variational problem for rate-independent single active slip elastoplastic materials. Conti
and Ortiz [CO05] determine an exact analytical expression for the relaxed energy in single
crystal plasticity with a nonconvex constraint on the deformation of the crystal that all the
material points must deform in a single slip direction. The macroscopic study of effective
behavior leads them to predict different possible regimes that shows different type of disloca-
tion microstructure in a sigle crystal. They extended their analytical expression in [CHO07]
to the case of crystal plasticity with arbitrary hardening features. Kohn and Vogelius study
the inverse problem of applied potential tomography (also called electrical impedance to-
mography) and come up with an analytical formula [KV87] for the relaxed energy by using
the results from homogenization. In a similar manner but this time with the use of Fourier
analysis Kohn presents in Theorem 3.1 of [Koh91] an exact analytical expression for a two
well energy function with application to solid-solid phase transitions.

Exact relaxed energies not only ease the search for the minimizing deformations of the cor-
responding minimization problem but also reduce the computational cost (which is needed
when one compute the quasiconvex envelope numerically) and work load in finding these
energy minimizing deformations. The micro-mechanical features of the material from its
microstructure are carried safely and predicted certainly at the macroscopic computational
scale. Use of exact relaxed energies for the modeling of complex microstructural material
enables us to formulate more accurate constitutive relations for the macro-mechanical anal-
ysis of these materials. But the fact is that not in every needed physical situation we have
exact analytical formula for the related non-quasiconvex free energy of the material. For an
example among many other energy densities let us consider the Ericksen-James energy den-
sity, which has its applications in the modeling of smart materials. Ericksen-James energy
density fails to be quasiconvex (see for reference [GP98b] and [Rao10]) and there is no ana-
lytical expression present in three dimension till to date. Another important energy density is
the energy function of Saint Venant-Kirchhoff materials which also fails to be quasiconvex
in three dimension [Rao86].

Relaxed problems for which there is a possibility of deriving an analytical expression for
the free energy of the material are free of fine oscillations of the minimizing deformations
unless there is an error in the numerical computations. For the problems where the analyti-
cal expression for the relaxed energy is not easy to derive one opt the numerical procedures
for the computation of its relaxed envelopes. There are many situations where these nu-
merical computed relaxed energies suited to the desired mechanical response of the material
in examination. By computing the relaxed energy numerically we are computing the weak
lower semi continuous envelope of the original energy integral functional. These numeri-
cal approximations of the weakly lower semi continuous envelopes of the energy functional
I(u) are worked out by Brighi et al. [BC94] and Carstensen et al. [CP97] where even
in very special cases the level of difficulty in finding these envelopes is prominant. Other
numerical procedures have been therefore intorduced to find the relaxed energy envelopes
of the corresponding non-quasiconvex energy functions [CR97, CR00]. These procedure
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[AP01, Bar01, CCO08, Chi99, CC92, CKL91, Dol99, DW00, Rou96] are efficient enough
to approximate the quasiconvex envelope W qc which is the largest convex envelope below
W .

Polyconvex and rank-one convex envelopes which give upper and lower bounds to the qua-
siconvex envelope are also useful for the characterization of quasiconvex envelopes. Nu-
merical procedures for the polyconvexification and rank-one convexification are suggested
e.g. in the work of Bartels et al. [BCC+06]. Numerical approximation of rank-one convex
function for the incremental stress potential has been employed in the energy minimization
problems for the macro-mechanical analysis of strain softening inelastic solids by Miehe
et al. [ML03]. Dolzmann et al. have presented numerical algorithms for the computation
of rank-one convex envelopes in [Dol99, DW00]. Another numerical iterative procedure is
presented by Wang et al. in [WL07] for the computation of rank-one convex envelopes.

Numerical approximation via generalized solutions (young measures)

The highly oscillatory behavior of the gradients of infimizing deformations sequence of the
non-quasiconvex variational problems in continuum mechanics lacks classical solutions and
therefore develop the interest in finding the generalized solutions to these non-quasiconvex
variational problems. Lack of weakly lower semicontinuity of the integral functional I(u) is
kept responsible for the non-convergence of the sequence of infimizing deformations (ul) in
a minimization problem. This non-convergence of (ul) is due to the oscillations of the gra-
dients of these infimizing deformations at finer and finer scale. These oscillatory behavior of
the infimizing deformations can be captured by a mathematical tool called Young measures.
For the existence of Young measures and its mathematical definition see [BCC+06, M9]. The
formation of internal structure in a material is strongly connected to the oscillatory behavior
of the gradient of the sequence of infimizing deformations (∇ul) in a related minimization
problem. The Young meansures associated with these sequences (∇ul) are called gradient
Young measures. The problem is reformulated into a quasiconvex minimization problem
where the physical structure of the original non-quasiconvex energy function in not changed
but theoretically it is replaced by its approximated quasiconvex energy function using young
measures. The idea, first discussed by Young [You37] and afterwards refined by others
[Bal88, BJ87, JK89, KP94], is to enlarge the space of admissible deformations that account
for the energy minimization. For this purpose numerical procedures and techniques are pro-
posed. The methodology of constructing a relaxed energy minimization problem by using
Young measures is discussed e.g. in [CR97, CR00, NW92a, NW92b, Ped97, Ped95, Ped96,
Rou94, Rou96, Rou97]. A numerical scheme for the microstructure in a nonconvex vectorial
variational problem is discussed in [AP01] using Young measure approximations.

2.4.2. Direct numerical minimization

Non-quasiconvex energy functionals are minimized directly by the application of finite el-
ement discretization for both the related non-quasiconvex energy density and the material
domain. By doing so one preserve the physical relevance of the energy function, i.e. the
physical importance is not removed from the energy minimization problem. Although by us-
ing these numerical methods it is difficult to reach the desired minimum energy state, since
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the numerical procedure may stop at a local minimum energy state. But for some application
(e.g. in hysterises phenomenon the metastable states may be desired) it is equally advanta-
geous. This non-attainment of the global energy minimizer is due to the non-quasiconvex
nature of the energy density.

Finite element method has been applied to obtain the energy minimizers directly solving the
non-quasiconvex energy minimization problems [GP98b]. Using direct numerical simula-
tion for solving the non-quasiconvex energy minimization problem leads to mesh dependent
results. This means that on a coarse mesh the solution of the non-quasiconvex energy min-
imization problem strongly differs from that on a finer mesh. Although Gobbert and Prohl
[GP98b] have shown that the choice of discontinuous finite elements rather than classical
finite elements can take to mesh independent solutions. For a detailed discussion on the sub-
ject we refer to the following articles [Col90], [GP98a], [LL96], [LL98], [Lus96a], [Lus96b]
for reading. A numerical strategy based on finite element analysis is outlined by Carstensen
et al. in [CP97] for the solution of two-well problem with application to solid-solid phase
transformations. Other numerical treatment of non-quasiconvex variational problems with
potential wells are discussed by Chipot et al. in [Chi99, CC92, CL95]. Also the work of
Collins et al. [CKL91, CLR93] give an insight that how these numerical approximations
can be used for the approximation of relaxed variational problems with application to phase
transforming solids. Roub́iček [Rou96] has treated the non-quasiconvex variational prob-
lems in a two way approach, first he get a relaxation by gradient Young measures and then
apply the direct numerical minimization using finite element strategy.

We close this discussion on relaxation theory and methods with the conclusion that here in
this dissertation we provide an exact analytical expression for the quasiconvex envelope of
the nonconvex free energy density which arise during our study of intergranular interactions
of the continuum particles in a granular medium. Moreover an analytical expression for the
free energy of a two phase material which undergoes a phase transition form martensites to
detwinned martensites.
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Part I.

Variational modeling of granular materials using
exact relaxed potential
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3. Modeling of a granular medium with microstructures

Due to a large number of industrial applications and their use in everyday life granular
materials have been studied extensively throughout the past years. A numerous investiga-
tions have been performed in order to model the different mathematical and mechanical
aspects of these materials [AVA06, KAV06, AS06, Bar94, CM92, EV97, EGGS00, God86,
HC07, HNB02, MNR99, M9b, MV87, MGC12, OK98, PV11, PM01, dPIA02, SZY06],
[SdBC01a, SdBC01b, Tej97, TN06, Tp01, TS98, TS99, AT02, TW05, TWG04, Var09, WT06,
WTP07]. Our focus is to consider the counter-rotations of granular particles at the microscale
and to develop a mechanical model that can predict on the formation of distinct deformation
patterns (for an overview on the experimental observations of such patterns the reader is
referred to the book by Aranson and Tsimring [AT09]) which are related to the microstruc-
tures in the granular materials. The mechanical behavior of granular materials have been
simulated and investigated mainly by two distinct approaches where discrete and continuum
description of the granular particles are considered. In developing a mathematical model for
their deformation behavior we focus our attention to the continuum description of granu-
lar particles. Consideration of continuum description of granular particles in modeling the
granular materials with microstructures have been proved successful, a survey on which is
presented in the next section.

3.1. Continuum theories for the modeling of granular materials

Continuum theories for the simulation of granular materials have been employed since 1776
when the first yield criterion for the granular materials was stated by Coulomb [Cou76].
Here, in this section, we review continuum theories more specifically the generalized con-
tinuum theories for the modeling of granular materials with microstructures. Among the
generalized continuum theories the emphasis would be particularly on the Cosserat contin-
uum theory, which would be further used for the development of material model for the
granular media with microstructures.

Continuum theories are divided into two main branches consisting of nonlocal and local
continuum theories. Nonlocal continuum theories based on the concept of nonlocal actions
which means that at a particular material point the mechanical behavior of a material under
deformation is influenced or depends upon the state of all other material points in the do-
main. A published treatise on nonlocal theories is present in the literature due to Eringen
[Eri02]. Nonlocal action principle in the continuum is a generalization of the local action
principle. Local action principle states that the deformation behavior of a material at a par-
ticular point can be completely determined by the variables defined at that point only. Local
continuum theories are further divided into two main categories in one of which lies is the
classical continuum theory and in the other lies are the non-classical continuum theories.
Classical continuum theory is the usual Boltzman continuum in which each material point
of the continuum body has three degrees of freedom which are related to the displacements
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Figure 3.1.: A tree diagram of different continuum theories.

of that particular point. Non-classical continuum theories are endowed with additional de-
grees of freedom. Generalized continuum theories are the non-classical continuum theories
which can further be categorized into two subgroups. In one of which lies is the higher-grade
continua, and in the other, higher-order continua is placed. In the higher-grade continuum
theory (e.g. the second-grade theory of Mindlin [Min64] and Maugin [Mau92]) either the
higher-order derivatives of the displacement field or the gradient of the internal field variables
are involved. In higher-order continuum theories additional (to classical Cauchy continuum
theory) degrees of freedom are incorporated. A tree categorizing the continuum theories is
given in the Figure 3.1.

Higher-order continuum theories are well suited for the modeling of granular materials with
microstructures due to the integration of additional degrees of freedom. Since these ad-
ditional degrees of freedom becomes an important mean of information regarding the mi-
crostructural changes which are further inter-related to the overall macroscopic changes with
suitable deformation measures. Higher order continuum theories are further categorized into
three microcontinuum field theories which were sorted out by Eringen [Eri02] using the
concept of directors initially introduced by Ericksen and Truesdell [ET58] in 1958. These
directors are being attached to each microcontinuum point. According to them each contin-
uum point is endowed with nine additional degrees of freedom. Thus the state of the elastic
material body at any particular time is depending upon a total of twelve degrees of freedom.



3.1. Continuum theories for the modeling of granular materials 25

Three of them are the usual displacement degrees of freedom of Cauchy continuum and the
nine additional degrees of freedom arising from the micro-deformation of the continuum
points (also called deformable directors) which are related to the material microstructures.
In Cosserat continuum these directors are assumed to be rigid. Thus generalizing the con-
cept of Cosserat continuum they therefore introduced a new theory in which they considered
the three additional micro-stretches of each rigid director of Cosserat continuum and named
the theory as microstretch theory of continuum, which was further generalized to the theory
of micromorphic continuum in which each rigid director of Cosserat continuum is assumed
to be deformable. In microcontinuum theories of Eringen [Eri02, Eri68], the second order
deformation tensor is related to macroscopic deformation and the third order deformation
tensor is related to the microdeformation of the continuum points. Both these second and
third order tensors can be decomposed into dilation, rotation and strain tensors (see Figure
3.2), with a unique description for the second order decomposition and a non-unique descrip-
tion for the third order tensor. For instance, if we consider that the second order deformation
tensor is denoted by S and the third order deformation tensor by T then the decomposition
into the dilation, rotation and shear part is described mathematically as

S =
1

d
trS I︸ ︷︷ ︸

Dilational part

+ SA︸︷︷︸
Rotational part

+ devSS︸ ︷︷ ︸
Shearing part

, (3.1)

and

T = t⊗ I︸ ︷︷ ︸
Dilational part

+ TA︸︷︷︸
Rotational part

+ devTS︸ ︷︷ ︸
Shearing part

, (3.2)

where d is the dimension of the problem under consideration, dev(·) = (·) − 1

d
tr(·)I, I is

the second order identity tensor, the subscript S and A stands for symmetric and asymmetric
part and the vector t has the following form

ti =
1

d
Tikk where T = Tijkei ⊗ ej ⊗ ek. (3.3)

The non-unique decomposition of the third order tensor into dilation, rotation and shear part
can be realized after observing equation (3.3) where the indices (j, k) have been fixed for the
decomposition of T. The other two possibilities could be with the fixed (i, j) or (i, k).
This decomposition of the second and third order tensors of microcontinuum field theories

and the probability of possibly existing deformation modes in a granular material as indicated
in the Figure 3.2, allows Forest and Sievert [FS06] to further classify these theories. This
classification of the microcontinuum field theories is shown in the Figure 3.3 where they can
be sorted out according to the number of degrees of freedom incorporated with.

For the complete description of kinematic and constitutive relations see for instance the work
of Eringen [Eri02] and Forest and Sievert [FS06]. Also, a very good survey on the conse-
quences of these constitutive equations of the generalized continuum is provided in the work
of Lakes [Lak95]. Here the purpose of this study is not to give a detailed description of the
constitutive relations in each of the case but to understand their development on the basis
of the idea of deformation tensor decomposition, in order to complete the discussion on the
higher order continuum theories for the modeling of granular materials behavior. Further-
more, the aim of this section is to provide an overview of the higher order theories which are
capable of modeling the granular material with microstructures.
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Granular materials often exhibit soft zones under deformation. These soft zones are also
called shear bands [BH99, EV97, GN04, ML03, M9b, MV87, OK98, TB96, TPG04] and
are precursors to the material failure in general. The reasons of their development in granu-
lar material can be traced to the phenomenon of particle rotations. These particle rotations
cannot be well understand by the classical continuum models. And at the onset of these soft-
ening zones in the material classical continuum models fails to describe the material behavior
anymore. Thus the initial or boundary value problem described by the classical continuum
approach becomes ill-posed due to the fine oscillations of the gradient of minimizing de-
formations. Moreover in such situations modeling with classical continuum approach leads
to mesh dependent solution to these initial or boundary value problems. A remedy to such
problematic situation is to introduce the regularization techniques to the classical continuum
model, or to use higher order gradient theories [CCM01, Mau92, SdBC01a], or introduce
length scale effects to the constitutive relations [AS06, TWG04], or to use coupled stress the-
ory [Now68, Now70, Tou62, Tou64] which take contribution from particle rotations. Among
the theories which aptly incorporate the length scale effects is the Cosserat continuum the-
ory. Moreover Cosserat continuum takes into account the particle rotation in an independent
way. It introduces independent rotational degrees of freedom with the translational degrees
of freedom of the classical continuum. And therefore considered to be suitable to describe
the behavior of granular materials.

The main objective of this study is to reconsider the rotational phenomenon of granular
material and propse some new measures that help in predicting the microstructural features
of the material.

3.2. Intergranular kinematics and the interaction energy potential

Particle rotations in a granular assemblage is an intriguing and experimentally well recog-
nized [OK98, OKNN82, SZY06] phenomenon that contribute in the development of material
microstructures [Bar94, SdBC01a, TPM05, TW05]. Although the rotations of particles at the
microscale in a granular medium has been considered in the work of Alonso-Marroqun et
al. [AMVH+06], Chang and Hicher [CH05], Chang and Ma [CM92], Hicher and Chang
[HC07], Papanicolopulos and Veveakis [PV11], Suiker et al. [SdBC01a, SdBC01b], Torde-
sillas et al. [TPM05], Tordesillas and Walsh [TW05] and Vardoulakis [VS95] , but the
essence of these particle rotations especially their interactions in observing the formation of
distinct deformation patterns in a granulate medium is not well understood. It is therefore
our aim to reconsider the intergranular kinematics of the counter-rotating particles at the mi-
croscale in a granular assemblage. In this section, we try to develop an interaction energy
potential in a granulate medium which arises as a consequence of counter-rotations of its
particles. In the next sections, we will describe the different features of this interaction en-
ergy potential and will demonstrate on its contribution in observing different microstructural
regimes in a granular medium.

We propose some new measures for the characterization of microstructural phases in Cosserat
continuum after taking into consideration the kinematics of the particles of a granular struc-
ture at the continuum scale. Due to numerous applications of the granular materials and
the exhibition of distinct deformation patterns it got to our attention to consider the inter
granular cohesive interactions of their discrete particles. The key issue while discussing the
intergranular kinematics of granular material at the continuum scale is to establish a relation
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Figure 3.4.: A schematic representation of a granular structure with counter rotating parti-
cles.

between the microscopic response of the material due to particle interactions and its macro-
scopic behavior. The particles in the granular assembly at the microscale are discrete in
nature. Therefore to understand the effect of their interaction on the physical properties and
the overall response of the material at the continuum scale has been a long discussion in the
field of micromechanics of granular materials. These particle interactions leads to two impor-
tant modes of deformations in the granular assembly called sliding and rolling of particles in
contact which play crucial role in the dissipation of the material energy [AMVH+06, PV11]
at the continuum scale.

In our study we develop an interaction energy potential that takes into account the inter-
granular kinematics at the continnuum scale and define two new material parameters as a
suitable measure for the observation of microstructural phases of the material. For this pur-
pose consider the granular material where two neighboring grains/particles are in contact
with each other as shown in Figure 3.4. The two particles have sliding and rolling effects
which contribute to the material energy, therefore it is necessary to take into account this
micro-rotational and translational interacting motions of these particles at the continuum
scale.

Intergranular kinematics is governed by independent translational and rotational motions of
the granules at the microscale. Consider now that at the continuum scale the translational
motion of the two interacting particles is represented by the displacement vector field ui ei
and the rotational motion of the interacting granular particles is represented by a field vec-
tor analogous to the micro-rotational vector field ϕi ei of the Cosserat continuum. The strain
measures are then associated with the deformation of these interacting particles. Correspond-
ing to displacement vector field and the microrotational vector field are the associated defor-
mation tensor fields uj,i ei⊗ej and ϕj,i ei⊗ej respectively. The symmetric part of uj,i ei⊗ej
is the classical strain tensor εij ei ⊗ ej . A deep insight into the rotating phenomenon of the

interacting grains/particles clears that the macroscopic shear
(
εij −

1

d
εkk δij

)
ei ⊗ ej in-

fluence the microrotational deformation ϕj,i ei ⊗ ej of the granular particles. This leads us
to suggest a proportionality relation between the gradient of the microrotational vector field
and the macroscopic shear strain which in mathematical terms is given by√√√√ d∑

i,j=1

(ϕj,i)
2 ∝

√√√√ d∑
i,j=1

(
εij −

1

d
εkk δij

)2

(3.4)

where d is the dimension of the space under consideration. This proportionality relation is
solved with the introduction of the length scale parameter β with the dimension of the inverse
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of a length. Thus we can write√√√√ d∑
i,j=1

(ϕj,i)
2 = β

√√√√ d∑
i,j=1

(
εij −

1

d
εkk δij

)2

(3.5)

This brief but comprehensive discussion on itergranular kinematics enables to propose an
interaction energy potential that will contribute to the material strain energy functional. This
interaction energy potential is stated as

I = α

(
d∑

i,j=1

(ϕj,i)
2 − β2

d∑
i,j=1

(
εij −

1

d
εkk δij

)2
)2

(3.6)

or, in tensor notation

I = α
(
‖∇ϕ‖

2

− β2 ‖dev sym∇u‖
2
)2

(3.7)

where α and β are non-negative material constants, α is the interaction modulus having in-
formation regarding frictional effect in the interacting particles and β is related to the particle
size having information regarding intrinsic length scale in Cosserat continuum. The proposed
interaction energy potential not only bridges the gap between microstructural properties and
the macroscopic behavior of the material but also enables us to characterize the different
microstructural phases in the granular material.

3.3. Cosserat continuum theory

The origin or the main idea of the Cosserat continuum theory should be credited to a German
physist Woldemar Voigt who in 1887 published the article [Voi87] which possibly lead to the
development of this theory. In a detailed description, it was first discussed in 1909 by the
French brothers, Eugèn Cosserat and François Cosserat, in the monograph [CC09] written
originally in French which was afterwards translated into English by D. H. Delphenich in
2007. A first review of the book [CC09] was published in 1913 by Wilson in his article
[Wil13]. The importance of the theory was not recognized for many years due to its unex-
plored applications, non availability of additionally introduced material parameters (for ex-
ample in case of linear isotropic elastic material other than the two Lame’s parameters it has
four additional material parameters) and unsettled description of the constitutive relations
(since the Cosserat brothers did not established the constitutive equations of the Cosserat
continuum theory when it was first presented in [CC09]). The theory enjoyed its renais-
sance with the work of Günther [G8] in 1958. In the 1960’s Eringen [Eri68], Eringen and
Suhubi [ES64], Grioli [Gri60], Mindlin [Min64], Nowacki [Now69, Now68, Now70], Pal-
mov [Pal64], Schaefer [Sch62, Sch67], Suhubi and Eringen [SE64], Toupin [Tou62, Tou64],
Truesdell and Toupin [TT60] have published their work on Cosserat continuum in which
they further developed the theory in different directions and provide a more reliable and so-
phisticated constitutive description of the Cosserat continuum. The theory got the attention
of many researchers in the sixties of the last century which can be realized from the work of
Stojanović [Sto69] where four hundred references are presented. At the same time the theory
was generalized to the framework of finite deformations by Aero and Kuvshinskii [AK60],
Grioli [Gri60], Kafadar and Eringen [KE71, KE76], Reissner [Rei73, Rei87], Stojanović
[Sto72], Toupin [Tou62] and Truesdell and Toupin [TT60].
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Later, with the deeper understanding on the advanced engineering materials and their me-
chanical behavior the necessity of working in the framework of Cosserat continuum theory
was realized to address different engineering problems. The theory was completely devel-
oped in 1960s, since than it has been used in modeling the mechanical behavior of a large
number of materials. For example in modeling the behavior of granular medium [AVA06,
KAV06, Bar94, CM91, CM92, EV98, HB03, M9b, MV87, PV11, PM01, SZY06, Sch62],
[Sch67, SdBC01a, SdBC01b, SD02, Tej97, TB96, Tp01, TN06, TPM05, TS98, TS99, AT02,
TW05, TWG04, WT06, WTP07, ZJM06], in foams [AL94], in failure analysis [Bar94],
[Eri68], [PV11], in plate and shells [AAE10], in observations of localized zones [AVA06,
KAV06, BH01, dB91, dBS91, DSW93, EV97, GN04, HB03, HNB02, M9b, MV87, Tej97],
[TB96, Tp01, TN06, TPG04, TW05, WADS95], in porous media [EV98] (and references
there in), in rods and shells [ET58] (and references there in), in sands [GN04] (and refer-
ences there in), in bones [PL86] (and references there in), in rocks [SD02] (and references
cited in), in wave propagation through infinite medium [SdBC01b] (and references cited in
) and in modeling the thermomechanical behavior of materials [Now69, Now68, TW05]. A
more detailed review of the Cosserat continuum theory can be found in the paper [AAE10]
by Altenbach et al. where they present a detailed bibliography (consisting of 333 references)
on the many possible applications of the Cosserat continuum theory.

The exhibition of deformation behavior pertinent to the theory of Cosserat continuum has
also been noticed by experimental investigations. Park and Lakes observed the microstruc-
tural effects in the deformation behavior of the human compact bone in torsion while per-
forming an experiment [PL86]. According to them the redistribution of the strain measured
in wet bone was almost similar as calculated with the Cosserat elasticity theory. The ex-
perimental work of Lake [Lak86, Lak95], Tejchman and Gudehus [TG93] and the reference
cited in there also demonstrate on the possible applications of the Cosserat continuum theory.

The Cosserat continuum theory adequately describes the microstructural behavior of gran-
ular materials due to the consideration of additional and independent rotational degrees of
freedom. Here we present a brief review on the applications of Cosserat continuum with
special emphasis on the use of Cosserat continuum in different aspects for the observation of
deformation mechanisms of granular materials with microstructures.

Various approaches have been adopted to model the granular materials with microstructure
using Cosserat continuum theory. For instance, Tordesillas and Walsh [AT02] use microme-
chanical approach in modeling the mechanical behavior of granular materials. They incor-
porated rolling resistance and contact anisotropy in a Cosserat continuum model and de-
vised a homogenization procedure to capture the localized patterns related to the granular
material microstructures. Modeling the localized behavior of granular material has been
considered a major application of Cosserat theory. Tordesillas and Walsh and Tordesillas et
al. [TPG04, AT02, TW05] use a micromechanical approach for modeling the localization
behavior of granular materials with microstructures. Based on a micromechanical theory
of Cosserat continua Chang and Ma [CM91] model the deformation behavior of granular
materials using a constitutive relations accounting for the particle interactions. Within the
framework of small strain theory a constitutive description based on second-grade microp-
olar continua is developed by Suiker et al. [SdBC01a] incorporating the microstructural
effects due to particle kinematics, which can be reduced to the Cosserat continuum theory
for modeling the granular materials behavior. Using a Cosserat continuum theory a microme-
chanical approach in modeling the dense granular materials is also presented by Zhang et al.
[ZJM06]. A multiscale analysis using non-local constitutive setting has been carried out by



3.3. Cosserat continuum theory 31

Tordesillas et al. [TWG04] in modeling the granular material microstructures. A numerous
of different constitutive models have been proposed for the analysis of localized deforma-
tion bands developed in granular materials that are the precursors to the material failure. A
polar hypoplastic constitutive settings of Cosserat continuum have been used by Bauer and
Huang [BH01], Huang et al. [HNB02], Tejchman and Bauer [TB96] and Tejchman and
Poland [Tp01] to calculate the shear zone patterns in granular medium. A finite element
analysis of localized bands based on anisotropic micropolar hypoplastic model is performed
by Tejchman and Niemunis [TN06]. Using hypoplastic constitutive laws in the framework of
Cosserat continuum Gudehus and Nübel [GN04] present a comparison of experimentally and
numerically observed localized deformation patterns in granular material. An elastoplastic
constitutive theory of Cosserat continuum is used by Ehlers and Volk [EV97] for modeling
the strain softening patterns in the granular materials. In the framework of large deforma-
tions and rotations Steinmann [Ste94] give an elastoplastic Constitutive model to investigate
the phenomenon of localized bands in granular materials. Willam et al. [WADS95] use plas-
ticity theory of Cosserat continuum to capture the localization behavior of granular material
leading to the development of microstructures. Alsaleh et al. [AVA06] developed a Cosserat
continuum model by incorporating micro-rotations, couple stresses in the Lade’s model for
modeling the localized deformations in granular materials. They present [KAV06] its numer-
ical implementation to simulate the sand and glass beads samples and predict the shear bands.
A homogenization technique based on differential expansion in the framework of Cosserat
continuum has been considered and generalized by Pasternak and Mühlhaus [PM01] for the
granular materials with microstructures. They developed a Cosserat continuum model based
on the idea where each granular particles are connected through translational and rotational
springs. According to them the micro-rotational degrees of freedom of Cosserat continuum
are natural outcome from the consideration of a discrete system of granular particles with
interparticle contact forces and moments using mathematical homogenization procedure.

Although the Cosserat continuum has proved to be an appropriate theory for the modeling
of granular materials with microstructures, it also has been used in modeling the mechanical
behavior of many other engineering materials. There is a growing interest in its applica-
tions in crystal plasticity, for instance, see the work of Steinmann [Ste94] and references
in [DFC98, FS06]. Here the Cosserat continuum theory is used for modeling the mechani-
cal behavior of a granular medium considering the microstructural effects at the continuum
scale.

3.3.1. Kinematics of the Cosserat continuum

The material point of a Cosserat continuum has six degrees of freedom. Three of them are
the translational motions represented by the displacement vector field u and three are the
micromotions represented by the microrotational vector field ϕ. The micromotions of the
continuum points are independent of its translational motions. Associated with the displace-
ment and microrotational vector fields are the Cosserat strain tensor e and the curvature
strain tensor κ, respectively. These strain tensors are defined as

e = ∇u− asyϕ, in index notation: eij = uj,i − Eijk ϕk, (3.8)

κ = ∇ϕ, in index notation: κij = ϕj,i (3.9)

where in (3.8) asyϕ is the second order microrotational deformation tensor

asyϕ = E ·ϕ, (3.10)
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and E = Eijk ei⊗ej⊗ek is the third order permutation tensor, where Eijk = 1, −1 or 0 if re-
spectively (ijk) is an even permutation, an odd permutation or either of the index is repeated.
Since the deformation of a Cosserat material depends on the particle rotations therefore be-
ing a measure of deformation the Cosserat strain tensor e depends upon the microrotations
of the continuum particles and hence is inter-related to the curvature strain tensor κ. The
interesting point to note in these kinematic relations is that the two field variable displace-
ment and microrotation of two different structures are unified in a compatible way. This
compatible description not only preserves the independence of the two field variables but
also provide a connection of the field variables at two different structures (micro and macro
structure) of the material. For the formalism of these deformation measures which connect
the microstructural degrees of freedom to the macrostructural degrees of freedom in Cosserat
continuum in an independent manner the reader is referred to Section 3 of [BS89] and also
[CC09].

The macrorotational deformation in a Cosserat continuum is influenced by the microrota-
tional deformation of the continuum particles and therefore an appropriate relative measure
for the macro-rotational deformation is defined as

ω = asy∇u− asyϕ, in index notation: ωij =
1

2
(uj,i − ui,j)− Eijk ϕk. (3.11)

3.3.2. Balance laws in a Cosserat continuum

The balance of mass and balance of linear momentum in a Cosserat continuum are identi-
cal to that in Boltzmann continuum except with the understanding that here the force-stress
tensor is not symmetric. Due to this non-symmetricity of the force-stress tensor an addi-
tional balance equation called the balance of angular momentum need to be satisfied by a
continuum body to be in equilibrium. This balance equation takes into consideration the
independent micro-rotations of the Cosserat medium and the associated couples in the form
of couple-stress tensor. To be precise, the law of balance of mass, mechanical energy and
entropy are not presented here, for the description of these laws the reader is referred to the
book by Vardoulakis [Var09]. The mathematical description of balance of linear and angular
momentum is given below

Balance of linear momentum

The balance of linear momentum also called translational momentum states that the material
rate of change of total linear momentum of a body B at a given time instant ‘t’ is equals to
the total force acting on that body. Let L be the total linear momentum at time instant ‘t’
then

L =

∫
V

p dV =

∫
V

ρv dV (3.12)

where ρ is the mass density of B and v is the velocity. Further, let F be the total force acting
on this body then

F =

∫
V

b dV +

∫
t dS (3.13)
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where b is the body force and t is the traction force acting on that body. Now, according to
the balance of linear momentum

DL
Dt

= F . (3.14)

Using equation (3.12) and the definition of F one can write∫
V

ρ
Dv

Dt
dV =

∫
V

b dV +

∫
∂V

σ · n dS, (3.15)

where σ is the force-stress tensor acting at the surface ∂V of the body with volume V .
After the application of the divergence theorem on the second term on the right hand side of
equation (3.15) one can write∫

V

ρ ü dV =

∫
V

b dV +

∫
V

∇ · σ dV. (3.16)

Since this formula is true for each subdomain of the volume V of the continuum body there-
fore one can write the local form of the balance of linear momentum as

ρ ü− b−∇ · σ = 0, in index notation: ρ üi − bi − σji,j = 0. (3.17)

Balance of angular momentum

The balance of angular momentum in a body B at a given time t states that the material
rate of change of the total angular momentum equals to the total angular momentum due to
the body force, traction force and traction moment acting on that body. In a mathematical
expression one can write

DJ
Dt

= M, (3.18)

where J is the total angular momentum (see Figure 3.5) expressed as

J =

∫
V

(Jo + Js) dV =

∫
V

(x× p+ Iϑ) dV, (3.19)

andM is the total angular momentum due to body force, traction force and traction moment,
which is given by

M =

∫
V

x× b dV +

∫
∂V

(x× tf + tm) dS. (3.20)

In (3.19) x is the position vector, p is the linear momentum, I is the moment of inertia of
the spinning particle and ϑ is the angular velocity of this particle. From (3.19) Left hand
side of (3.18) is obtained as

DJ
Dt

=
D

Dt

∫
V

(x× p+ I ϑ) dV (3.21)

which implies

DJ
Dt

=

∫
V

(
x× Dp

Dt
+ I

Dϑ

Dt

)
dV (3.22)
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Figure 3.5.: Jo is the angular momentum due to orbital position Js is the angular momentum
due to orbital spin.

Now due to the inconvenience of dealing the cross product of vectors with tensors we first
derive equations for the balance of angular momentum using index notation and then state
the resulting expression in tensorial form. In index notation (3.22) becomes

DJi
Dt

=

∫
V

E
ijk
x

j

(
Dp

k

Dt

)
+ I

Dϑ
i

Dt
dV (3.23)

Using the property of cross product one can write the middle term in (3.20) as∫
∂V

x×tf dS =

∫
∂V

E
ijk
x

j
tf k

dS ; Einstein summation convention is assumed (3.24)

now since the cauchy stress theorem suggests that (tf )
k

= σ
lk
n

l
therefore (3.24) becomes∫

∂V

x× tf dS =

∫
∂V

E
ijk
x

j
σ

lk
n

l
dS (3.25)

After applying divergence theorem we get∫
∂V

x× tf dS =

∫
V

E
ijk
∂

l

(
x

j
σ

lk

)
dV (3.26)

∫
∂V

x× tf dS =

∫
V

E
ijk
σ

jk
+ x

j
σ

lk,l
dV (3.27)

Also the traction moment using cauchy theorem can be written as

(tm)
i

= µ
ki
n

k
(3.28)

Thus (3.20) becomes

M =

∫
V

E
ijk
x

j
b
k

+ E
ijk
σ

jk
+ E

ijk
x

j
σ

lk,l
+ µ

ki,k
dV (3.29)

Using (3.18) implies∫
V

E
ijk
x

j
b
k

+ E
ijk
σ

jk
+ E

ijk
x

j
σ

lk,l
+ µ

ki,k
dV =

∫
V

E
ijk
x

j

(
Dp

k

Dt

)
+ I

Dϑ
i

Dt
(3.30)
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or ∫
V

E
ijk
x

j
σ

lk,l
+ b

k
− Dp

k

Dt
+

∫
V

µ
ki,k

+ E
ijk
σ

jk
dV =

∫
V

I
Dϑ

i

Dt
dV (3.31)

The first term on the left hand side of (3.31) is zero due to the balance of linear momentum,
therefore we arrive at∫

V

µ
ki,k

+ E
ijk
σ

jk
dV =

∫
V

I
Dϑ

i

Dt
dV (3.32)

which is the balance equations for the angular momentum where the term on the right hand
side is the contribution of the particle spinning around its own axis. Local form of (3.32) is

µ
ki,k

+ E
ijk
σ

jk
= I

Dϑ
i

Dt
(3.33)

If we assume zero angular velocity then (3.33) becomes

µ
ki,k

+ E
ijk
σ

jk
= 0 (3.34)

thus we conclude the balance of angular momentum in tensor notation by

∇ · µ + E : σ = 0. (3.35)

3.4. Development of a continuum model for granular materials

Continuum modeling of granular materials with microstructures taking into account the ef-
fects of both the translational and micro-rotational motions of the granular particles at the
microscale has been discussed in the work of Suiker et al. [SdBC01a, SdBC01b], Chang and
Hicher [CH05], Chang and Ma [CM91, CM92], Hicher and Chang [HC07]. But all these
models are based on the micromechanical approach where a two scale (micro and macro)
scale computations are required in order to analyze the averaged behavior of the granular
material in deformation.

We develop a continuum scale model for granular materials with microstructure taking into
account the microstructural interaction of the granular particles at the microscale. Our ap-
proach is based on the energy relaxation methods [Dac89] where we introduce an interaction
energy potential induced by the counter-rotations of the granular particles together with the
Cosserat energy in the case of isotropic elastic solid. A two field energy minimization prob-
lem is afterwards formulated to analyze the mechanical behavior of granular structures.

3.4.1. An elastic Cosserat material model

The most prominent feature of the Cosserat theory is the consideration of the couple stresses
in the elastic continuum. In fact Cosserat brothers were not only the first to introduce the
idea of couple stresses in an elastic continuum of a three dimensional body but the origin
of the idea traced back to the work of Voigt [Voi87] on the theory of shells. This promising
idea probably adopted by the Cosserat brothers which leads them to develop a theory of an
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elastic continuum with additional degrees of freedom whose constitutive relations incorpo-
rate the couple stresses. After a systematic treatment they acquired the balance of forces and
moments in the following form

∇ · σ + b = 0 (3.36)

∇ · µ+ asyσ + m = 0 (3.37)

where b and m are the body force and moment respectively. Conjugate to the non-symmetric
force-stress tensor σ and the couple-stress tensor µ are the Cosserat strain tensor e and
curvature strain tensor κ which can be decomposed into a recoverable elastic part and a
non-recoverable inelastic part as follows

e = eel + epl, κ = κel + κpl. (3.38)

The force-stress tensorσ and the couple-stress tensorµ can be determined from the Clausius-
Duhem inequality. This approach has been followed in deriving the constitutive response of
materials working within the framework of thermodynamics. The Clausius-Duhem inequal-
ity in the absence of thermal effects can be written as

D = −Ẇ + pi ≥ 0. (3.39)

The left hand side of inequality (3.39) is the intrinsic dissipation potential of the material
under consideration, where W is the free energy of the material and pi is the power of internal
forces and is given by

pi = σ : ė+ µ : κ̇. (3.40)

Hence, 3.39 becomes

D = −Ẇ + σ : ė+ µ : κ̇ ≥ 0. (3.41)

Since, the free energy potential W is purely depending upon the elastic part of the Cosserat
strain tensor, the curvature strain tensor and (or) the hardening (denoted here by ’h’, either
latent or kinematic) variable, such that

W = W (eel,κel, h) . (3.42)

Which implies

Ẇ =
∂W

∂eel
: ėel +

∂W

∂κel
: κ̇el +

∂W

∂h
· ḣ (3.43)

Consider the decomposition of deformation measures from equation (3.38) with the assump-
tion that there is no hardening effect then the Clausius-Duhem inequality (3.39) implies(

σ − ∂W

∂eel

)
: ėel +

(
µ− ∂W

∂κel

)
: κ̇el + σ : ėpl + µ : κ̇pl = 0 (3.44)

which results in the following relations to describe the constitutive response of the granular
material

σ =
∂W

∂e
, µ =

∂W

∂κ
. (3.45)

The energy potential W does not only depends on the gradients of the macro and micro-
motions of the continuum particles but also on a macrodeformation tensor which relates the
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macro and micro-motions of the continuum particles. Precisely, this means, that the energy
density is a function of two independent field variables (the displacement and micro-rotation)
which has contribution form a relative rotation tensor associating the macrodeformation with
the microdeformation of the continuum particles. In the framework of generalized elasticity
it can be expressed in the following form

W (∇u,∇ϕ) =
1

2
e (u,ϕ) : C : e (u,ϕ) +

1

2
κ (ϕ) : C : κ (ϕ) (3.46)

where u is the displacement vector field, ϕ is the micro-rotation vector field, C and C are the
fourth order constitutive tensors of elastic constants. The displacement and micro-rotation
vector fields are to be determined from the energy minimization problem which reads
Find {u,ϕ} such that

{u,ϕ} = arg

{
min
u,ϕ

{∫
Ω

W (∇u,∇ϕ) dV − ` (u,ϕ)

}}
(3.47)

along with certain prescribed boundary conditions of the type u|
∂Ωu

= u◦ andϕ|
∂Ωϕ

= ϕ◦ ,
whereas ` (u,ϕ) is the potential of external foreces and couples

` (u,ϕ) =

∫
Ω

(b · u + m ·ϕ) dV +

∫
∂Ωu

tu · u dS +

∫
∂Ωϕ

tϕ ·ϕ dS (3.48)

where tu is the traction force and tϕ is the traction moment. The fourth order constitutive
tensors C and C can be determined by

C =
∂2W (∇u,∇ϕ)

∂∇u⊗ ∂∇u
, and C =

∂2W (∇u,∇ϕ)

∂∇ϕ⊗ ∂∇ϕ
. (3.49)

Consideration of intergranular kinematics leads us to introduce an interaction energy poten-
tial as discussed in Section 3.2. This interaction energy potential is now integrated with the
free energy (3.46) of the Cosserat continuum. This enables us to define a new enhanced
energy potential for the granular materials in a Cosserat medium which is given by

W enh (∇u,∇ϕ) = W (∇u,∇ϕ)︸ ︷︷ ︸
Cosserat energy function

+ α
(
‖κ‖

2

− β2 ‖dev sym∇u‖
2
)2

︸ ︷︷ ︸
Interaction energy potential

. (3.50)

The minimization problem (3.47) thus now becomes
Find {u,ϕ} such that

{u,ϕ} = arg

{
min
u,ϕ

{∫
Ω

W enh (∇u,∇ϕ) dV − ` (u,ϕ)

}}
(3.51)

The strain energy function (3.46) was quadratic in both the gradient of the displacement
field ∇u and the gradient of the microrotation vector field ∇ϕ therefore the constitutive
tensors for elastic constants were independent of the deformation field variables. After the
integration of interaction energy potential with the Cosserat strain energy function (3.46) the
fourth order constitutive tensors become dependent of the deformation fields which implies
material nonlinearity. This integration of the interaction energy potential with the quadratic
Cosserat strain energy function (3.46) it is now possible to observe the nonlinear behavior of
the granular materials. The fourth order constitutive tensors thus now becomes

C (∇u,∇ϕ) =
∂2W (∇u,∇ϕ)

∂ (∇u)ij ∂ (∇u)kl
ei ⊗ ej ⊗ ek ⊗ el, (3.52)
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and

C (∇u,∇ϕ) =
∂2W (∇u,∇ϕ)

∂ (∇ϕ)ij ∂ (∇ϕ)kl
ei ⊗ ej ⊗ ek ⊗ el. (3.53)

In an isotropic Cosserat medium the enhanced energy potential (3.50) takes the form

W enh (∇u,∇ϕ) =
λ

2

(
tr
(
∇u− E ·ϕ

))2

+ µ ‖sym∇u‖
2

+ µc ‖asy∇u− E ·ϕ‖
2

+
λ

2
(tr∇ϕ)

2

+ µ ‖sym∇ϕ‖
2

+ µc ‖asy∇ϕ‖
2

+ α
(
‖sym ∇ϕ‖

2

+ ‖asy ∇ϕ‖
2

− β2 ‖dev sym∇u‖
2
)2

(3.54)

where ε is the Cauchy strain tensor whose deviatoric part is computed as dev(∗) = (∗) −
1

d
tr (∗) I; d being the dimension of the Cosserat problem under consideration and I is the

second order unity tensor, sym (∗) is the symmetric part of the second order tensor (∗),
asy (∗) is the anti-symmetric part of (∗), ‖(∗)‖ is the euclidean norm of the tensor (∗) which
is defined as ‖(∗)‖ =

∑
i,j

(∗)2
ij , and

{
λ, µ, µc, λ̄, µ̄, µ̄c

}
are the Cosserat material constants

whose physical description along with their units are given in Table 3.1. It is extremely
difficult to attach any specific physical meaning to the four Cosserat material parameters µc,
λ̄, µ̄ and µ̄c, without understanding their effect upon the mechanical behavior of a material
structure under deformation. A very few number of both the mathematical and experimental
procedures have been proposed in the literature for the determination of these elastic Cosserat
constants. For instance, Lakes [Lak83] suggests a torsion test of rods with different radii
for the determination of all the six Cosserat constants. Forest et al. [DFC98] figured out
the values of the elastic Cosserat material constants for the case of beam network. For
composite materials the values of these elastic constants can be traced in the work of Besdo
and Dorau [BD88] and also in Mühlhaus [M6], whereas for cellular materials in the work
of Adachi and Yomita [Var96]. For porous elastic material Lakes [Lak86] determined the
six Cosserat constants while determining the dependence of torsional and bending rigidity
upon the diameter of a rod shaped foam specimen. The method of size effects [Lak95] is
also proved by Lakes to be successful in determination of Cosserat elastic constants. A
comprehensive review on the experimental results for the Cosserat elastic constants is made
by Lakes in [Lak95], where he presents the calculated values of these constants for twelve
different materials.

The energy potential (3.54) is clearly nonconvex, and therefore when it enters in the mini-
mization problem (3.51) will lead to the possible displacement and microrotation field fluc-
tuations at the fine scale and thus leading to internal structure of the material. Moreover, the
existence of the unique minimizing deformations are not guaranteed and it fails to be elliptic
in nature. Since the loss of convexity is related to the loss of ellipticity of the derived gov-
erning field equations from the variational problem, resulting in an ill-posed boundary value
problem. Thus to avoid these problems and to resolve the internal structure of the material
it is therefore necessary to compute a quasiconvex (relaxed) energy potential W rel. The re-
laxed potential when enters in the minimization problem (3.51) now assures the ellipticity
of the resulting boundary value problem, since it satisfy the Legendre-Hadamard condition
(for definition see the book by Dacorogna [Dac89] and also the paper by Ball [Bal76]). The
study by Morrey [Mor52], Dacorogna [Dac89, Dac82, Dac01] gives sufficient justification
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Material
parameter

Meaning Units

λ

Classical material dilatancy parameter: A constant of proportion-
ality between the Cosserat stress tensor σ and the dilatant part of
the Cosserat deformation strain tensor e.

MPa

µ

Classical elastic shear modulus: A constant of proportionality be-
tween the symmetric part of the Cosserat stress tensor σ and the
Cosserat deformation strain tensor e.

MPa

µc

Cosserat shear modulus: A constant of proportionality between
the asymmetric part of the Cosserat stress tensor σ and the
Cosserat deformation strain tensor e.

MPa

λ̄

Cosserat material dilatancy parameter: A constant of proportion-
ality between the Cosserat coupled stress tensorµ and the dilatant
part of the rotational deformation strain tensor κ.

N

µ̄

Coupled shear modulus or bending modulus: A constant of pro-
portionality between the symmetric part of the curvature strain
tensor κ and the coupled stress tensor µ.

N

µ̄c

Coupled shear modulus or bending modulus: A constant of pro-
portionality between the asymmetric part of the curvature strain
tensor κ and the coupled stress tensor µ.

N

α A non-negative material parameter: Interaction modulus. N.mm2

β A material parameter related to the particle/grain size. 1

mm

Table 3.1.: Material parameters and their physical meanings
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for the relation of Legendre-Hadamard (ellipticity) condition with the constitutive descrip-
tion of a mechanical problem. A strictly satisfying Legendre-Hadamard inequality condition
is sufficient for the existence of solution of a displacement boundary value problem (Neces-
sary and sufficient conditions for strong ellipticity can be found in the work of Dacorogna
[Dac01]). In case of non-linear elasticity it has been studied by Hughes et al. (1977), Kato
(1977), Wheeler (1977) and Potier and Ferry (1982) (These references are found in the book
by Phillipe G. Ciarlet [Cia88]).

The energy function (3.46) is quasiconvex therefore the solution to the minimization problem
(3.47) is guaranteed due to the existence theorems by Neff [Nef06]. The question on the
existence of the minimizers arises when the energy function W fails to be quasiconvex. This
is the case with the energy function W enh in the energy minimization problem (3.51). W enh

in (3.54) fails to be convex (see definition 2 in Chapter 2) as seen in Figure 3.8, which
further implies that it is not quasiconvex. The non-quasiconvexity of the enhanced energy
function thus indicates that there is some microstructures in the material corresponding to
the energy minimization problem (3.51). As discussed in Chapter 2, the energy relaxation
methods needs to be employed in order to extract this microstructural information. For this
purpose, in the next Section we compute an analytical expression for the relaxed (quasi-
convex) envelope of the non-convex energy potential in (3.54).

3.4.2. Development of material microstructures

The development of material microstructure is evident when the non-quasiconvex potentials
are used in the energy minimization problem (3.51) for the modeling of material behavior.
Here the energy potential (3.54) is clearly nonconvex. This nonconvexity arises due to the
integration of the nonconvex interaction energy potential in the existing convex energy of
the Cosserat material. Since this nonconvexity is due to the interaction energy potential
term which takes the effect of both the displacement and micro-rotation fields, therefore
the material microstructure is possible in both the displacements and micro-rotations of the
material particles.

3.4.3. Computation of relaxed energy envelope

In this Section, we compute the exact relaxed energy envelope of the nonconvex enhanced
energy function (3.54). Direct methods in the calculus of variations [Dac89] are employed in
order to compute this quasiconvex envelope, which afterwards would be used in the energy
minimization problem for finding the state solution. Let us start from the original energy
(3.54) which can be rewritten in the following form

W enh (∇u,∇ϕ) =

(
λ

2
+
µ

d

)(
tr sym∇u

)2

+ µ ‖dev sym∇u‖
2

+ µc ‖asy∇u− E ·ϕ‖
2

+
λ

2
(tr ∇ϕ)

2

+ µ ‖sym ∇ϕ‖
2

+ µc ‖asy ∇ϕ‖
2

+ α
(
‖sym ∇ϕ‖

2

+ ‖asy ∇ϕ‖
2

− β
2 ‖dev sym∇u‖

2
)2

(3.55)
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where d is the dimension of the Cosserat problem under consideration. The quasiconvex
envelope which here termed as the relaxed energy W rel is thus computed as

W rel =

(
λ

2
+
µ

d

)(
tr sym ∇u

)2

+ µc ‖asy ∇u− E ·ϕ‖
2

+
λ

2
(tr ∇ϕ)

2

+ g
(
‖sym ∇ϕ‖

2

, ‖asy ∇ϕ‖
2

, ‖dev sym∇u‖
2
)
,

(3.56)

where g is a convex multivalued scalar function. Following the arguments in [Rao86] we can
find the scalar function g by the minimization problem

g = min
a,b,c; c≥‖dev sym∇u‖

2
,

a≥‖sym ∇ϕ‖
2
, b≥‖asy ∇ϕ‖

2

{
µ̄ a+ µ̄c b+ µ c+ α

(
a+ b− β2

c
)2
}
. (3.57)

This is a three field minimization problem which can further be reduced into the following
two field minimization problem in the variables s and c as follows

g = h
(
‖sym ∇ϕ‖

2

, ‖asy ∇ϕ‖
2
)

+ min
c,s; c≥‖dev sym∇u‖

2

s≥‖sym ∇ϕ‖
2
+‖asy ∇ϕ‖

2

{
µ◦ s+ µ c+ α

(
s− β2

c
)2
}
,

(3.58)

where the material parameter µ◦ is to be determined by

µ◦ = min {µ, µc} (3.59)

and h is a non-negative function explicitly given by

h
(
‖sym ∇ϕ‖

2

, ‖asy ∇ϕ‖
2
)

=

 (µ− µc) ‖sym ∇ϕ‖
2

if µ ≥ µc

(µc − µ) ‖asy ∇ϕ‖
2

otherwise
. (3.60)

Above, in both the cases h vanishes for the same choice of µ̄ and µ̄c.

Stationarity conditions

The stationarity conditions to the minimization problem in (3.58) are as follows

(1). for s = ‖sym ∇ϕ‖
2

+ ‖asy ∇ϕ‖
2

and c ≥ ‖dev sym∇u‖
2

:
∂g

∂c
= 0,

∂g

∂s
≥ 0,

(3.61)

(2). for s = ‖sym ∇ϕ‖
2

+ ‖asy ∇ϕ‖
2

and c = ‖dev sym∇u‖
2

:
∂g

∂c
≥ 0,

∂g

∂s
≥ 0,

(3.62)

(3). for c = ‖dev sym∇u‖
2

and s ≥ ‖sym ∇ϕ‖
2

+ ‖asy ∇ϕ‖
2

:
∂g

∂s
= 0,

∂g

∂c
≥ 0.

(3.63)

On the basis of these three stationarity conditions the material energy can be characterized
into the following three phases
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Figure 3.6.: A Couette shear cell where the two arrows indicates the shearing direction. In
inset the microstructure patterns due to microrotational motions of the particles
is shown.

Material phase with microstructure in microrotational motions (micromotions) (Phase
1)

This phase is corresponding to the material regime where there are microstructures due to
the micromotions (which are in fact the rotational degrees of freedom assembled in the mi-
crorotational vector field ϕ) of the continuum particles. A schematic representation of such
microstructure is given in Figure 3.6. The enhanced energy potential (3.55) is nonconvex
in this microstructural phase. It is observed that whenever the norm of the curvature strain
tensor is dominating over the norm of the macroscopic shear strain tensor for some specific
choice of the material parameters µ, α and β, the material experiences a microstructure in mi-
cromotions. This microstructural material phase is characterized by the following inequality
relation

‖∇ϕ‖
2

≥ β
2 ‖dev sym∇u‖

2

+
µ

2αβ2 . (3.64)

It is important to note the effect of shear modulus µ, internal length scale (e.g., the diameter
of particles) β and the coherency interaction modulus or frictional modulus α in conjunc-
tion with the curvature and macroscopic shear strains which plays very crucial role in the
observation of this internal structural phase of the material.

Using the first stationarity condition (3.61) the minimizers of the problem in 3.58 are ob-
tained as

s = ‖sym ∇ϕ‖
2

+‖asy ∇ϕ‖
2

, c =
1

β2

(
‖sym ∇ϕ‖

2

+ ‖asy ∇ϕ‖
2
)
− µ

2αβ4
. (3.65)

Thus, the scalar convex function g is given by

g =



(
µ− µc + µ◦ +

µ

β2

)
‖sym ∇ϕ‖

2

+
(
µ◦ + µ

β2

)
‖asy ∇ϕ‖

2

− µ2

4αβ4
if µ̄ ≥ µ̄c

(
µ◦ + µ

β2

)
‖sym ∇ϕ‖

2

+

(
µc − µ+ µ◦ +

µ

β2

)
‖asy ∇ϕ‖

2

− µ2

4αβ4
if µ̄ < µ̄c

(3.66)
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The relaxed energy of the material in this phase is obtained as

W rel
1 =




(
λ

2
+
µ

d

)(
tr sym ∇u

)2

+ µc ‖asy ∇u− E ·ϕ‖
2

− µ
2

4αβ4

if µ̄ ≥ µ̄c,

+
λ̄

2
(tr ∇ϕ)

2

+ (µ̄− µ̄c) ‖sym ∇ϕ‖
2

+

(
µ◦ +

µ

β2

)
‖∇ϕ‖

2


(
λ

2
+
µ

d

)(
tr sym ∇u

)2

+ µc ‖asy ∇u− E ·ϕ‖
2

− µ
2

4αβ4

if µ̄ < µ̄c

+
λ̄

2
(tr ∇ϕ)

2

− (µ̄− µ̄c) ‖asy ∇ϕ‖
2

+

(
µ◦ +

µ

β2

)
‖∇ϕ‖

2

(3.67)

Material phase with no microstructure (Phase 2)

This phase is connected to the material regime where there is no internal structure in the
material. The second stationarity condition (3.62) clearly shows that the minimizers of the
functional in (3.58) are itself ‖sym ∇ϕ‖

2

+ ‖asy ∇ϕ‖
2

and ‖dev sym∇u‖
2

respectively.
This is another indication that the original energy potential in (3.55) is convex in this mate-
rial phase. The criteria for the recognition of this material phase is given by the following
inequality relation

β
2 ‖dev sym∇u‖

2

− µ◦
2α
≤ ‖∇ϕ‖

2

≤ β
2 ‖dev sym∇u‖

2

+
µ

2αβ2 . (3.68)

The function g in this phase is given by

g = µ ‖sym ∇ϕ‖
2

+ µc ‖asy ∇ϕ‖
2

+ µ ‖dev sym∇u‖
2

+ α
(
‖sym ∇ϕ‖

2

+ ‖asy ∇ϕ‖
2

− β2 ‖dev sym∇u‖
2
)2

.
(3.69)

The relaxed energy potential in this phase is thus the original energy potential (3.55) itself
and we write

W rel
2 =

(
λ

2
+
µ

d

)(
tr sym∇u

)2

+ µ ‖dev sym∇u‖
2

+ µc ‖asy∇u− E ·ϕ‖
2

+
λ

2

(
tr ∇ϕ

)2

+ µ ‖sym ∇ϕ‖
2

+ µc ‖asy ∇ϕ‖
2

+ α
(
‖sym ∇ϕ‖

2

+ ‖asy ∇ϕ‖
2

− β2 ‖dev sym∇u‖
2
)2

(3.70)

Material phase with microstructure in translational motions (Phase 3)

This phase is related to the material regime where there is a microstructure in translational
motions (which are in fact the displacement degrees of freedom of the continuum parti-
cles and are assembled in the displacement vector field u) of the continuum particles. A
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Figure 3.7.: A rectangular specimen under shear with two arrow head pointing towards the
shearing direction. In inset the microstructure patterns formed due to the trans-
lational motions of the continuum particles is shown.

schematic representation of such microstructure formation is shown in Figure 3.7. The en-
hanced energy potential (3.55) thus becomes nonconvex in this phase. Using the third sta-
tionarity condition (3.63) it is observed that the norm of the macroscopic shear strain tensor
is dominating over the norm of the rotational strain tensor. The material is said to be in this
phase whenever the following criteria is satisfied

β
2 ‖dev sym∇u‖

2

− µ◦
2α
≥ ‖∇ϕ‖

2

. (3.71)

It is important to note the effect the coherency/frictional modulus α and the Cosserat material
modulus µ◦ in the characterization of this microstructural phase. The minimizers of the
functional in (3.58) are obtained after solving the third stationarity condition (3.63) which
are given as

c = ‖dev sym∇u‖
2

and s = β
2 ‖dev sym∇u‖

2

− µ◦
2α
. (3.72)

Thus minimum potential g in (3.58) takes the following form

g =


(µ− µc) ‖sym ∇ϕ‖

2

+
(
µ◦β

2
+ µ
)
‖dev sym∇u‖

2

− µ
2

◦
4α

if µ̄ ≥ µ̄c

(µc − µ) ‖asy ∇ϕ‖
2

+
(
µ◦β

2
+ µ
)
‖dev sym∇u‖

2

− µ
2

◦
4α

if µ̄ < µ̄c

(3.73)

Hence the relaxed energy potential in this phase is obtained as

W rel
3 =




(
λ

2
+
µ

d

)(
tr sym ∇u

)2

+ µc ‖asy ∇u− E ·ϕ‖
2

+
λ̄

2
(tr ∇ϕ)

2

if µ̄ ≥ µ̄c

+(µ̄− µ̄c) ‖sym ∇ϕ‖
2

+
(
µ◦β

2
+ µ
)
‖dev sym ∇u‖

2

− µ◦
2

4α
(
λ

2
+
µ

d

)(
tr sym ∇u

)2

+ µc ‖asy ∇u− E ·ϕ‖
2

+
λ̄

2
(tr ∇ϕ)

2

if µ̄ < µ̄c

− (µ̄− µ̄c) ‖asy ∇ϕ‖
2

+
(
µ◦β

2
+ µ
)
‖dev sym ∇u‖

2

− µ◦
2

4α
(3.74)
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Relaxed energy

The total relaxed energy thus comprises all the three energies in each of the phase and it
acquires finally the following form

W rel =



W rel
1 if ‖∇ϕ‖

2

≥ β
2 ‖dev sym ∇u‖

2

+
µ

2αβ2

W rel
2 if − µ◦

2α
≤ ‖∇ϕ‖

2

− β2 ‖dev sym ∇u‖
2

≤ µ

2αβ2

W rel
3 if ‖∇ϕ‖

2

≤ β
2 ‖dev sym ∇u‖

2

− µ◦
2α

(3.75)

where W rel
1 , W rel

2 and W rel
3 are given as in (3.67), (3.70) and (3.74), respectively.

Nonlinear constitutive relations in a Cosserat medium

The proposed granular material model is completed with the formulation of constitutive re-
lations between stress and strain tensors in a Cosserat medium. The constitutive structure of
the proposed theory thus comprises of three phases (as discussed in section 3.4.2) where in
each phase the force-stress are explicitly related to the Cosserat strain tensors according to
the following formulae

σ =



∂W rel
1

∂∇u
if ‖∇ϕ‖

2

≥ β
2 ‖dev sym ∇u‖

2

+
µ

2αβ2

∂W rel
2

∂∇u
if − µ◦

2α
≤ ‖∇ϕ‖

2

− β2 ‖dev sym ∇u‖
2

≤ µ

2αβ2

∂W rel
3

∂∇u
if ‖∇ϕ‖

2

≤ β
2 ‖dev sym ∇u‖

2

− µ◦
2α

(3.76)

where
∂W rel

1

∂∇u
,
∂W rel

2

∂∇u
and

∂W rel
3

∂∇u
are given respectively as

∂W rel
1

∂∇u
= 2

(
λ

2
+
µ

d

) (
tr sym ∇u

)
I + 2µc

(
asy ∇u− E ·ϕ

)
, (3.77)

∂W rel
2

∂∇u
= λ

(
tr sym ∇u

)
I + 2µ

(
sym ∇u

)
+ 2µc

(
asy ∇u− E ·ϕ

)
− 4αβ2

(
‖∇ϕ‖2 − β2 ‖dev sym ∇u‖2

) (
dev sym ∇u

)
,

(3.78)

and

∂W rel
3

∂∇u
= λ

(
tr sym ∇u

)
I+2µ

(
sym∇u

)
+2µ◦β

2
(

dev sym ∇u
)
+2µc

(
asy ∇u−E ·ϕ

)
.

(3.79)
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The couple-stress tensor is related to the curvature strain tensors by the following formulae

µ =



∂W rel
1

∂∇ϕ
if ‖∇ϕ‖

2

≥ β
2 ‖dev sym ∇u‖

2

+
µ

2αβ2

∂W rel
2

∂∇ϕ
if − µ◦

2α
≤ ‖∇ϕ‖

2

− β2 ‖dev sym ∇u‖
2

≤ µ

2αβ2

∂W rel
3

∂∇ϕ
if ‖∇ϕ‖

2

≤ β
2 ‖dev sym ∇u‖

2

− µ◦
2α

(3.80)

where
∂W rel

1

∂∇ϕ
,
∂W rel

2

∂∇ϕ
and

∂W rel
3

∂∇ϕ
are given respectively as

∂W rel
1

∂∇ϕ
=


λ̄
(

tr ∇ϕ
)
I + 2 (µ̄− µ̄c)

(
sym ∇ϕ

)
+ 2

(
µ◦ +

µ

β2

)
∇ϕ if µ̄ ≥ µ̄c,

λ̄
(

tr ∇ϕ
)
I− 2 (µ̄− µ̄c)

(
asy ∇ϕ

)
+ 2

(
µ◦ +

µ

β2

)
∇ϕ if µ̄ < µ̄c.

(3.81)

∂W rel
2

∂∇ϕ
= λ̄

(
tr ∇ϕ

)
I + 2µ̄

(
sym ∇ϕ

)
+ 2µ̄c

(
asy ∇ϕ

)
+ 4α

(
‖sym ∇ϕ‖2

+ ‖asy ∇ϕ‖2 − β2 ‖dev sym ∇u‖2
)
∇ϕ

(3.82)

and

∂W rel
3

∂∇ϕ
=

λ̄
(

tr ∇ϕ
)
I + 2(µ̄− µ̄c)

(
sym ∇ϕ

)
if µ̄ ≥ µ̄c,

λ̄
(

tr ∇ϕ
)
I − 2(µ̄− µ̄c)

(
asy ∇ϕ

)
if µ̄ < µ̄c.

(3.83)

3.5. One-dimensional numerical results

Based on the proposed formulation, numerical examples of a simple shear and a tension-
compression tests are briefly presented in this section. The mechanical response of the mate-
rial is analyzed along some chosen macroscopic strain paths. Development of microstructure
is observed during both the tension-compression and shear tests, which is characterized by
the activation of different material phases as discussed in the Section 3.4.2.

3.5.1. A simple shear test

In this example we study the proposed model in a plain strain simple shear test. The macro-
scopic strain paths are taken to be

ε =

 0 γ
2

0
γ
2

0 0
0 0 0

 , e =

 0 −ϕ3 0
γ + ϕ3 0 0

0 0 0

 , ωe =

 0 −c 0
c 0 0
0 0 0

 , (3.84)
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Figure 3.8.: Unrelaxed energy (3.55) curves for α = β = 100, µc = 200.0 and φ3 =
π

6
, in a

simple shear test.

where c =
γ

2
+ϕ3 . We assume that the rotational degree of freedom, ϕ3 is linearly depending

on both of the coordinates X1 and X2 of the coordinate system and we write

ϕ3 = b(X1 +X2) (3.85)

where b =
π

6
is some assumed curvature. In our analysis we calculate ϕ3 for all those

material points which lies on the line X1 +X2 = 1.

The nonconvexity of the energy potential in (3.55) is clearly seen in Figure 3.8 along the
above mentioned strain paths in a simple shear test for varying values of the material param-
eter β. The material parameters utilized in the calculations are given in Table 3.2. The Figure

Table 3.2.: Material parameters for the analytical computations in a simple shear test.

E ν µc α β µ λ µc

(GPa) - (GPa) (kN.mm2) (mm−1) (kN) (kN) (kN)

2.0×102 0.3 2.0×10−4 1.0×10−1 - 7.69×101 1.154×102 8.0×10−2

3.9 presents the relaxed and unrelaxed energy curves for β = 1.0 × 10−6, β = 0.9 × 10−6

and β = 0.8 × 10−6 from top to bottom whereas the Figure 3.10 describes the behavior of
relaxed and unrelaxed stress and strain curves for the above mentioned values of β, where it
is observed that the non-monotone stress-strain curve is replaced by its energetically equiva-
lent Maxwell line corresponding to a uniform vanishing stress. We observe that the material
experiences a change in the phase with the occurrence of microstructure. Initially the ma-
terial is in a phase with microstructure in micromotions then changing its phase to a regime
where there is no microstructure in the material and after increasing the strain it transforms
to the third phase where there is a microstructure in translational motions. Thus all the
three phases, one with no microstructure, and the two with microstructure in micromotions
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Figure 3.9.: Unrelaxed and relaxed energy curves for different values of the material param-
eter β in a simple shear test.
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Figure 3.10.: Unrelaxed and relaxed stress-strain curves for different values of the material
parameter β in a simple shear test.
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and translational motions can be seen during this test. The influence of material parame-
ter β is observed, where we see that for small values of β the material microstructure in
micromotions is more pronounced as in comparison to large values of β where the material
microstructure in translational motions is more noticeable. This shows that for larger particle
size the material microstructure due to micromotion is certain whereas for small particle size
the material microstructure in translational motions is pronounced.

3.5.2. A tension-compression test

In this example the material behavior in a plain strain tension-compression test is investigated
using our proposed model. The macroscopic strain tensors for this analysis take the form

ε =

 δ 0 0
0 0 0
0 0 0

 , e =

 δ −ϕ3 0
ϕ3 0 0
0 0 0

 , ωe =

 0 −ϕ3 0
ϕ3 0 0
0 0 0

 . (3.86)

The micro-rotational degree of freedom, ϕ3 at each material point is calculated according to
(3.85). In our analysis the assumed value for ϕ3 is

π

3
. For both the above tests κ has the

form

κ =

 0 0 b
0 0 b
0 0 0

 . (3.87)

The material parameters are chosen as in Table 3.3.

Table 3.3.: Material parameters for the analytical computations in a tension-compression
test.

E ν µc α β µ λ µc

(MPa) - (MPa) (N.mm2) (mm−1) (N) (N) (N)

2.0×102 0.3 1.0×10−2 1.0×10−1 1.2×102 7.69×101 1.154×102 1.0×101

Figure 3.11 presents the stress-strain curve in tension test where it is observed that the mi-
crostructure develops in both the translational and microrotational motions. The magnified
picture shows that the material has microstructure in micromotions initially. The material ex-
hibits multiphase stress strain behavior in tension test. Figure 3.12 describes the stress-strain
curve in compression test. The activation of the phase with translational microstructure is
clearly seen in Large picture whereas the observation of microstructure in micromotion is
clear in the magnified picture within it. A change of phase is seen in the stress-strain graph.
In Figure 3.13 the two curves from tension and compression tests are combined to illustrate
the complete picture during loading (tension), unloading and then in reverse loading (com-
pression) test. All the three phases are observed during tension-compression test. Finally, in
Figure 3.14 the relaxed and unrelaxed energy curve in the tension-compression test is shown,
where the nonconvexity of the energy potential 3.55 in magnified picture is due to the pres-
ence of microstructure in micromotion of the continuum particles. It is seen that the slope
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Figure 3.11.: Relaxed and unrelaxed stress-strain curves in tension test.
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Figure 3.13.: Relaxed and unrelaxed stress-strain curves in tension-compression test.
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of the convex envelope in the globally nonconvex range of the unrelaxed energy potential is
not constant contrary to the case of shear test. As a consequence the stress is monotonically
increasing in the transformation phase where the material is experiencing microstructure in
micromotions, again contrary to the case of shear test where a Maxwell line was seen for the
stress-strain relation in the regime of microstructure in micromotions.

3.6. Modeling of rate-dependent inelastic material behavior

Granular materials often exhibit dissipative behavior in nature. For example in the mod-
eling of granular materials consisting of sand particles a dissipative nature has been ob-
served by []. Goddard also demonstrates on the dissipative behavior of granular materials
in [God86] where a constitutive theory for such materials is discussed in the framework of
visco-plasticity. Moreover, experimental studies by Lade [Lad94], Mitchell and Solymar
[MS84], Murayama et al. [sKMS84] and di Prisco and Imposimato [dPI96] reveals on the
time dependency and viscoplastic nature of granular materials behavior.

Due to this characteristic of the granular materials the elastic effects in modeling the mechan-
ical response of these materials can be neglected for simplicity. The continuum models based
on purely plastic strain and with the assumption that the elastic part of the strain is negligi-
ble are oriented to show rate-dependent response. Such models for the analysis of granular
material behaviors are discussed very rarely in literature in the framework of Cosserat contin-
uum. However, in general, abundant studies appears in literature that demonstrate on the use
of viscplastic approach in modeling many mechanical materials behavior. A general theory
accounting for microstructural effects based on small deformation viscoplastic approach us-
ing energy principles has been developed by Gurtin [Gur03]. Here within the framework of
Cosserat continuum a review over the modeling of granular materials behavior using visco-
inelastic approaches is presented. Rate-dependent constitutive model for the analysis of
localized deformation behavior of granular materials has been developed by Mühlhaus and
Aifantis [MA91]. A large number of problems have been discussed with the framework of
Cosserat plasticity, for example, shear bands thickness in a granular medium are analyzed by
Mühlhaus and Vardoulakis [MV87] and Mohan et al. [MNR99], limit load problems are dis-
cussed by Mühlhaus [M9a], study on sands and shear bands patterning in a granular medium
was carried out by Tejchman and Wu [TW93, TW94, TW12], a comparison between experi-
mental and numerical observations of vibrations and shocks in emptying a silo was made by
Tejchman and Gudehus [TG93]. Many interesting features of the granular flows can be ob-
served using the rigid-plastic or viscoplastic based Cosserat models as discussed by Mohan
et al. [MNR99] and Elaskar et al. [EGGS00], the later is based on the non-associated vis-
coplasticity approach. Zienkiewicz et al. [ZHL75] also established an associated as well as
a non-associated viscoplasticity approach to model the mechanical behavior of granular ma-
terials. A good review on the use of Cosserat continuum within the framework of plasticity
is made in a book by Vardoulakis and Sulem [VS95], with the emphasis on localized defor-
mation behavior of geomaterials. An already developed visco-plastic constitutive model can
be modified [dPIA02] using two distinct non-local and gradient approaches for modeling the
granular materials behavior.
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3.6.1. A rate-dependent inelastic Cosserat material model

For modeling the inelastic response of the granular materials our approach is confined to the
case of rigid-plasticity. Based on the Cosserat continuum [CC09, Sch67] theory the granu-
lar materials are modeled within the framework of rate-dependent viscoplasticity. Inelastic
material response of such materials can be completely describable with the specification, if
possible, of the two potentials, the stored free energy potential and the dissipation poten-
tial. Modeling of the inelastic material behaviors with the mathematical theories based on
variational principles using these potentials have been studied and developed in the work of
Baldassari and Hackl [SBH03], Carstensen et al. [CHM02], Conti and Ortiz [CO05], Conti
and Theil [CT05], Conti et al. [CDK09, CHO07], Hackl [Hac97], Hackl and Fischer [HF08],
Hackl and Hoppe [HH01], Hackl et al. [HHK12], Mielke [Mie04]. Consider that the Gibbs
energy of the granular materials in consideration is characterized by

G =

∫
Ω

Ψ (u,ϕ) dV − `ext (u,ϕ) , (3.88)

where u is the displacement field, ϕ is the microrotation field in context of generalized
continuum theories [CC09, Eri02, KE76, Min64, Now70, Sch67, Tou62, Tou64, TT60], Ψ
is the stored energy density of the material and `ext is the potential of external forces acting
on the granular body Ω. Working within the framework of infinitely small strain theory the
total Cosserat strain tensor and the curvature strain tensor can be decomposed in an additive
manner into the following two parts

e = eel + ein, κ = κel + κin. (3.89)

In modeling the mechanical response of granular materials with above mentioned assump-
tions it is thus required to consider negligibly small elastic strains or no recoverable strains
at all. Precisely, this means that the elastic parts of the total strains are zero, i.e.

eel = 0, κel = 0. (3.90)

Since the stored energy density function Ψ purely depends on the elastic deformation tensors
of the medium, therefore, in the case where there are no elastic deformations it becomes zero.
Hence in a regime of purely inelastic deformations the relation for the Gibbs energy in (3.88)
reduces to

Ψ = 0 ⇒ G = −`ext (u,ϕ) . (3.91)

As a result the total strain tensors are now purely depending upon the inelastic (non-recoverable)
part of the strain tensors. This allows one to write both the Cosserat strain and the curvature
strain tensors as

e = ein, κ = κin. (3.92)

The evolution of these inelastic strains can be determined completely from a variational
principle using a specified dissipation potential ∆. This variational principle is called min-
imum principle for the dissipation potential which has already been used in different set-
tings by Hackl and Fischer [HF08], Halphen and Nguyen [HN75], Maier [Mai69], Martin
and Ponter [MP66], Maugin [Mau92] and in context of evolution of inelastic microstruc-
tures by Carstensen et al. [CHM02], Hackl [Hac97] and Ortiz and Repetto [OR99]. In this
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context, here we search for all those admissible inelastic variables ein and κin that mini-

mize
{
d

dt
G+D

}
, or equivalently, one can write min

u̇,ϕ̇

{
d

dt
G+D

}
, where u̇ is the time

derivative of the displacement field (velocity vector field), ϕ̇ is the time derivative of micro-
rotation field (gyration vector field) and D is the dissipation function and is determined by

D =

∫
Ω

∆ dV. (3.93)

In a more detailed description this principle reduces to the following energy minimization
problem, that reads

{u̇, ϕ̇} = arg

{
min
u̇,ϕ̇

{∫
Ω

∆ (ėin, κ̇in)− ˙̀
ext (u̇, ϕ̇)

}}
, (3.94)

where the inelastic Cosserat strain tensor ėin and the curvature strain tensor κ̇in are defined
according to

ėin = ∇u̇− asy ϕ̇, κ̇in = ∇ϕ̇. (3.95)

In equation 3.93 the nonlinear dissipation potential ∆ is expressed as

∆ =


(
λ

2
+
µ

d

)
(tr ε̇)

2

+ µ ‖dev ε̇‖
2

+ µc ‖ω̇‖
2

+
λ̄

2
(tr κ̇)

2

+ µ̄ ‖sym κ̇‖
2

+ µ̄c ‖asy κ̇‖
2

+ α
(
‖sym κ̇‖

2

+ ‖asy κ̇‖
2

− β2 ‖dev ε̇‖
2
)2

(3.96)

The above dissipation potential is clearly nonconvex, and therefore when it enters in the
minimization problem (3.94) will lead to the possible velocity field fluctuations at the fine
scale and thus leading to internal structure of the material. Moreover, the existence of the
unique minimizing velocities are not guaranteed. Furthermore, the nonconvex dissipation
functional associated to the variational problem (3.94) illustrates on the loss of ellipticity of
the resulting governing velocity field equations. Hence, it is therefore required to compute a
quasiconvex dissipation function ∆rel for the nonconvex dissipation potential in 3.96 which
satisfies the ellipticity condition (Legendre Hadamard condition) [BJ87] and guarantee on
the existence of the minimizing deformations.

3.6.2. Computation of a relaxed potential for the dissipation

Due to nonconvexity of the dissipation potential a relaxed function is derived in this Section.
The procedure of computing this relaxed potential is the same as adopted for the computation
of the exact relaxed energy in Section 3.4.3. The resulting quasiconvex dissipation potential
comprises of three different material regimes. Each of the material regime is characterized
according to the following conditions

if ‖κ̇‖
2

≥ β
2 ‖dev ε̇‖

2

+
µ

2αβ2 then the material is in regime 1, (3.97)

if β
2 ‖dev ε̇‖

2

− µ◦
2α
≤ ‖κ̇‖

2

≤ β
2 ‖dev ε̇‖

2

+
µ

2αβ2 then the material is in regime 2,

(3.98)
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if ‖κ̇‖
2

≤ β
2 ‖dev ε̇‖

2

− µ◦
2α

then the material is in regime 3. (3.99)

In each regime the dissipation potential depends upon the rate of the strain tensors e and κ.
We consider the rigid plastic deformation case where the elastic part of the strain tensors
are assumed to be zero and the total strain is equivalent the inelastic part of the strain ten-
sors, which is purely associated with the plastic deformation of the granular materials. The
dissipation potential in this case is expressed as

∆ = ∆ (ėin, κ̇in) . (3.100)

The dissipation potential ∆ (ėin, κ̇in) is comprising of three phases where in each of the
material phase the dissipation potential is characterizes according to

∆ =



∆1 if ‖κ̇‖
2

≥ β
2 ‖dev ε̇‖

2

+
µ

2αβ2

∆2 if β
2 ‖dev ε̇‖

2

− µ◦
2α
≤ ‖κ̇‖

2

≤ β
2 ‖dev ε̇‖

2

+
µ

2αβ2

∆3 if ‖κ̇‖
2

≤ β
2 ‖dev ε̇‖

2

− µ◦
2α

(3.101)

where ∆1 is the dissipation potential in the regime of microstructure in micromotions of the
particles expressed as

∆1 =




(
λ

2
+
µ

d

)
(tr ε̇)

2

+ µc ‖ω̇‖
2

+
λ̄

2
(tr κ̇)

2

+

if µ̄ ≥ µ̄c,

(µ̄− µ̄c) ‖sym κ̇‖
2

+

(
µ◦ +

µ

β2

)
‖κ̇‖

2

− µ
2

4αβ4


(
λ

2
+
µ

d

)
(tr ε̇)

2

+ µc ‖ω̇‖
2

+
λ̄

2
(tr κ̇)

2

−
if µ̄ < µ̄c

(µ̄− µ̄c) ‖asy κ̇‖
2

+

(
µ◦ +

µ

β2

)
‖κ̇‖

2

− µ
2

4αβ4

(3.102)

∆2 is the dissipation potential in the regime where there is no internal structure microstruc-
ture of the material and is given by

∆2 =


(
λ

2
+
µ

d

)
(tr ε̇)

2

+ µ ‖dev ε̇‖
2

+ µc ‖ω̇‖
2

+
λ̄

2
(tr κ̇)

2

+ µ̄ ‖sym κ̇‖
2

+ µ̄c ‖asy κ̇‖
2

+ α
(
‖sym κ̇‖

2

+ ‖asy κ̇‖
2

− β2 ‖dev ε̇‖
2
)2

(3.103)

∆3 is the dissipation potential in the regime where there is a microstructure in the material
due translational motions of the continuum particles and is given by

∆3 =




(
λ

2
+
µ

d

)
(tr ε̇)

2

+ µc ‖ω̇‖
2

+
λ̄

2
(tr κ̇)

2

+

if µ̄ ≥ µ̄c

(µ̄− µ̄c) ‖sym κ̇‖
2

+
(
µ◦β

2
+ µ
)
‖dev ε̇‖

2

− µ◦
2

4α
(
λ

2
+
µ

d

)
(tr ε̇)

2

+ µc ‖ω̇‖
2

+
λ̄

2
(tr κ̇)

2

−
if µ̄ < µ̄c

(µ̄− µ̄c) ‖asy κ̇‖
2

+
(
µ◦β

2
+ µ
)
‖dev ε̇‖

2

− µ◦
2

4α

(3.104)
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3.6.3. Rate-dependent constitutive equations

Following the arguments given by Hackl and Fischer in [HF08] the relations for the general-
ized thermodynamical forces can be derived from the stationarity conditions of the minimum
principle for dissipation potential [HF08]. This could be achieved directly as the derivative
of the dissipation potential with respect to the admissible inelastic variables (also called ther-
modynamic fluxes) which results in the following thermodynamic forces

g =
∂∆

∂ein
, q =

∂∆

∂κin
, (3.105)

where g is the Cosserat generalized force tensor and q is the generalized couple tensor, being
conjugate to the inelastic Cosserat strain tensor and curvature strain tensor respectively. The
rate-dependent constitutive response of the material is thus comprises of three phase response
which would be determined from the following relation

g =



g1 if ‖κ̇‖
2

≥ β
2 ‖dev ε̇‖

2

+
µ

2αβ2

g2 if β
2 ‖dev ε̇‖

2

− µ◦
2α
≤ ‖κ̇‖

2

≤ β
2 ‖dev ε̇‖

2

+
µ

2αβ2

g3 if ‖κ̇‖
2

≤ β
2 ‖dev ε̇‖

2

− µ◦
2α

(3.106)

where g1 is the generalized force tensor in a material phase where there is a microstructure
in micromotions of the continuum particles, g2 is the generalized force tensor in the material
phase where there is no internal structure in the material and g3 is the generalized force
tensor in the material phase where there is a microstructure in translational motions of the
continuum particles and are given respectively as

g1 = 2

(
λ

2
+
µ

d

)
tr ε̇ I + 2µc ω̇e, (3.107)

g2 = λ tr ε̇ I + 2µ ε̇+ 2µc ω̇e − 4αβ2
(
‖κ̇‖2 − β2 ‖dev ε̇‖2

)
dev ε̇ (3.108)

and

g3 = λ tr ε̇ I + 2µ ε̇+ 2µ◦β
2 dev ε̇+ 2µc ω̇e. (3.109)

The generalized couple tensor is to be determined from the following formula

q =



q1 if ‖κ̇‖
2

≥ β
2 ‖dev ε̇‖

2

+
µ

2αβ2

q2 if β
2 ‖dev ε̇‖

2

− µ◦
2α
≤ ‖κ̇‖

2

≤ β
2 ‖dev ε̇‖

2

+
µ

2αβ2

q3 if ‖κ̇‖
2

≤ β
2 ‖dev ε̇‖

2

− µ◦
2α

(3.110)

where q1 is the generalized couple tensor in a material phase where there is a microstructure
in micromotions of the continuum particles, q2 is the generalized couple tensor in the mate-
rial phase where there is no internal structure in the material and q3 is the generalized couple
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tensor in the material phase where there is a microstructure in translational motions of the
continuum particles and are given respectively as

q1 =


λ̄ tr κ̇ I + 2 (µ̄− µ̄c) sym κ̇+ 2

(
µ◦ +

µ

β2

)
κ̇ if µ̄ ≥ µ̄c,

λ̄ tr κ̇ I− 2 (µ̄− µ̄c) asy κ̇+ 2

(
µ◦ +

µ

β2

)
κ̇ if µ̄ < µ̄c,

(3.111)

q2 = λ̄ tr κ̇ I + 2µ̄ sym κ̇+ 2µ̄c asy κ̇+ 4α
(
‖κ̇‖2 − β2 ‖dev ε̇‖2

)
κ̇, (3.112)

and

q3 =

λ̄ tr κ̇ I + 2 (µ̄− µ̄c) sym κ̇ if µ̄ ≥ µ̄c,

λ̄ tr κ̇ I− 2 (µ̄− µ̄c) asy κ̇ if µ̄ < µ̄c.
(3.113)
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4. Variational formulation and finite element
implementation

4.1. A two-field variational formulation

A two-field variational formulation of the Cosserat material model is presented. In a Cosserat
elastic continuum the equilibrium of forces and couples acting on a body in the absence of
angular velocity is expressed as

∇ · σ + b = 0, (4.1)

∇ · µ+ σ : E + m = 0, (4.2)

where E is the third order permutation tensor, b is the body force and m is the body moment,
subjected to certain Drichlet boundary conditions of the type σ · nu = tu and µ · nϕ = tϕ.
The Cosserat force-stress tensor σ and couple stress tensor µ are computed as the derivatives
of the strain energy function with respect to the Cosserat strain tensor e and curvature strain
tensor κ, respectively

σ =
∂W rel

∂e
, µ =

∂W rel

∂κ
. (4.3)

To derive weak balance equations or the variational formulation of (4.1) let us choose an
arbitrary displacement field variation as δu. Further let tu = σ · nu be the applied traction
on the surface Γu of the continuum body B having a volume Ω, with nu being the normal unit
vector to Γu. The variational formulation of (4.1) is obtained by multiplying equation (4.1)
with the chosen arbitrary displacement variation δu and applying integrating to the resultant
equation as∫

Ω

(∇ · σ + b) · δu dΩ =

∫
Ω

0 · δu dΩ. (4.4)

Integrating equation (4.4) by parts implies∫
Ω

(
∇ · (σ · δu) − σ : (∇⊗ δu)

)
dΩ +

∫
Ω

b · δu dΩ = 0. (4.5)

Applying divergence theorem to first term in equation (4.5) one obtain∫
Γu

(
σ · nu︸ ︷︷ ︸

tu

)
· δu dΓu −

∫
Ω

σ : (∇⊗ δu) dΩ +

∫
Ω

b · δu dΩ = 0 (4.6)

⇒
∫

Ω

σ : (∇⊗ δu) dΩ =

∫
Ω

b · δu dΩ +

∫
Γu

tu · δu dΓu (4.7)
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Equation (4.7) is the resulting variational form of the balance of linear momentum. Consider
now the second equation (4.2), the weak form is obtained by multiplying it with the arbitrary
function δϕ and integrating the resultant equation over the domain Ω as∫

Ω

(∇ · µ+ E : σ + m) · δφ dΩ =

∫
Ω

0 · δϕ dΩ (4.8)

since

∇ · (µ · δφ) = (∇ · µ) · δφ+ µ : (∇⊗ δφ) . (4.9)

By using the property E : σ = σ : E and (4.9) equation (4.8) can be rewritten in the form∫
Ω

(
∇ · (µ · δφ)− µ : (∇⊗ δφ) + (σ : E) · δφ+ m · δφ

)
dΩ = 0 (4.10)

⇒
∫

Γϕ

(
µ · nϕ︸ ︷︷ ︸

tϕ

)
·δφdΓϕ−

∫
Ω

µ : (∇⊗ δφ) dΩ+

∫
Ω

(σ : E)·δφdΩ+

∫
Ω

m·δφdΩ = 0

(4.11)

⇒
∫

Ω

µ : (∇⊗ δφ) dΩ−
∫

Ω

(σ : E) ·δφdΩ =

∫
Ω

m ·δφdΩ+

∫
Γϕ

tϕ ·δφdΓϕ (4.12)

The final set of variational equations for (4.1) and (4.2) that must be satisfied for the equi-
librium configuration of a body by its each material point in a Cosserat continuum in an
integrated sense are respectively∫

Ω

σ : (∇⊗ δu) dΩ =

∫
Ω

b · δu dΩ +

∫
Γu

tu · δu dΓu, (4.13)

and ∫
Ω

(
µ : (∇⊗ δφ)− (σ : E) · δφ

)
dΩ =

∫
Ω

m · δφ dΩ +

∫
Γϕ

tϕ · δφ dΓϕ. (4.14)

4.2. Numerical implementation procedure using Finite element method

To solve the system of linear and angular momentum weak-balance equations (4.13) and
(4.14) the finite element method is employed. Finite element method has been proved effi-
cient and successful in solving the system of both the linear and nonlinear equations which
arose in the modeling of many materials behaviors in general [AAE10, GP98b, GP98a,
GM11, LGM , LMD03, LL96, ML03, MLG04, Rou94, ZT00] and in particular, the Cosserat
materials behavior [KAV06, AS06, dB91, dBS91, HB03, HNB02, SD02, TG93, TN06,
VS95, WT06].

The numerical implementation procedure is presented in the absence of the body force b and
body couple m. The material body or the domain Ω is discretized into finite elements in such
a way that

Ω =
ne⋃
e=1

Ωe, (4.15)
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where Ωe is the domain of a descretized element ‘e’ in the entire material body. Each element
is further consists of nodal points or coordinates on which the shape functions are defined to
interpolate the nodal field variables, which are in fact none other than the degrees of freedom
of a material point. In the case of first grade theory of a Cosserat continuum there are only
two field variables called the displacement and microrotation which together contains a total
of nine degrees of freedom at a single material point. These displacement and microrota-
tion vector field variables are approximated at the elemental level using matrices of shape
functions Nu and Nϕ respectively as

ue = Nuû
e and ϕe = Nϕϕ̂

e (4.16)

where the matrices of shape functions are expressed as

Nu =

 N1 0 0 N2 0 0 · · · NNN 0 0
0 N1 0 0 N2 0 · · · 0 NNN 0
0 0 N1 0 0 N2 · · · 0 0 NNN

 , (4.17)

Nϕ =

 N1 0 0 N2 0 0 · · · NNN 0 0
0 N1 0 0 N2 0 · · · 0 NNN 0
0 0 N1 0 0 N2 · · · 0 0 NNN

 , (4.18)

and the vector of nodal degrees of freedoms are calculated as

ûe =
[
u
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, u
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, u
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, u
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, u
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, u
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, u
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, u
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, u
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NN

1
, u

NN

2
, u

NN

3

]
, (4.19)

ϕ̂e =
[
ϕ

1

1
, ϕ
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2
, ϕ

1

3
, ϕ

2

1
, ϕ

2

2
, ϕ

2

3
, ϕ

3

1
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, ϕ

3

3
, ..., ϕ

NN

1
, ϕ

NN

2
, ϕ

NN

3

]
(4.20)

with ‘NN ’ being the total number of nodes per element. Two types of elements as shown in
Figure 4.1 are used for the calculations, where the shape functions at each of the node in a
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++

1 2

34

5

6

7

8

2

1

++ +

+ ++

+ ++

Figure 4.1.: Four-node linear element (first column) and eight-node bi-quadratic element
(second column). The plus (+) symbol indicates the Guass integration point
location and the number of Guass points used.

four-node element are computed as

N1 =
1

4
(1− ξ1) (1− ξ2) , N2 =

1

4
(1 + ξ1) (1− ξ2) ,
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N3 =
1

4
(1 + ξ1) (1 + ξ2) , N4 =

1

4
(1− ξ1) (1 + ξ2) ,

and in an eight-node element as the following bi-quadratic functions

N1 = −1

4
(1− ξ1) (1− ξ2) (1 + ξ1 + ξ2) , N2 = −1

4
(1 + ξ1) (1− ξ2) (1− ξ1 + ξ2) ,

N3 = −1

4
(1 + ξ1) (1 + ξ2) (1− ξ1 − ξ2) , N4 = −1

4
(1− ξ1) (1 + ξ2) (1 + ξ1 − ξ2) ,

N5 =
1

2

(
1− ξ2

1

)
(1− ξ2) , N6 =

1

2

(
1− ξ2

2

)
(1 + ξ1) ,

N7 =
1

2

(
1− ξ2

1

)
(1 + ξ2) , N8 =

1

2

(
1− ξ2

2

)
(1− ξ1) .

Associated to these displacement and microrotation vector field variables are the strain mea-
sures called the Cosserat strain tensor e and the curvature strain tensor κ. In vector notation
these tensors can be expressed as

ee = [e11, e22, e33, e12, e21, e13, e31, e23, e32]T , (4.21)

κe = [κ11, κ22, κ33, κ12, κ21, κ13, κ31, κ23, κ32]T , (4.22)

and are computed using the relations

ee = DuNuû
e −Hϕ̂e and κe = DϕNϕϕ̂

e, (4.23)

where the differential operator matrices Du, Dϕ and the transformation matrix H are given
by

Du = Dϕ =

 ∂
∂X1

0 0 0 ∂
∂X2

0 ∂
∂X3

0 0

0 ∂
∂X2

0 ∂
∂X1

0 0 0 0 ∂
∂X3

0 0 ∂
∂X3

0 0 ∂
∂X1

0 ∂
∂X2

0

T

and

H =



0 0 0 0 0 0 · · · 0 0 0
0 0 0 0 0 0 · · · 0 0 0
0 0 0 0 0 0 · · · 0 0 0

0 0 N1 0 0 N2 · · · 0 0 N
NN

0 0 −N1 0 0 −N2 · · · 0 0 −NNN

0 −N1 0 0 −N2 0 · · · 0 −NNN
0

0 N1 0 0 N2 0 · · · 0 N
NN

0

N1 0 0 N2 0 0 · · · N
NN

0 0

−N1 0 0 −N2 0 0 · · · −NNN
0 0


.

Conjugate to the Cosserat strain tensor e and the curvature strain tensor κ are the Cosserat
force-stress tensor σ and the coupled stress tensor µ respectively. Expressing them in vector
notation one can compute them for each element as

σe = [σ11, σ22, σ33, σ12, σ21, σ13, σ31, σ23, σ32]T , (4.24)

µe = [µ11, µ22, µ33, µ12, µ21, µ13, µ31, µ23, µ32]T . (4.25)

Hence, using these representations of field vectors and tensor in matrix notation one can
rewrite the weak-balance equations (4.13) and (4.14) as
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∫
Ω

δûe,T
(
BT

u σ
e
)
dΩ−

∫
∂Ωu

δûe,T
(
NT

u teu

)
dΓu = 0, (4.26)

∫
Ω

δϕ̂e,T
(
−HTσe + BT

ϕ µ
e
)
dΩ−

∫
∂Ωϕ

δϕ̂e,T
(
NT
ϕ t

e
ϕ

)
dΓϕ = 0. (4.27)

By using principle of variational calculus with knowing the fact that δûe,T and δϕ̂e,T are
arbitrarily chosen vectors one arrives at the following set of residual equations

Re
lin

=

∫
Ω

BT
u σ

e dΩ−
∫
∂Ωu

NT
u teu dΓu = 0, (4.28)

Re
ang

=

∫
Ω

(
−HTσe + BT

ϕ µ
e
)
dΩ−

∫
∂Ωϕ

NT
ϕ t

e
ϕ dΓϕ = 0. (4.29)

Thus the solution variables at the elemental level are obtained by solving these two equations.
The procedure is to compute the stiffness matrix for each element e by taking the derivatives
of these differential equations Rlin and Rang with respect to the element nodal vectors ûe and
ϕ̂e and arranging them in the matrix form as

Se =


∂Re

lin

∂ûe
∂Re

lin

∂ϕ̂e

∂Re
ang

∂ûe
∂Re

ang

∂ϕ̂e

 =

 Ke
uu Ke

uϕ

Ke
ϕu Ke

ϕϕ

 (4.30)

where the matrices Ke
uu, Ke

uϕ, Ke
ϕu and Ke

ϕϕ are calculated according to the following
relations

Ke
uu =

∫
Ω

BT
uKeeBu dΩ, (4.31)

Ke
uϕ =

∫
Ω

(
− 2µcB

T
uH + BT

uKeκBϕ

)
dΩ, (4.32)

Ke
ϕu =

∫
Ω

(
−HTKeeBu + BT

ϕKκeBu

)
dΩ, (4.33)

Ke
ϕϕ =

∫
Ω

(
2µcH

TH−HTKeκBϕ + BT
ϕKκκBϕ

)
dΩ. (4.34)

The matrices Kee, Keκ, Kκe and Kκκ are to be computed from the fourth order tensors Kee,
Keκ, Kκe and Kκκ respectivly which are defined according to the formulae

Kee =
∂2W rel

∂∇u⊗ ∂∇u
, Keκ =

∂2W rel

∂∇ϕ⊗ ∂∇u
, (4.35)

Kκe =
∂2W rel

∂∇u⊗ ∂∇ϕ
, Kκκ =

∂2W rel

∂∇ϕ⊗ ∂∇ϕ
. (4.36)
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The resulting expressions for these fourth order tensors in each of the material phase are
given as

Kee =



1Kee if ‖κ‖
2

≥ β
2 ‖dev ε‖

2

+
µ

2αβ2

2Kee if β
2 ‖dev ε‖

2

− µ◦
2α
≤ ‖κ‖

2

≤ β
2 ‖dev ε‖

2

+
µ

2αβ2

3Kee if ‖κ‖
2

≤ β
2 ‖dev ε‖

2

− µ◦
2α

(4.37)

where

1Kee = 2

(
λ

2
+
µ

d

)
I⊗ I + µcI− µcI (4.38)

2Kee =
{
λ+ 2αβ

2
(
‖κ‖

2

− β2 ‖dev ε‖
2
)}

I⊗ I +
{
µ+ µc − 2αβ

2
(
‖κ‖

2

− β2 ‖dev ε‖
2

I +
{
µ− µc − 2αβ

2
(
‖κ‖

2

− β2 ‖dev ε‖
2
)}

I

+ 8αβ
4

(dev ε⊗ dev ε)

(4.39)

3Kee = (λ− µ◦β2)I⊗ I + (µ◦β
2 + µ+ µc)I + (µ◦β

2 + µ− µc)I (4.40)

Keκ =


−8αβ

2
(dev ε⊗ κ) if β

2 ‖dev ε‖
2

− µ◦
2α
≤ ‖κ‖

2

≤ β
2 ‖dev ε‖

2

+
µ

2αβ2

O otherwise
(4.41)

Kκe =


−8αβ

2
(κ⊗ dev ε) if β

2 ‖dev ε‖
2

− µ◦
2α
≤ ‖κ‖

2

≤ β
2 ‖dev ε‖

2

+
µ

2αβ2

O otherwise
(4.42)

Kκκ =



1Kκκ if ‖κ‖
2

≥ β
2 ‖dev ε‖

2

+
µ

2αβ2

2Kκκ if β
2 ‖dev ε‖

2

− µ◦
2α
≤ ‖κ‖

2

≤ β
2 ‖dev ε‖

2

+
µ

2αβ2

3Kκκ if ‖κ‖
2

≤ β
2 ‖dev ε‖

2

− µ◦
2α

(4.43)

1Kκκ = λ̄(I⊗ I) +

{
µ̄− µ̄c + 2

(
µo +

µ

β2

)}
I + (µ̄− µ̄c) I (4.44)

2Kκκ = λ̄ I⊗I+
{
µ̄+ µ̄c + 4α

(
‖κ‖

2

− β2 ‖dev ε‖
2
)}

I+(µ̄− µ̄c) Ī+8α (κ⊗ κ) (4.45)

3Kκκ = λ̄(I⊗ I) + (µ̄− µ̄c) I + (µ̄− µ̄c) I (4.46)

where O is the fourth order zero tensor, I, I are the fourth order unit tensors and I is the
second order identity tensor computed as

I = δij ei⊗ ej, I = δikδjl ei⊗ ej ⊗ ek ⊗ el, I = δilδjk ei⊗ ej ⊗ ek ⊗ el. (4.47)
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The system of nonlinear equations to solve for each element is thus stated as Ke
uu Ke

uϕ

Ke
ϕu Ke

ϕϕ

 ûe

ϕ̂e

 =

 feu

feϕ

 (4.48)

where feu and feϕ are respectively the vectors of external forces and couples acting on the body
Ω and are given by

feu =

∫
∂Ωu

[NT
u teu] dΓu, feϕ =

∫
∂Ωϕ

[NT
ϕ t

e
ϕ] dΓϕ (4.49)

The global unknown vector for the displacement and micro-rotational degrees of freedoms
are

U = (u,ϕ)T , here u =
ne

A
e=1

ûe and ϕ =
ne

A
e=1
ϕ̂e (4.50)

where
ne

A
e=1

is the finite element assembly operator. The global system of nonlinear equations
to solve thus can be written as Kuu Kuϕ

Kϕu Kϕϕ

 u

ϕ

 =

 fu

fϕ

 (4.51)

where the global stiffness matrices

Kuu =
ne

A
e=1

Ke
uu, Kuϕ =

ne

A
e=1

Ke
uϕ, Kϕu =

ne

A
e=1

Ke
ϕu, Kϕϕ =

ne

A
e=1

Ke
ϕϕ (4.52)

and the global external force and moment vectors are respectively defined by

fu =
ne

A
e=1

feu, and fϕ =
ne

A
e=1

feϕ. (4.53)

4.2.1. Iterative solution procedure

The set of equations in (4.51) for which the stress tensors σ and µ are computed from
the strain energy function W rel (given as in Chapter 3, Section 3.4.3) are highly nonlinear.
For the solution of these nonlinear algebraic equations an iterative scheme is necessary to
adopt. Therefore, for this purpose we choose Newton-Raphson iteration scheme (see [ZT00])
as an iterative solver of the set of these nonlinear algebraic equations (also called residual
equations). Rewriting them in the form

πlin (u,ϕ) = 0, (4.54)

πang (u,ϕ) = 0. (4.55)

The method adopts an incremental-iterative procedure in the calculation of the solution for
which a quasi-time dependent loading is used. The loading is divided into a total number of
time steps (tnts). For each quasi-time increment

tn+1 = tn + ∆tn+1, n ∈ {0, 1, 2, 3, ..., tnts} (4.56)
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the set of residual equations (4.55) and (4.55) are solved with an iterative procedure assuming
initially at the ith iterate a zero known solution {ui,ϕi} (and in the case of already one
iteration has been processed a converged solution from the previous (i − 1)th iteration) by
solving a linearized system of equations at the quasi-time step tn+1

0 = πi+1
lin,n+1

(
ui+1,ϕi+1

)
= πilin,n+1

(
uin+1,ϕ

i
n+1

)
+

∂πilin
∂ui+1

n+1 {ui
n+1,ϕ

i
n+1}

∆uin +
∂πilin
∂ϕi+1

n+1

∣∣∣∣
{ui

n+1,ϕ
i
n+1}

∆ϕin

+
1

2

 ∂2πilin

∂ui+1
n+1

2

∣∣∣∣∣
{ui

n+1,ϕ
i
n+1}

(∆uin)2 +
∂2πilin

∂ϕi+1
n+1

2

∣∣∣∣∣
{ui

n+1,ϕ
i
n+1}

(∆ϕin)2


+ ... (higher order terms)

(4.57)

and

0 = πi+1
ang,n+1

(
ui+1,ϕi+1

)
= πiang,n+1

(
uin+1,ϕ

i
n+1

)
+

∂πiang

∂ui+1
n+1 {ui

n+1,ϕ
i
n+1}

∆uin +
∂πiang

∂ϕi+1
n+1

∣∣∣∣
{ui

n+1,ϕ
i
n+1}

∆ϕin

+
1

2

 ∂2πiang

∂ui+1
n+1

2

∣∣∣∣∣
{ui

n+1,ϕ
i
n+1}

(∆uin)2 +
∂2πiang

∂ϕi+1
n+1

2

∣∣∣∣∣
{ui

n+1,ϕ
i
n+1}

(∆ϕin)2


+ ... (higher order terms)

(4.58)

where ∆uin = ui+1
n+1 − uin+1 and ∆ϕin = ϕi+1

n+1 − ϕin+1 are very small therefore higher
order terms in the above approximations can be neglected. Now, the solution state variables{
ui+1
n+1,ϕ

i+1
n+1

}
at the (i+ 1)th iteration is approximated by

πi+1
lin n+1

(
ui+1
n+1,ϕ

i+1
n+1

)
= 0

πi+1
angn+1

(
ui+1
n+1,ϕ

i+1
n+1

)
= 0

(4.59)

which implies

(
∂πlin
∂u

)i
n+1

∆uin +

(
∂πlin
∂ϕ

)i
n+1

∆ϕin = −πilin,n+1

(
uin+1,ϕ

i
n+1

)
(
∂πang
∂u

)i
n+1

∆uin +

(
∂πang
∂ϕ

)i
n+1

∆ϕin = −πiang,n+1

(
uin+1,ϕ

i
n+1

) (4.60)

In matrix notation we can write
∂πlin
∂u

∂πlin
∂ϕ

∂πang
∂u

∂πang
∂ϕ


i

n+1

 ∆uin

∆ϕin

 = −

 πilin (ui,ϕi)

πiang (ui,ϕi)

 (4.61)

or in compact equation form as

Jn+1

(
Ui
)

∆Ui
n = −Ri

n+1

(
Ui
)

(4.62)
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Hence the solution at the (i+ 1)th state is obtained by the iterative formulae

Ui+1
n+1 = Ui

n+1 −
(
J in+1

)−1 (
Ui
n+1

)
Ri
n+1

(
Ui
n+1

)
. (4.63)

This iterative procedure is known as Newton-Raphson iteration method used for solving
nonlinear set of equations. In context of finite element method the above procedure is sum-
marized as

Ûi+1
n+1 = Ûi

n+1 − J−1
n+1

(
Ûi
n+1

)∣∣∣
Ûi

n+1

Ri
(

ˆUi
n+1

)
. (4.64)

where Û = (û, ϕ̂) are the elemental nodal variables which with the use of appropriate
interpolation transformations are transformed back to the elemental variables u andϕ. Since
the solution is an approximation therefore some stopping criterion is necessary to state for
the desired accuracy in the solution. After each (i + 1)th iteration the algorithm stops if the
norm of the residual at the current solution Ûi+1

n+1 is less than some assumed tolerance ε, i.e.,∣∣∣πlin (Ûi+1
n+1

)∣∣∣ < ε and
∣∣∣πang (Ûi+1

n+1

)∣∣∣ < ε. (4.65)

4.2.2. Simplification of the model to two dimension

The model presented in the previous section is reduced to two dimension with the application
of plain strain conditions. In this case there are three degrees of freedom at each node in an
element, two of them are displacement component u1 and u2 and third is the micro rotation
ϕ3, i.e,

ue = (u1, u2, 0)T,e, ϕe
3

= (0, 0, ϕ3)T,e (4.66)

whereas nodal variables takes the form

ûe =
[
u

1

1
, u

1

2
, u

2

1
, u

2

2
, u

3

1
, u

3

2
, ..., u

NN

1
, u

NN

2

]T
, ϕ̂e

3
=
[
ϕ

1

3
, ϕ

2

3
, ϕ

3

3
, ..., ϕ

NN

3

]T
(4.67)

elemental variables are calculated according to

ϕe
3

= Nϕ ϕ̂3

e, ue = Nu û
e, εe = DεNu û

e, κe = DϕNϕ ϕ̂3

e. (4.68)

Nϕ =
[
N

1

, N
2

, ..., N
NN
]
, Nu =

[
N

1
0 N

2
... N

NN
0

0 N
1

0 ... 0 N
NN

]
(4.69)

and

Dε =


∂

∂X1
0

0 ∂
∂X2

1
2

∂
∂X2

1
2

∂
∂X1

1
2

∂
∂X2

1
2

∂
∂X1

 , Du =


∂

∂X1
0

0 ∂
∂X2

0 ∂
∂X1

∂
∂X2

0

 , Dϕ =

[
∂

∂X1
∂

∂X2

]
(4.70)

The reduced form of elemental strains and stress in vector notations are

ee = [e11, e22, e12, e21]T , κe = [κ13, κ23]T , (4.71)
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σe = [σ11, σ22, σ12, σ21]T , and µe = [µ13, µ23]T . (4.72)

The element residual equations are taken as in (4.28) and (4.29) where

H =
[
0 0 Nϕ −Nϕ

]T
, Bu = DuNu, Bϕ = DϕNϕ. (4.73)

The element stiffness matrix is obtained by taking the partial derivatives of Rlin and R ang with
respect to the element nodal vectors û and ϕ̂3 and by arranging them in the matrix form as
in (4.30). The stiffness matrix calculations are explicitly given as follows

Matrices for the stiffness calculations in phase1 are

Kee =


λ+ µ λ+ µ 0 0
λ+ µ λ+ µ 0 0

0 0 µc −µc
0 0 −µc µc

 (4.74)

Kκκ =



[
µ̄− µ̄c + 2(µ◦ + µ

β2 ) 0

0 µ̄− µ̄c + 2(µ◦ + µ
β2 )

]
, if µ̄ > µ̄c

[
µ̄c − µ̄+ 2(µ◦ + µ

β2 ) 0

0 µ̄c − µ̄+ 2(µ◦ + µ
β2 )

]
, if µ̄ ≤ µ̄c

(4.75)

Matrices in the stiffness calculations for phase2 are

Kee =



{
λ+ 2µ− 2αβ2m

+ 2αβ4 (ε11 − ε22)2

{
λ+ 2αβ2m

− 2αβ4 (ε11 − ε22)2

{
4αβ4ε11ε12

− 4αβ4ε22ε12

{
4αβ4ε11ε21

− 4αβ4ε22ε21{
λ+ 2αβ2m

− 2αβ4 (ε22 − ε11)2

{
λ+ 2µ− 2αβ2m

+ 2αβ4 (ε22 − ε11)2

{
4αβ4ε22ε12

−4αβ4ε11ε12

{
4αβ4ε22ε21

−4αβ4ε11ε21{
4αβ4ε11ε12

−4αβ4ε22ε12

{
4αβ4ε22ε12

−4αβ4ε11ε12

{
µ+ µc − 2αβ2m

+8αβ4ε2
12

{
µ− µc − 2αβ2m

+8αβ4ε12ε21{
4αβ4ε11ε21

−4αβ4ε22ε21

{
4αβ4ε22ε21

−ε11ε21

{
µ− µc − 2αβ2m

+8αβ4ε12ε21

{
µ+ µc − 2αβ2m

+8αβ4ε2
21


(4.76)

Kκκ =

 µ̄+ µ̄c + 4αm+ 8ακ2
13 8ακ13κ23

8ακ23κ13 µ̄+ µ̄c + 4αm+ 8ακ2
23

 (4.77)

where m =
(
‖κ‖2 − β2 ‖dev ε‖2). Matrices in the stiffness calcualations of phase3 are

Kee =


λ+ 2µ+ µ◦β

2 λ− µ◦β2 0 0
λ− µ◦β2 λ+ 2µ+ µ◦β

2 0 0
0 0 µ+ µc + µ◦β

2 µ− µc + µ◦β
2

0 0 µ− µc + µ◦β
2 µ+ µc + µ◦β

2

 (4.78)
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Kκκ =



[
µ̄− µ̄c 0

0 µ̄− µ̄c

]
, if µ̄ > µ̄c

[
µ̄c − µ̄ 0

0 µ̄c − µ̄

]
, if µ̄ ≤ µ̄c

(4.79)

4.3. Numerical implementation of the rate-dependent inelastic Cosserat
material model

Consider the two-field minimization problem, find {u̇, ϕ̇} such that

{u̇, ϕ̇} = arg

{
min
u̇,ϕ̇

{∫
Ω

∆ (ėin, κ̇in)− ˙̀
ext (u̇, ϕ̇)

}}
, (4.80)

where u̇ is the velocity vector field, ϕ̇ is the gyration vector field, ėin and κ̇in are the time
derivatives of the Cosserat strain tensors e and curvature strain tensor κ respectively.

The stationarity conditions to the above minimization problem are∫
Ω

∂∆

∂u̇
dV − ∂ ˙̀

ext

∂u̇
3 0,

∫
Ω

∂∆

∂ϕ̇
dV − ∂ ˙̀

ext

∂ϕ̇
3 0. (4.81)

With the dissipation potential ∆ as formulated in previous chapter. Using this dissipation
potential the evolution equations for the inelastic strains thus becomes∫

Ω

(
gn+1 :

∂∇u̇
∂u̇

)
dV − ∂ ˙̀

ext

∂u̇
3 0, (4.82)

and ∫
Ω

(
−2µcω̇ :

∂ (asy ϕ̇)

∂ϕ̇
+ qn+1 :

∂∇ϕ̇
∂ϕ̇

)
dV − ∂ ˙̀

ext

∂ϕ̇
3 0, (4.83)

where ġ and q are descretized according to the Backward Euler implicit scheme as gn+1 =
gn + ∆tġ and qn+1 = qn + ∆tq̇. In the context of finite elements u̇ and ϕ̇ are approxi-
mated on the nodes of an element by their corresponding nodal shape functions Nu and Nϕ

respectively as

u̇ = Nu
ˆ̇u, ϕ̇ = Nϕ

ˆ̇ϕ. (4.84)

The potential of external forces is given by

˙̀
ext =

∫
Ω

(
b · u̇ + m · ϕ̇

)
dV +

∫
∂Ωu

tu · u̇ dS +

∫
∂Ωϕ

tϕ · ϕ̇ dS, (4.85)

where the term
∫

Ω

(
ḃ · u + ṁ ·ϕ

)
dV +

∫
∂Ωu

ṫu ·u dS+

∫
∂Ωϕ

ṫϕ ·ϕ dS is neglected since it

do not enter the minimization problem (4.80). Using the interpolation functions for the field
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variables at the element level we can write the equations (4.82) and (4.83) in the following
form

Re
lin

=

∫
Ω

BT
u ge,n+1 dV −

∫
∂Ωu

NT
u te,n+1

u dSu = 0, (4.86)

Re
ang

=

∫
Ω

(
− 2µc H

T ω̇e,n+1 + BT
ϕ q

e,n+1
)
dV −

∫
∂Ωϕ

NT
ϕ t

e,n+1
ϕ dSϕ = 0. (4.87)

where Su is the boundary with prescribed displacements, Sϕ is the boundary with prescribed
microrotations, Bu , H and Bϕ are computed according to the equation 4.73. To solve the
residual equations (4.86) and (4.87) it is equivalent to solve the system of equations

∂Re
lin

∂ue,i+1
n+1

∂Re
lin

∂ϕe,i+1
n+1

∂Re
ang

∂ue,i+1
n+1

∂Re
ang

∂ϕe,i+1
n+1


 ∆ue,i+1

n+1

∆ϕe,i+1
n+1

 = −

 Re
lin

(
ue,in+1,ϕ

e,i
n+1

)
Re
ang

(
ue,in+1,ϕ

e,i
n+1

)
 (4.88)

where ∆ue,i+1
n+1 = ue,i+1

n+1 − ue,in+1, ∆ϕe,i+1
n+1 = ϕe,i+1

n+1 − ϕ
e,i
n+1 and the terms in the tangent

matrix are given as

∂Re
lin

∂ue,i+1
n+1

=

∫
Ω

BT
u

∂gen+1

∂uen+1

dV, (4.89)

∂Re
lin

∂ϕe,i+1
n+1

=

∫
Ω

BT
u

∂gen+1

∂ϕen+1

dV, (4.90)

∂Re
ang

∂ue,i+1
n+1

=

∫
Ω

(
−2µc

∆t
HT ∂ω

e
n+1

∂uen+1

+ BT
ϕ

∂qen+1

∂uen+1

)
dV, (4.91)

∂Re
ang

∂ϕe,i+1
n+1

=

∫
Ω

(
−2µc

∆t
HT ∂ω

e
n+1

∂ϕen+1

+ BT
ϕ

∂qen+1

∂ϕen+1

)
dV. (4.92)

The differential terms in the equations (4.89), (4.90), (4.91) and (4.92) are calculated accord-
ing to the following relations in each of the material regimes
In the material regime with microstructure in micromotions:

∂gen+1

∂uen+1

=
1

∆t

{
2

(
λ

2
+
µ

d

)
I⊗ I + µc

(
I− I

)}
Bu, (4.93)

where d is the dimension of the problem,

∂gen+1

∂ϕen+1

= − 2

∆t
(µc I) H,

∂ωen+1

∂ϕen+1

= −H, (4.94)

∂ωen+1

∂uen+1

=
1

2

(
I− I

)
Bu,

∂qen+1

∂uen+1

= O, (4.95)

∂qen+1

∂ϕen+1

=
1

∆t

{
λ̄(I⊗ I) +

{
µ̄− µ̄c + 2

(
µo +

µ

β2

)}
I− (µ̄− µ̄c) I

}
Bϕ, if µ̄ > µ̄c.

(4.96)

∂qen+1

∂ϕen+1

=
1

∆t

{
λ̄(I⊗ I) +

{
µ̄c − µ̄+ 2

(
µo +

µ

β2

)}
I + (µ̄− µ̄c) I

}
Bϕ, if µ̄ < µ̄c.
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(4.97)

In the material regime with no internal structure:

∂gen+1

∂uen+1

=
1

∆t


(
λ+ 2αβ

2

m
)
I⊗ I +

(
µ+ µc − 2αβ

2

m
)
I

+
(
µ− µc − 2αβ

2

m
)
I + 8αβ

4

(dev ε̇⊗ dev ε̇)

Bu, (4.98)

where m = ‖κ̇‖
2

− β2 ‖dev ε̇‖
2

,

∂gen+1

∂ϕen+1

= − 2

∆t

(
(µc I) H + 4αβ

2

(dev ε̇⊗ κ̇)
)
Bϕ (4.99)

∂qen+1

∂uen+1

= −8αβ
2

∆t
(κ̇⊗ dev ε̇)Bu, (4.100)

∂qen+1

∂ϕen+1

=
1
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(
λ̄ I⊗ I+ (µ̄+ µ̄c + 4αm) I+ (µ̄− µ̄c) Ī+ 8α (κ̇⊗ κ̇)

)
Bϕ. (4.101)

In the material regime with microstructure in translational motions:

∂gen+1

∂uen+1

=
1

∆t

( (
λ− µ◦β2

)
I⊗I+

(
µ◦β

2 + µ+ µc
)
I+
(
µ◦β

2 + µ− µc
)
I
)
Bu, (4.102)

∂gen+1

∂ϕen+1

= − 2

∆t
(µc I) H,

∂ωen+1

∂ϕen+1

= −H, (4.103)

∂ωen+1

∂uen+1

=
1

2

(
I− I

)
Bu,

∂qen+1

∂uen+1

= O, (4.104)

∂qen+1

∂ϕen+1

=
1

∆t

(
λ̄ (I⊗ I) + (µ̄− µ̄c)

(
I + I

) )
Bϕ. if µ̄ > µ̄c (4.105)

∂qen+1

∂ϕen+1

=
1

∆t

(
λ̄ (I⊗ I)− (µ̄− µ̄c)

(
I− I

) )
Bϕ. if µ̄ < µ̄c (4.106)

where O is the fourth order zero tensor, I, I are the fourth order unit tensors and I is the
second order identity tensor. The system of nonlinear equation in (4.88) are solved according
to the procedure explained in Section 4.2.1.
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5. Numerical results

This chapter deals with the presentation of computational results obtained from the numer-
ical simulations of the developed Cosserat continuum models for granular materials. It is
further divided into two sections where in the first section results from the elastic Cosserat
continuum model are presented and in the second section the results from the rate-dependent
inelastic Cosserat continuum model are presented. Finite element method has been used
for the numerical implementation of both the elastic and rate-dependent inelastic Cosserat
models.

5.1. Numerical results from the elastic Cosserat continuum model

The material model presented in Chapter 3 (see Section 3.4) is analyzed for the possible
distribution of microstructure in four special cases. In the first case, a square plate with a
central hole is used for the observation of microstructure in the material. In the second case,
the distribution of microstructure in a Couette shear geometry is examined. In the third case,
a tension-compression test is performed on a rectangular specimen for the investigation of
the onset of localized behavior of the material leading to possible material failure. In the
fourth case, the distribution of microstructure in a rectagnular specimen of granular particles
is simulated under the impact of an indenter where the Prandtl slip line solution is evidented
with the formation of microstructure in the region beneath the indenter.

5.1.1. Microstructure in a square plate with a central hole

In this first example, the behavior of the elastic Cosserat material model (presentd in Chapter
3, see Section 3.4.1) is analyzed on an infinitely long brick specimen with a circular hole
at its center. The geometry and the loading conditions are shown in Figure 5.1(a). The
geometry of the problem allows to use plane strain conditions for the implementation of the
proposed model using finite element scheme. For this purpose a perforated square plate of
unit thickness is chosen as a cross-section of the brick specimen as shown in Figure 5.1(b).
Due to the symmetry of the problem in consideration only one fourth of the plate is analyzed
subjected to tension test. The selected domain is then discretized into finite elements with
a total of 800 elements. All the field variables in each element are approximated with eight
nodes using bi-quadratic shape functions. The spatial integration is carried out with nine
Gaussian quadrature points per element. The material parameters used in the numerical
calculations are presented in Table 5.1. A Newton-Raphson iteration scheme is used for
solving the system of nonlinear equilibrium equations resulting from the two-field variational
formulation of the proposed model. A displacement controlled quasi-static loading is applied
to the specimen in sixty five loading steps with a loading step size of 1.0 × 10−2 where
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Table 5.1.: Material parameters for the analysis of a square plate with a central hole.

E ν µc α β µ λ µc

(MPa) - (MPa) (N.mm2) (mm−1) (N) (N) (N)

2.0×104 0.3 2.0×102 1.0×102 1.0×101 3.0×102 5.0×101 2.0×102

[a]

1 mm

200 mm

2
0
0
 m

m

100 mm

[b] 100 mm
1
0
0
 m

m

X-axis

Y
-a

x
is

X-axis

Y
-a

x
is

Figure 5.1.: (a) Geometry of the brick specimen with a central hole and loading conditions,
(b) Reduced Geometry (shaded region) due to symmetrical loading conditions.

a maximum displacement of 17mm is prescribed. For the stopping criterion of Newton-
Raphson iteration scheme a tolerance of 1.0× 10−8 is used.

Results from the numerical simulations shows that the material exhibits a microstructure
in translational motions of the continuum particles. The distribution of microstructural and
non-microstructural regions in the material are demonstrated in the Figure 5.2. The red
coloured (Phase 3) structural part is corresponding to the material with microstructure in
translational motions of the particles and the purple coloured (Phase 2) is corresponding to
the material where there is no microstructure. It is observed that the part of the material
where there are maximum stresses transforms to the microstructural phase where it experi-
ence a microstructure in translational motions of continuum particles. The complete picture
of the development of microstructure in the perforated square plate is shown in Figure 5.3(a).

In Figure 5.3(b) the distribution of the horizontal component of Cosserat strain tensor e is
presented. Higher values of gradients of the field variables is seen in the zone of material
where there is a microstructure. In Figure 5.4 the load displacement curves for different dis-
cretized meshes consisting of 200, 800, 1800 and 3200 elements are presented. It is shown
that for each discretized mesh the load-displacement response of the material is the same re-
gardless of the mesh, which implies that the solution obtained by using the proposed numeri-
cal model is mesh objective. In Figure 5.5 the load-displacement curves for varying values of
the material parameters µc are shown, whereas slopes to these curves with the prescribed dis-
placement are seen in Figure 5.6. These Figures do not only demostrate on the development
of microstructure in the material affected by the change in the values of µc but also allow
to observe that the Cosserat tangent modulus is nonlinear in the non-microstructural regime
and is linear (having a constant value) in the microstructural regime of the material. The
effect of different material parameters on the development of microstructure in translational
motions of the continuum particles is demonstrated in Figures 5.7 and 5.8.
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Figure 5.2.: Development of microstructure in the material and the distribution of phase frac-
tion at different loading steps.
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Figure 5.3.: (a) Deformed configuration of the square plate with central hole, (b) Contour
plot of Cosserat strain component in horizontal direction.
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Figure 5.4.: Load-displacement curves obtained from different simulations performed on the
meshes consisting of 200, 800, 1800 and 3200 elements.
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Figure 5.5.: Load-displacement curves obtained from different simulations performed with
varying the values of the material parameter µ̄c.
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Figure 5.6.: The effect of Cosserat coupled shear modulus µ̄c in changing the tangent modu-
lus of Cosserat elasticity.
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Figure 5.8.: Stress-strain curves obtained from different simulations performed with varying
the values of material parameters α and β.
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Figure 5.9.: Change in the tangent modulus of Cosserat elasticity is observed with varying
values of the material parameter α.

The mechanical response of the material with some selected material parameters α and β
is demonstrated in Figure 5.8. It is observed that for relatively large particle size and with
large interaction modulus the material microstructure in translational motions is more pro-
nounced. In Figure 5.9 the varying values of material parameter α are taken to observe
the microstructure formation where it is observed that for large values the microstructure
develops much earlier than the small value of α. Figure 5.10 depicts the behavior of the
material in uni-axial tension-compression test with varying values of the material parameter
β. The test is performed on the same geometry as discussed above. The interaction modu-
lus is chosen as α = 1.0 × 103 N.mm2, with fixed µ. The value of µ̄c varies according to
µ̄c = 60, 80, 100, 120 N. We observe that for a larger value of β the microstructure develops
earlier than for a smaller value. For the relatively small value of β = 8.0064 mm−1, the ma-
terial still has not experienced any microstructure in translational motions until 3.5 percent
strain. This shows that with smaller particle size the microstructure in translational motions
is more pronounced. Same conclusion has been drawn before where analytical computations
along some chosen strain paths were carried out. For the displacement controlled quasi-static
loading a step size of 5.0× 10−3 is used.
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Figure 5.10.: Stress-strain response of the notched plate with a central hole subjected to ten-
sion with varying particle size.

5.1.2. Microstructure in an annular material domain

To observe all the non-microstructural and microstructural phases in the material it is re-
quired to develop a test where there are strong rotations among the material particles which
can contribute an intense rotational effect to the material strain energy. The kinematics of par-
ticle rotations is shown in Figure 5.11 where two possible kind of particle rotations, namely,
counter rotations and identical rotations are seen. The rotational effect of the counter rotat-
ing particles contribute strong rotational effect to the proposed interaction energy potential,
whereas, in a situation of identical rotations of the particles it contributes much sliding effect
to the interaction energy potential. Within a confined geometry and under certain boundary
conditions the phenomenon of particle rotations is affected by particle size.

Couette annular geometry is taken for the observation on the formation of microstructure
using the proposed model. Couette geometries has been used in experiments for the analysis
of shear flows in granular materials. The evidence of the formation of shear localization
near the inner rotating cylinder in a Couette annular geometry is provided in an experiment
by Debrégeas et al. [Deformation and flow of a two-dimensional foam under continuous
shear, Phys. Rev. Lett., 87:178305, 2001]. Veje et al. [ Kinematics of a two-dimensional
granular Couette experiment at the transition to shearing, Phys. Rev. E 59, 739-745, 1999]
used to shear the photoelastic polymer disks in a Couette flow. Another experiment on shear-
ing the granular material inside the Couette geometry is performed by Savage and Sayed in
[Stresses developed by dry cohesionless granular materials sheared in an annular shear cell,
Journal of Fluid Mechanics, 142, 391-430, 1984]. Among other works related to the exper-
imental observation of shearing effect in a Couette cell are found in the papers by Behringer
et al. [Stress Fluctuations in a 2D Granular Couette Experiment: A Continuous Transition
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Figure 5.11.: Kinematics of particle rotations: Rotating particle chain exhibiting two differ-
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Figure 5.12.: (a) Geometry of the two circular rotating cylinders, (b) Reduced Couette ge-
ometry and boundary conditions.

Phy. Rev. Lett., 82(26), 5241-5244, 1999] , Utter and Behringer [Multiscale Motion in the
Shear Band of Granular Couette Flow, AIP Conf. Proc. 1145, 339-342, 2009]. For a detailed
overview on the comparison between numerical and experimental results obtained in a gran-
ular Couette shear the reader is referred to the paper by Lätzel et al. [Comparing simulation
and experiment of a 2D granular Couette shear device. Eur. Phys. J. E 11, 325-333, 2003].
Consider the granular material confined between two concentric rigid circular cylinders as
shown in Figure 5.12. The cylinders are subjected to rotations in opposite directions. Due to
symmetry we take only first quadrant of an annular plate for the observation of microstruc-
ture formation inside it. The annular domain is subjected to an in-plane shear deformation
with the application of rotational motions at the outer boundaries. The width of the annular
is taken to be 20 mm. The inner circular boundary is at a radius of 10 mm from the origin
of the annulus. The circular boundaries are supposed to rotate in opposite direction and as
a consequence two type of rotations among the particles inside the annular domain can be
observed. These identical and counter rotations of the granular particles within the annular
domain can be viewed as in Figure 5.11. The boundary conditions for the numerical simula-
tion using the proposed model uses fixed displacement along the circular boundaries whereas
a micromotion of one radiant is prescribed at the boundaries.

Our intension with this study is to observe the development of microstructural phases within
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Figure 5.13.: (a) Phase with microstructure in micro-motions and no internal structure phase
coexists, (b) All the three phases coexists, (c) Three phases coexists with
more pronounced microstructure in micro-motions, (d) Coexistence of the three
phases with almost vanishing microstructure in translational motions.

(a) (b)

(c) (d)

the annular domain subjected to rotational deformation. The development of microstructures
in both the translational and micro-rotational motions of the particles are observed as can be
seen in Figure 5.13. Where, in Figure 5.13(a) material exhibits a microstructure in micro-
rotations of the continuum particles. In Figures 5.13(a), 5.13(b) and 5.13(c) it is shown
that for a particular values as listed in Table 5.2 the material has microstructure in both the
translational and micro-rotational motions of the particles. Thus allowing to observe that all
the material phases can coexist. Moreover the deformed configurations with different values
of β depicts that decreasing the value of β causes the material to behave softly. Also with the
decrease in the particle size the microstructure in the micromotions of the particles is more
pronounced.

Table 5.2.: Material parameters for the shear test in a Couette geometry.

- E ν µc α β µ µc

- (MPa) - (MPa) (N.mm2) (mm−1) (N) (N)

Figure 5.13(a) 2.0×102 0.3 2.0 2.0×105 5.8×10−1 8.0×101 5.0×101

Figure 5.13(b) 2.0×102 0.3 2.0×102 2.0×105 5.8×10−1 8.0×101 5.0×101

Figure 5.13(c) 2.0×102 0.3 2.0×102 2.0×105 4.0×10−1 8.0×101 5.0×101

Figure 5.13(d) 2.0×102 0.3 2.0×102 2.0×105 2.0×10−1 8.0×101 5.0×101
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5.1.3. Onset of localized deformations in a granular medium

The localization of deformations leads to possible material failure and such localized zones
have been observed by Kaus and Podladchikov [Initiation of localized shear zones in vis-
coelastic rocks. Journal of Geophysical Research, 111, B04412(1-18), 2006]. Our emphasis
with this study is not to show these localized deformations rather it is possible to observe
this phenomenon with the exact relaxed potentials. The exact relaxed potentials are enable
enough to predict on the formation of microstructures within these localized zones in the
material. We emphasize on the formation of microstructure and thus provide a clue that
how these localized deformations can form different possible bands. This may be impor-
tant to know that under certain boundary conditions the material can form different localized
deformation bands which afterwards possibly leads to material failure. To illustrate on the
formation of these localized deformation bands a tension-compression test performed on
a rectangular specimen is presented. The formation of microstructure clearly predicts the
localized deformation mechanism observed by Kaus and Podladchikov (2006).

Example: Compression test on a rectangular specimen with a small imperfection

In this example, a rectangular specimen of granular material is considered with a small im-
perfection in the form of a weak element at the center of the specimen as shown in Figure
5.14. The material parameters used for the simulation are given in Table 5.3. The geometry
and boundary conditions are shown in Figure 5.14, where the vertical displacements on both
top and bottom of the specimen are constrained. The material points can move horizontally
at both the top and bottom boundary of the specimen except the point at the left lower corner
of the specimen which is fixed in both the horizontal and vertical direction. Additionally
a frictional boundary condition is used where the micro-rotation of the continuum points is
allowed at both the top and bottom boundary of the specimen. A maximum displacement
of -34.8cm is applied on top boundary in vertical direction over a 1000 loading steps with a
load step size of 4.35× 10−3.

The purpose of this analysis is to observe the development of microstructural zones in the
specimen under compression. The analysis is performed on the specimen with two differ-
ent mesh sizes where in the first analysis (see first column of Figure 5.15) the specimen is
discretized into 765 finite elements whereas in the second analysis (see second column of
Figure 5.15) 4214 elements are used. The formation of microstructure in the material is trig-
gered with the introduced inhomogeneity in the form of a weak element in the specimen.
It is observed that the microstructure in the material develops in the zones where possible
material failure can occur. The developed microstructural zones in the material resembles to
the results observed by Kaus and Podladchikov (2006). This development of the microstruc-
ture is gradually increasing with the increase in the loading. The two colors in Figure 5.15
depicts the microstructural and non-microstructural part of the material. The red color zones
is corresponding to the material phase where there is a microstructure in the material. This
microstructure is due to the translational motions of the continuum particles which give in-
formation on the possible localized zone formation within the material.

The onset of the localized zones are predicted by the formation of microstructure in the ma-
terial as shown in Figure 5.15. The development of this microstructural zones leads to the
information on the possible material failure. It is observed that the width of the microstruc-
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Figure 5.14.: Geometry and boundary conditions of the rectangular specimen with weak el-
ement.

tural band is not affected by the mesh size, this is highly due to the properties of the relaxed
potentials. The microstructural bands are the regimes in the material where the dissipation
occurs while deformation takes place after yielding of the material.

Figure 5.17 clearly shows an increased value of the microrotation inside the width of the
microstructural zone. The microrotations are more concentrated towards the center of the
microstructrual zones. This is why these microstructural zones can be seen as a patterns on
which the material can lead to possible failure, since inside the localized zones of deforma-
tions the particle rotations are found to be large. Since the material model used for these
observations do not accommodate plastic deformations therefore we cannot show but are
able to predict on the possible material failure zones that are related to energy dissipation.

From Figures 5.18, 5.19 and 5.20 it can be seen that the micro-rotational field attains

Table 5.3.: Material parameters for the specimen with introduced imperfection in compres-
sion.

- E ν µc α β µ µc

- (MPa) - (MPa) (N.mm2) (mm−1) (N) (N)

Mesh 2.0×105 0.3 2.0×101 5.0×101 1.5 7.0 2.0×101

Weak element 2.0×103 0.3 2.0×101 1.0×103 1.5 3.0×102 4.0

its highest value at the center across the width of the microstructural zones. The curvature
strain and Cosserat strains are more concentrated towards the center of these microstructural
zones. The couple stress and the Cosserat shear stress switch their direction at the center
across the width of the microstructural zones. The physical significance of this phenomenon
can be realized by considering the center line of the microstructural zones as a slip or shear-
ing line where there is strong shearing effect which causes the flip of shear and couple stress
direction. Our results are in accordance to the observation of Alshibli et. al. [KAV06] where
they show the formation of strain localization in a rectangular specimen of granular material
applying Cosserat continuum theory.
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Figure 5.15.: Rectangular specimen in compression. In first column: The deformed con-
figuration of the specimen under compression with coarse mesh consisting of
765 elements. In second column: The deformed configuration of the specimen
under compression with fine mesh consisting of 4214 elements
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Figure 5.16.: Selected lines along the width of the microstructural zone.
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Figure 5.17.: Distribution of micro-rotation ϕ3 along the width of the microstructural zone.
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Figure 5.18.: Distribution of curvature strain along the width of the microstructural zone.
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Figure 5.19.: Distribution of horizontal and vertical strain components along the width of the
microstructural zone.
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Figure 5.20.: Distribution of shear force-stress (a) and couple stress (b) components along
the width of microstructural zone.

5.1.4. Indentation test and the elastic material microstructure

The significance of the observation of mechanical response of a granular medium to inden-
tation is evident from the load bearing capacity problem in geotechnical engineering. In this
example we study the indentation of a granular medium under plain strain assumptions. In
plain strain conditions indentation of granular material has also been studied by Tordesil-
las and Shi [TS98, TS99], by Murthy et. al. [MGC12]. The role of particle rotations in a
granular medium to indentation is studied by Tordesillas et. al. [TPM05] where they use dis-
crete element method for the simulation and the observation of mechanical response of the
material. Cosserat continuum constitutive theory has been applied by Walsh and Tordesillas
[WT06] for the numerical simulation of granular medium subjected to indentation. Sulem
and Derrolaza [SD02] also analyze the microstructure in an indentation test on rocks using
the finite element method in a Cosserat continuum.

A granular medium of dimensions 200×100 cm2 is subjected to indentation by a flat rigid
indenter with a dimension of 50×5 cm2 as shown in Figure 5.21. The geometry of the gran-
ular medium is discretized into 2560 finite elements whereas the geometry of the indenter is
discretized into 250 finite elements. The indenter can only move in vertical direction and this
constraint is applied by fixing the horizontal degrees of freedom of all the nodal points of
indenter. Both the horizontal and vertical degrees of freedom on the right and left boundary
of the granular medium are fixed. The continuum points can move only in the horizontal
direction at the base of the granular medium which is ensured by fixing the vertical degrees
of freedom at the base of the granular medium. The punching of the indenter is controlled
by the applied vertical displacements, where a maximum displacement of 3.76 cm is applied
at the top nodes of the indenter mesh in 1390 loading steps with a step size of 1.4 × 10−3.
The material parameters used for the indenter and the granular medium (granular medium 1)
are shown in Table 5.4. A large number of experiments have been performed on the gran-
ular foundations subjected indentation revealing similar bands of localized deformations as
shown in this investigation. Also numerical simulation using finite element scheme for the
Cosserat continuum by Walsh and Tordesillas [WT06] has shown such kind of microstructure
formation in a granular medium punched by rigid indenter. We show a numerical solution
where the development of microstructure has been predicted in the localized zones around
the indenter. The nucleation and the evolution of microstructural zone can be observed as
the indenter moves downward. This microstructural zone is corresponding to the material
where there are localized gradients. These are the regions where the dissipation in the mate-
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Figure 5.21.: Geometry of the granular medium under indentation along with the prescribed
boundary conditions.

rial takes place upon yielding in plasticity analysis. Results from the numerical simulations
in Figure 5.22 are in accordance to the generalized Prandtl’s solution of a rigid flat punch
problem, where the dead material (there is no microstructure in this region) underneath the
rigid indenter has a triangular shape as seen in the second column of Figure 5.22 d. The red

Table 5.4.: Material parameters for the indentation test on a granular medium.

- E ν µc α β µ µc

- ( N
cm2 ) - ( N

cm2 ) (N.cm2) (cm−1) (N) (N)

Granular medium 1 2.0×104 0.3 2.0 5.0×104 0.5 7.0×103 2.0×102

indenter 2.0×1012 0.3 2.0 5.0×103 0.5 7.0×103 2.0×102

color zones of the material are corresponding to the phase where there is a microstructure due
to translational motions of the particles, whereas the purple colored zones are the regimes
where there is no internal structure in the material.
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Figure 5.22.: Microstructure development beneath the indenter in a granular foundation.
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5.2. Numerical results from the inelastic Cosserat material model

5.2.1. Indentation test and the inelastic material microstructure

The purpose of this test is to study the mechanical response of the material under indenter
for different material parameters. The influence of these material parameters on the overall
deformation mechanism and on the development of microstructures is investigated. The
comparison with any empirical study would not be done.

A granular foundation with the geometry as shown in Figure 5.21 is taken for the numeri-
cal simulation. The foundation is discretized into 6400 finite elements whereas the indenter
is discretized into 80 finite elements. The boundary conditions are chosen such that both
the horizontal and vertical displacements are fixed at the right and left side of the founda-
tion. Also the vertical displacements are fixed at the bottom of the foundation whereas the
rotational degrees of freedom are free to move. Moreover, at the top of the foundation all
degrees of freedom are allowed to move. The material parameters used in the numerical
simulation are as given as in Table 5.5. The problem is force controlled where a vertical
force of 0.814 N is applied at each nodal point at the top of the indenter. Upon loading the
material microstructure develops beneath the indenter and its distribution within the gran-
ular foundation is shown in Figure 5.23. The material exhibits a rate-dependent response,
which upon unloading continues to deform, this creep behavior can be observed from Figure
5.24. In Figure 5.25 the rate-dependent behavior of the granular foundation under inden-
ter is analyzed. The nonlinear curve plotted between the rate of the displacement field (u̇)
and the maximum resultant reaction force clearly shows that with the increase in the applied
displacement rate the maximum resultant reaction force also increases. The simulation was
carried out under the displacement controlled settings where varying displacement rates are
used. The time step chosen for this analysis is 1.98 × 10−2 sec. The material parameters
used in the simulation are shown in Table 5.6.

Table 5.5.: Material parameters for the indentation test on a granular medium using inelastic
formulation.

- E ν µc α β µ µc

- ( N
cm2 ) - ( N

cm2 ) (N.cm2) (cm−1) (N) (N)

Granular medium 2.0×104 0.3 2.0 5.0×104 1.0×102 0.5 2.0×102

indenter 2.0×1012 0.3 2.0 5.0×104 1.0×102 0.5 2.0×102

Table 5.6.: Material parameters for the indentation test on a granular medium using inelastic
formulation.

- E ν µc α β µ µc

- ( N
cm2 ) - ( N

cm2 ) (N.cm2) (cm−1) (N) (N)

Granular medium 2.0×104 0.3 2.0 5.0×102 1.0×101 1.0×103 2.0×103

indenter 2.0×1012 0.3 2.0 5.0×102 1.0×101 1.0×103 2.0×103
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Figure 5.23.: Development of a microstructural zone beneath the indenter in a granular foun-
dation.
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Figure 5.24.: Load-displacement curve exhibiting creep behavior.
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Figure 5.25.: Rate dependent response of the granular foundation under indentation.
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Part II.

Variational modeling of detwinning in phase
transforming inelastic solids using exact relaxed

potential
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6. Modeling detwinning of martensitic microstructures

6.1. Detwinning theory of martensitic microstructures

Detwinning (deformation twinning) is one of the important mechanism of inelastic defor-
mation in crystalline solids, among other modes of plastic deformations e.g., plastic slip,
dislocations and martensitic phase transformations. The formation of deformation twinns
has been observed experimentally by many researchers in a large number of materials. In
silicon the exhibition of deformation twinns has been reported in an experimental study by
Franks et. al. [FGC95]. Later Churchman et. al. [CGW56] showed that similar to Silicon
structure four other A4 (Diamond) crystal structure material namely, germanium, indium an-
timonide, gallium antimonide and zinc blende can produce deformation twins. Suzuki et. al.
[SB58] observed experimentally that the deformation twinning appear in a silver-gold alloy
single crystals. These modes of deformation are very common in hexagonal closed-pack
(hcp) crystalline solids (for example Ti, Mg etc) and in body-centred cubic (bbc) crystalline
solids (for instance Fe, ). Although the formation of deformation twins in the face-centered
cubic (fcc) crystalline materials (such as Cu, Ni and Al etc) has been reported in 1950s by
Blewitt et al. [BCR57] and Suzuki and Barrett [SB58] and later by Venables [Ven61] but
seminal experimental work was carried out recently by Christian and Mahajan in the book
[CM95], Han et al. [HZWL08], Huang et al. [HWW+06] and Zhu et al. [ZLW12]. The for-
mation of deformation twins in coarse grained Cu metal with fcc crystallographic structure
occurs in localized deformation bands and their interactions [HWW+06]. The reason behind
this is the presence of high stress field in these bands. Contrary to the observations and inves-
tigations of Reed-Hill et al. [RH64], Rohatgi et al. [RVG01] the formation of deformation
twins at room temperature and low strain rate in coarse grained fcc metals is also possible
[HWW+06]. At low temperatures its observation Cu and Cu-Zn alloys have been reported
by Thornton and Mitchell [TM62]. For a comprehensive and most recent review on the de-
formation twinning in crystalline materials of fcc, bcc and hcp crystallographic structures
the reader is referred to the seminal work of Zhu et al. [ZLW12].

Formation of deformation twins (see Figure 6.1 for different types of twinns) is strongly in-
fluenced by some microstructural parameters for instance, grain size, stacking-fault energy
and dislocation density [EDKD99, HZWL08]. Among other factors that can affect the oc-
currence of deformation twinns are the strain, strain rate, crystallographic orientation and
temperature [BCR57, HZWL08]. For detailed discussion on the factors affecting the for-
mation of deformation twinning in craystallographic materials the reader is referred to the
paper [ZLW12]. The significance of studying detwinning can be realized from the fact that
it strongly effects the mechanical properties of materials [CM95, ZLW12]. It can play a
crucial role in the nucleation of fracture in materials [CM95]. The macroscopic stress-strain
response of a crystalline material is significantly influenced with the formation of detwinning
modes [ACB04, CM95, ZLW12].

Phase transforming inelastic materials exhibiting microstructures have been modeled using
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Figure 6.1.: Transmission electron microscopy micrographs of (a) Type I, (b) Type II, (c),
Type III deformation twins formed in a Cu single crystal. Reprinted from
[HZWL08] with permission of Zhang, Z. F.

energy formulations by many researchers. The energy potential resulting from the construc-
tion of these models comes out to be non-quasiconvex in general. Computation of corre-
sponding relaxed energy is not always possible in every situation and therefore there is no
general analytical expression for martensitic materials. In the case of an n-variant marten-
sitic material an upper bound to the quasiconvex energy potential of the corresponding non-
convex free energy is provided in the works of Govindjee, Hackl and Heinen [GHH07],
Govindjee, Mielke and Hall [GMH02] and Hackl and Heinen [HH08]. In the case of two-
variant mathematical modeling of martensitic materials has already been discussed in the
early works of Ball and James [BJ87, BJ92], Carstensen and Plecháč [CP97] and Kohn
[Koh91]. Corresponding to these two-variant martensitic material the two-well energy struc-
ture becomes non-convex of which an explicit formula for the relaxed energy was possible
[BJ87, BJ92, Koh91]. Here, in a time incremental setting a mathematical model for detwin-
ning microstructures is presented where initially a two phase twinned crystalline microstruc-
ture in the material is assumed. Corresponding to each twinned phase there exists an energy
potential that can be used to describe the material behavior in deformation. Together, the
energy function of the material becomes nonconvex thus allowing microstructures to appear.
The analysis of detwinning microstructures is made possible with the derivation of an analyt-
ical expression for the partially relaxed energy. The modeling approach is based on energy
principles in material modeling where a principle of minimum of dissipation potential is
employed in order to compute the equilibrium state of the material.

6.2. Analysis of a simple model for martensitic detwinning

Consider an inelastic crystalline material with two phase martensitic microstructure. The
material response can be characterized by assuming a two well energy potential in the energy
minimization problem for the description of its equilibrium configuration. For a single well
energy structure with continuous energy function on a given domain Ω there is no jump in
the deformation gradient ∇u(x) for a deformation u. But in the case of two well energy
structure there exists a jump in the deformation gradient where energy of the material is
divided into two parts, one part is corresponding to the Ith martensitic variant and the other
part is corresponding to the J th martensitic variant. In such a situation the deformation
gradient is written as

∇u =

{
∇u1(x) for x ∈ Ω1,
∇u2(x) for x ∈ Ω2.

(6.1)
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a

b

M1

M2

Figure 6.2.: Twinning Elements. The two martensitic variants M1 and M2 respectively hav-
ing a volume fraction of λ and 1 − λ, are differentiated by a twinning plane
(dark line) having a normal unit vector b and a geometric vector a. The shearing
direction is represented by η.

The deformation gradient further can be decomposed into rotation and transformation matri-
ces in each of the material domain as follows

∇u1(x) = Q1UI, ∇u2(x) = Q2UJ. (6.2)

where UI is the transformation matrix (also called Bain matrix) corresponding to Ith marten-
sitic variant, UJ is the transformation matrix corresponding to J th martensitic variant, Q1

and Q2 are some rotation matrices. Due to this discontinuity in the deformation gradient on
the boundary between the domain Ω1 and Ω2 of the material body the deformation gradient
need to satisfy a compatibility condition known as kinematic compatibility condition or the
Hadamard jump condition [Bha01]

∇u1(x)−∇u2(x) = a⊗ b, for some vector a and b (6.3)

where b must be a unit normal to the twinning plane (see Figure 6.2) which separates the
two domains Ω1 and Ω2. The equation (6.3) that characterizes the two twins corresponding
to the two energy wells is called the twinning equation. With known deformation matrices
the solution procedure to the twinning equation can be traced in the lecture notes from Bhat-
acharya [Bha01]. We study a material which can undergo phase-transformation between two
martensitic variants destinguished by transformation strains±εT. The transformation strains
are assumed to be twin-compatible, hence we can write

εT = a⊗ b + b⊗ a, (6.4)

where a and b are vectors, see [Bha03]. The two variants possess elastic energies of the form

Ψ±(ε) =
1

2
(ε∓ εT) : C : (ε∓ εT), (6.5)

where ε is the elastic strain tensor to be determined by

ε =
1

2

(
∇u +∇uT

)
, (6.6)
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Detwinning Detwinning

M2
M1

M1M2

Figure 6.3.: Detwinning microstructure. Initially the material is assumed to have a twin
structure with equal amount of volume fractions of each martensitic variant M1
and M2, which upon loading completely transform to a detwinned martensitic
variant M1 and upon unloading and changing the loading direction it completely
transforms into the detwinned martensitic variant M2.

C the fourth-order tensor of elastic constants, and “:” denotes contraction over all tensor
components. Let us assume now, that the material is in a state characterized by a voulume
fraction λ of variant one, and correspondingly by a volume fraction 1 − λ of variant two,
with 0 ≤ λ ≤ 1. The material will adjust strains in a compatible way as to minimize its
overall energy. This leads to the so-called relaxed energy

Ψrel (ε, λ) = inf
c,d;
|d|=1

{λΨ+(ε+ (1− λ) c⊗ d) + (1− λ)Ψ− (ε− λ c⊗ d)} . (6.7)

The minimization can be carried out analytically, for instance consider

Ψ (ε, λ, c,d) = λΨ+(ε+ (1− λ) c⊗ d) + (1− λ)Ψ− (ε− λ c⊗ d) . (6.8)

After some simple calculations one arrives at

Ψ (ε, λ, c,d) =

(
λ

2
− λ2

2

)
(c⊗ d) : C : (c⊗ d) +

1

2
ε : C : ε+

(
1− 2λ

2

)
ε : C : εT

+

(
1− 2λ

2

)
εT : C : ε+

(
λ2 − λ

)
(c⊗ d) : C : ε+

1

2
εT : C : εT

+
(
λ2 − λ

)
ε : C : (c⊗ d)

(6.9)

Using this energy potential one may rewrite the aforementioned minimization problem as

Ψrel (ε, λ) = inf
c,d;
|d|=1

{Ψ (ε, λ, c,d)} . (6.10)

The stationarity conditions to this problem thus implies (c⊗d) = 2εT, and hence the relaxed
energy Ψrel if obtained as

Ψrel (ε, θ) =
1

2
(ε− θεT) : C : (ε− θεT) , (6.11)

where for later convenience we introduced the parameter θ = 2λ− 1, i.e. it holds −1 ≤ θ ≤
1. In a fully elastic regime, the material will also tend to minimize the volume rations for
given strain. This leads to the fully relaxed energy

Ψrel (ε) = inf
θ;

−1≤θ≤1

{
Ψrel (ε, θ)

}
, (6.12)
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see [Koh91]. In this work, however, we will be interested in the evolution of θ. Thus we will
work with the partially relaxed energy in (6.11).

The volume fraction θ being an internal variable accounting for material microstructures.
Any change in the microstructure is thus being characterized by a change in θ, which leads
to the dissipation of the material energy if this microstructural change is irreversible. This
dissipation of the material energy, within the framework of rate-independent inelastic evolu-
tion of microstructures [HHK12], is quantified by a dissipation-potential

∆(θ̇) = r |θ̇|. (6.13)

Here r > 0 denotes a material parameter. Since the dissipation potential defined above
is homogeneous of degree one, it is therefore convenient to use the minimum-principle of
dissipation potential for obtaining the evolution equations instead of deriving them using the
principle of maximum dissipation (both the principles in this case are equivalent, see for
example Hackl and Fischer [HF08]). Introducing the Lagrange functional

L
(
ε, θ, θ̇

)
=

d

dt
Ψrel(ε, θ) + ∆(θ̇), (6.14)

one can then determine the evolution of volume fraction θ from the minimum-principle of
dissipation potential [HF08]

θ̇ = arg

{
min
θ̇
L
(
ε, θ, θ̇

)}
. (6.15)

The evolution of θ is thus obtained from the stationarity condition which implies

εT : C : (ε− θεT) ∈ sign θ̇. (6.16)

6.2.1. Time-incremental variational formulation

The choice of dissipation potential in (6.13) ensures to work within the framework of rate-
independent inelasticiy. In this case it is now possible to consider the aforementioned min-
imization problem in its time-incremental formulation as introduced by Carstensen et al.
[CHM02]. The new formulation reads, for a given set

{
un, θn

}
at at time tn the set of

unknowns
{
un+1, θn+1

}
at time tn+1 may be obtained via the minimization

{
un+1, θn+1

}
= arg

 min
un+1,θn+1;
−1≤θn+1≤1

{∫
Ω

(
Ψrel (ε(un+1), θn+1) + r|θn+1 − θn|

)
dV − `(un+1)

} ,

(6.17)

where `(un+1) is the potential of external forces. The rate-independent inelastic response
of many materials is modeled using the concept of condensed energy. Minimization with
respect to θn+1 can be carried out directly giving rise to the so-called condensed energy

Ψcond
θn (εn+1) = inf

θn+1;
−1≤θn+1≤1

{
Ψrel (εn+1, θn+1) + r|θn+1 − θn|

}
. (6.18)
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In the case −1 < θn+1 < 1 we obtain the stationarity condition

εT : C : (εn+1 − θn+1εT) ∈ r sign (θn+1 − θn) (6.19)

giving the update formula for the volume fraction θn+1 as

θn+1 = θn+
1

‖εT‖2

(
|εT : C : (εn+1−θnεT)|−r

)
+

sign
(
εT : C : (εn+1−θnεT)

)
, (6.20)

where (•)+ is the Macaulay bracket and is defined as

(f)+ =

{
0 if f < 0,
f if f ≥ 0.

(6.21)

This results into the final expression for the condensed energy in the form

Ψcond
θn (εn+1) =



1

2
(εn+1 + εT) : C : (εn+1 + εT) for θn+1 = −1


1

2
(εn+1 − θnεT) : C : (εn+1 − θnεT)

− 1

2‖εT‖2
(|εT : C : (εn+1 − θnεT) | − r)2

+

for −1 < θn+1 < 1

1

2
(εn+1 − εT) : C : (εn+1 − εT) for θn+1 = 1

.

(6.22)

Thereby spliting the original minimization problem into two steps. In the first step, a pure
elastic problem

{un+1} = arg

{
min
un+1

{∫
Ω

(Ψcond
θn (ε(un+1)) dV − `(un+1)

}}
, (6.23)

is addressed by carrying out the minimization with respect to the displacement field variable
un+1. In the second step, an update (6.20) of the inelastic variable θn+1 is made. Such pro-
cedures for modeling the rate-independent inelastic evolution of microstructures has already
been adopted by Bartels et al. [BCC+06, BCHH04], Carstensen et al. [CCO08], Conti and
Theil [CT05], Lambrecht et al. [LMD03], Mielke [Mie04] and Ortiz and Repetto [OR99].

6.2.2. Radially symmetric case

Consider from now on a radially symmetric case. Denoting the radial coordinate by x and
introduce unit-vectors en in radial and et in tangential direction the displacement then takes
the form

u = u(x) en, (6.24)

while the strain becomes

ε = u′(x) en ⊗ en +
u(x)

x
et ⊗ et. (6.25)
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Thus our energy (6.11) acquire the form

Ψrel (u, u′, θ) =
λ+ 2µ

2

[
(u′ − aθ)2 +

(u
x

+ bθ
)2

+ c2 θ2

]
, (6.26)

where we introduced the abbreviations a = 2a1b1, b = −2a2b2 and c =

√
4µ

λ+ 2µ
|a1b2 +

a2b1|. Here λ and µ denote the usual Lamé-parameters of isotropic elasticity. The material
tensor C of elastic constants is given by C = diag[C11, C22, C33] where C11 = C22 =
λ+ 2µ and C33 = µ.

Assume that any change in the volume fraction θ will produce dissipation which is quantified
by a dissipation-potential

∆(θ̇) = r |θ̇|. (6.27)

Here r > 0 denotes a material parameter (e.g. yield stress) in MPa. Thus we are interested
in the evolution of θ. For −1 < θ < 1 the evolution of θ can then be determined from the
minimum-principle

θ̇ = arg

{
min
θ̇

{
d

dt
Ψrel (ε, θ) + ∆(θ̇)

}}
, (6.28)

Consider a time incremental formulation as introduced in [CHM02]. For given θn at time tn
the values of displacement u and θ at time tn+1 may be obtained via the minimization

{u, θ} = arg

 min
u,θ;

−1≤θ≤1

{∫
Ω

(Ψrel(ε(u), θ) + r|θ − θn|) dx− `(u)

} . (6.29)

Minimization with respect to θ can be carried out directly giving rise to the so-called con-
densed energy

Ψcond
θn (ε) = inf

θ;
−1≤θ≤1

{
Ψrel(ε, θ) + r|θ − θn|

}
. (6.30)

In the case −1 < θ < 1 we obtain the stationarity condition

(λ+ 2µ)
(
au′ − b

x
u−Kθ

)
∈ r sign (θ − θn), (6.31)

where K = a2 + b2 + c2, it can be solved by implicit or explicit schemes. Implicit solution
is obtained by

θ = θn−
2sign (k)

C11 ∗K

(
|C11(au′− b

x
u−Kθ)|sign (k)−r

)
+

sign
(
C11(au′− b

x
u−Kθ)

)
,

(6.32)

where k is given by

k = r − C11 ∗K
2

|θ − θn|. (6.33)

whereas explicit solution is given by

θ = θn+
1

C11 ∗K

(
|C11(au′− b

x
u−Kθn)|−r

)
+

sign
(
C11(au′− b

x
u−Kθn)

)
. (6.34)
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Finally using explicit solution for θ we arrive at the condensed energy

Ψcond
θn (u, u′) =



C11

2

[
(u′ + a)2 + (

u

x
− b)2 + c2

]
for θ = −1

C11

2

[
(u′ − aθn)2 + (

u

x
+ bθn)2 + c2 θ2

n

]
−

1

2C11 ∗K
(|C11(au′ − b

x
u−Kθn)| − r)2

+ for −1 < θ < 1

C11

2

[
(u′ − a)2 + (

u

x
+ b)2 + c2

]
for θ = 1

(6.35)

Taking explicit solution (6.34) of (6.31) into account and having condensed energy (6.35) at
hand we can split our elastoplastic problem into two steps. The displacements u at time tn+1

are computed first for given θn by

{u} = arg

{
min
u;

−1≤θ≤1

{∫
Ω

Ψcond
θn (ε (u) , θn) dx− ` (u)

}}
. (6.36)

then an update of internal variable (volume fraction θ) is calculated using equation (6.34).
Without affecting the stability of the algorithm presented above we use θn in place of θ in
(6.36).

Stationarity conditions and regimes

In order to study various properties of solutions of the variational problem introduced let us
also establish the stationarity condition for variation with respect to u. If we assume `(u) to
be dependent on u only through its values at the boundary we obtain

u′′ − 1

x2
u = aθ′ +

b

x
θ. (6.37)

Let now (u, θ) denote a minimizer of the incremental problem for given θ0 and boundary-
data. Then we say:

(u, θ) is in regime 1 at the point x, if θ = θ0 holds in an environment of x.

(u, θ) is in regime 2 at the point x, if θ = −1 holds in an environment of x or θ = 1 holds in
an environment of x.

(u, θ) is in regime 3 at the point x, if θ 6= θ0 and θ 6= ±1 holds in an environment of x.

In physical terms, phase/transformations occur in regime 3 only. Regime 2 corresponds
to homogeneous material, while in regime 1 the driving forces are too small to overcome
dissipation.
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7. Numerical results

This chapter deals with the presentation of numerical results obtained from the numerical
simulations of the rate-independent inelastic detwinning material model by using finite ele-
ment method.

7.1. Numerical results from the detwinning material model

7.1.1. Computational results for a radially symmetric case

Consider a material consisting of an annular domain, initially with equally distributed marten-
sitic variants in it. The inner radius r0 is assumed to be 20mm and the outer radius r1 of the
annular domain is taken to be 160mm. The boundary conditions are assumed such that
the problem becomes axially symmetric. This reduces the two dimensional boundary value
problem into one dimensional boundary value problem. In this case, only a radial line is
modeled and the distribution of the martensitic variants is analyzed. For numerical compu-
tations the geometry is implemented using finite element method, where the radial line is
discretized into one hundred finite elements. Each element is using two quadrature points
for the approximation of the unknown displacement field within the element. The boundary
conditions states

u′(r0) = 0, u(r1) = up, (7.1)

where up is the prescribed displacement at each time step. The time step size is taken to be
δt = 1.0× 10−3sec. The transformation strain vector is computed using the vectors

a = (0.37335238, 0.241830519) and b =
1√
2

(1.0, 1.0), (7.2)

according to formula in equation (6.4). Initially the material is twinned with an equal volume
fraction each of the two phases, i.e. initially θ0 = 0.0. The other material parameters are E
= 2.0× 103 MPa, ν = 0.3, r = 1.0× 102 MPa.

In Figure 7.1 column 1 shows the change in volume fraction θ over the radial line in tension
test during loading (top figure) and unloading (bottom figure) while column 2 shows the
change in volume fraction θ in compression test during loading (top figure) and unloading
(bottom figure). From the first column (top figure) it is seen that the initially equally dis-
tributed twinns are completely detwinned at t = 5sec where the detwinned martensitic phase
with θ = 1 is stable. From the second column (top figure) it can be observed that during
compression the material changes its phase and at t = 15sec it completely transformed into
a second detwinned martensitic variant where the material is stable in the case of θ = −1.
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Figure 7.1.: Distribution of volume fraction over the radial line during loading and unloading
cycle in tension-compression test.

7.1.2. Two-dimensional numerical simulations of detwinning

A single crystal Ω = [0, 1]2 of Nickel-Titanium (NiTi) alloy in two dimension is used for
a cubic to monoclinic-I transformation test with two martensitic variants initially equally
distributed over the domain Ω. We consider a two well energy formulation where the trans-
formation strain characterizes the two martensitic detwinned phases. Transformation strain
is further depending on the transformation matrices which transform the austenite lattice to
the martensite lattice. The material is undergoing cubic to monoclinic transformation where
the axis of the monoclinic symmetry corresponds to a 〈110〉cubic direction. To compute the
matrix of transformation strain for the numerical simulation of the model on the selected
domain the values of vectors a and b are required. These values are calculated according the
procedure mentioned in the book by Bhatacharya [Bha03]. Here an example is presented for
the demonstration on the computation of these values. Consider two martensitic variants UI

and UJ in a material undergoing cubic to monoclinic-I transformation. Then according to
[Bha03] (see Table 4.3) for I = 1 and J = 5 these bain matrices are given by

U1 =

 γ ε ε
ε α δ
ε δ α

 , U5 =

 α ε δ
ε γ ε
δ ε α

 . (7.3)

where the values of α, γ, δ and ε for the Ni-49.75at.%Ti shape memory alloy are given
(see in [Bha03]) as 1.0243, 0.9563, 0.058 and -0.0427 respectively. These two martensitic
variants form twinn. To calculate the twinning elements we proceed as follows, take U1 and
choose R to be a 180◦ rotation matrix (In the point group (see Table 3.1 in [Bha03]) of a

simple cubic lattice) about a vector ê =
1√
2

(1,−1, 0)T (which is a plane of symmetry in the
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Figure 7.2.: Load-displacement curves with different mesh size.

austenite lattice) then with

R = −I + 2 ê1 ⊗ ê1 where ê1 = (1, 0, 0)T (7.4)

it is now easy to verify that

RTU1R = U5. (7.5)

Hence, both U1 and U5 form twinn and the solution of the twinning equation

QU5 −U1 = a⊗ b, (7.6)

is given by [Bha03]

b = ê, a = 2

(
U−T1 ê∣∣U−T1 ê

∣∣2 −U1ê

)
, (7.7)

which after simple calculations are obtained as

b =
1√
2

(1,−1, 0)T , a = (0.0814, 0.1161, 0.2835)T . (7.8)

Other twinning modes (see Table 5.1 in [Bha03]) can also be computed in a similar fashion.
The transformation strain (6.4) thus becomes

εT =
1

2
(a⊗ b + b⊗ a) . (7.9)

The load-displacement curves from Figure 7.2 shows a quasiplastic (also called pseudo-
plastic) material response. The analysis is performed with three different meshes where the
corresponding material domain is discretized into a 100, 400 and 1600 elements. It can be
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Figure 7.3.: Load-displacement curves in tension-compression test for varying values of the
material parameter r.

seen from the Figure 7.2 that the solution is not depending on the discretization of the do-
main and hence the proposed detwinning model exhibit mesh independent results. The red
colored part of the material in Figure 7.4 (First column) is corresponding to the completely
detwinned first martensitic variant, obtained during the tensile test. The part of the material
which is shaded with the purple color code is corresponding to the homogeneously trans-
formed material which is assumed initially having twinn phases with equal volume ratios.
The remaining part of the material/mesh with other than the purple and red colored code
is corresponding to the phase where the transformation is taking place. In second column,
part of the mesh shaded with the purple color code is corresponding to the second detwinned
martensitic variant. The part of the material shaded with the red color code is corresponding
to the homogeneously transforming phase with initially assumed equally distributed twinn
martensitic phases. The remaining part of the mesh is experiencing a phase transition from
martensitic twinn phase to martensitic detwinned second variant. Inhomogeneous boundary
conditions are used where at the left boundary of the material both the displacement compo-
nents in horizontal and vertical directions are fixed whereas all the nodes at the other parts
are free. A fixed displacement of 0.075mm is applied at the right side boundary of the ma-
terial. The material parameters used in the simulations are mentioned in the table 7.1. The

Table 7.1.: Material parameters for the analysis of detwinning in a NiTi alloy.

E ν r

(MPa) - (MPa)

3.0×104 0.33 2.5×101

solution vectors a and b of the twinning equation (7.6) are taken from equation (7.8). The
time step size is chose to be δt = 1.0 × 10−3 sec. Initially the material is assumed to be in
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Figure 7.4.: Distribution of the volume fraction θ over the material domain in tension (first
column) and in compression (second column).
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a state where each of the martensitic variant is equally distributed over the material domain,
this is assured with the assumption that θ◦ = 0.0 at the beginning of the load step.
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8. Conclusion and Outlook

8.1. Conclusion

In this thesis, an investigation of two complementary cases of material microstructures is
presented. In the first case, we studied the formation of rotational microstructures in granular
media, whereas, in the second case, detwinning of martensitic microstructure is analyzed.
In both the cases, we are interested in finding the minimizers of the corresponding non-
quasiconvex energy minimization problems.

In nature granular materials exhibit distinct patterns under deformation. The formation of
these patterns is strongly influenced by counter-rotations of the interacting particle at the
microscale. These counter-rotations of the particles influence the macroscopic shear and
hence the overall material behavior. Therefore an energy potential taking into consideration
the interparticle interactions can be devised.

We formulate an interaction energy potential accounting for this microstructural phenomenon
at the continuum scale. The proposed interaction energy potential does not only bridges the
gap between microstructural features and the macroscopic behavior of granular materials
but also enabled us to characterize the different microstructural regimes in the material. The
rotational microstructures in granular materials are modeled by employing the calculus of
variations, specifically the concept of energy relaxation. Within the framework of Cosserat
continuum and in the case of elastic isotropic material the free energy is enriched with the
proposed interaction energy potential. The resulting total energy potential came out to be
non-quasiconvex, when enters in the energy minimization problem does not guarantee all
possible field fluctuations as minimizers. Hence as a result the microstructure occurs in both
the displacement and micro-rotation field.

By employing the direct methods in the calculus of variations it turns out to be possible to de-
rive an exact quasiconvex envelope of the energy potential. It is worth mentioning that there
are no further assumptions necessary to derive this quasiconvex envelope. The computed
relaxed potential yields all the possible displacement and micro-rotation field fluctuations as
minimizers. We conclude with the result that the granular material behavior can be divided
into three different regimes. Two of the material regimes are exhibiting microstructures in
rotational and translational motions of the particles, respectively, and the third one is cor-
responding to the case where there is no internal structure of the deformation field. The
principle of minimum of potential energy is followed to model the elastic response of gran-
ular materials with microstructures within the framework of Cosserat continuum. Whereas,
by following the principle of minimum of dissipation potential the rate-dependent response
of the granular materials with microstructures is modeled within the framework of Cosserat
viscoplasticity.

The proposed models are analyzed with different numerical tests where the numerical com-
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putations are based on the finite element method. Distribution of microstructure in a high
stress regime of the material, onset of localized deformations, microstructure development
in a granular foundation beneath the indenter has been successfully predicted using the pro-
posed theory. Moreover, It has been shown that all the material phases can coexist in a
material under shear in a Couette shear cell. The numerical analysis performed do not only
demonstrate on the possible use of the proposed theory and material models but also draw
attention towards its different possible applications. Further, it has been shown that the exact
relaxed potential obtained in this case is enable enough to demonstrate on both the extended
and localized microstructures in granular materials. Also the mesh independence of the min-
imizing deformations has been shown.

In the second case, a simple model for the detwinning of martensitic microstructure in phase
transforming inelastic crystalline materials is presented. The material can undergo a phase
transition between two martensitic variants, Corresponding to these martensitic variants and
their related martensitic material phases there is a two-well energy potential for the charac-
terization of material behavior and the description of its equilibrium configuration. Due to
the non-convex nature of the two-well energy potential relaxation methods are employed to
compute an analytical expression for the partially relaxed energy. To quantify for the inelas-
tic response a rate-independent dissipation function is introduced. The modeling approach
is based on the energy principles (principle of minimum of potential energy and principle of
minimum of dissipation potential) where an incremental variational formulation of the pro-
posed model is presented for the simulation and investigation of detwinning microstructure.
Numerical computations are performed using finite element method to demonstrate on the
distribution of detwinning microstructure in a single crystal. Moreover, it has been shown
that the minimizers of the corresponding energy minimization problem are mesh indepen-
dent.

8.2. Outlook

There are many possible directions to be investigated and open issues to be addressed in the
future. Among them some are outlined here in this Section.

The theory presented in the first part of the thesis is based on small-strain formulation where
linearized strain measures are considered. Not in every physical situation this approach is
applicable, therefore to model the more realistic behavior of granular materials one can think
of nonlinear strain measures and to account for finite rotations of the granular particles its
possible extension to the case of finite strains. The proposed models are based on the frame-
work of pure elasticity and pure vicsoplasticity within the context of Cosserat continuum.
These models can be extended using an elasto-plastic or elasto-vicsoplastic framework with
the specification of a suitable dissipation potential for these materials.

It is difficult to compare the results of the proposed theory with the experimental observa-
tions, since the Cosserat elastic constants are not known for most of the granular materials.
The complexity arises in this situation as the two additionally introduced material parameters
in the interaction energy potential are also unidentified constants. One possible direction for
future work can be to identify these material constants for the better description of the mate-
rial behavior and possible comparison with the observed experimental results. Especially in
the case of geomaterials some additional material parameters (for instance, frictional angle,
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dilatancy angle and void ratio) needed to be incorporated in the theory for better prediction
on the response of these materials.

One possible investigation can be on the interaction potential energy itself. Since the mate-
rial parameters related to the particle size and frictional modulus are constant, in which the
frictional modulus can be considered as variable in order to comply a more realistic situation
with the deforming granular medium. This changing parameter will then play a role of in-
ternal variable and therefore an evolution equation will be required to compute it. This can
be achieved by choosing a suitable dissipation potential and using the principle of minimum
of dissipation potential. Then, in this case the more realistic dissipative nature of granular
materials is possible to predict.

In the second part of the thesis, it is difficult to compute an exact relaxed potential for n-
martensitic variant case, however within the present context the proposed model can be ex-
tended to account for rate-dependent response of the phase transforming inelastic solids with
the introduction of a suitable rate-dependent dissipation function.
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Nr. 156

ISBN 978-3-935892-34-6


	buchdeckel-A4

