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Abstract

This dissertation investigates within the thermodynamic dislocation theory the plane strain
problems of crystalline solids which are subject to elasto-plastic deformations. The present
work consists of two main parts, which emphasize different modeling aspects in this context.

In the first part, the thermodynamic dislocation theory is extended to include the thermal ef-
fects that were missing in earlier versions. We also propose an extension of thermodynamic
dislocation theory to non-uniform plastic deformation in the macro length scale, where the
influence of excess dislocations can be ignored. A comparison of the stress-strain curves
with the experiments for compression, shear, and torsion tests is also discussed in detail.

The second part examines the use of thermodynamic dislocation theory (TDT) for nonuni-
form plastic deformation, which is more advanced than its predecessor, the continuum dislo-
cation theory. The free energy is modified to take into account not only the energy of excess
but also redundant dislocations. The finite element solutions of the indentation test and the
comparison with the experiment as well as the application of TDT to the anti-plane-shear
are demonstrated in this work.
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1

1 Introduction

From various experimental observations and theoretical considerations it is known that nu-
cleation, multiplication and movement of dislocations are main causes for plastic deforma-
tions of single or polycrystalline materials. As crystalline solids begin to deform plastically,
the number of dislocations increases, and the accumulations of these newly formed dislo-
cations can impede the movement of dislocations leading to strain hardening. On the other
hand, the movement of dislocations dissipate an essential portion of the plastic work into
heat, leading to various phenomena such as thermal softening or the formation of adiabatic
shear bands. Therefore, an understanding of the irreversible thermodynamics of crystals is
essential to construct the physically meaningful dislocation mediated plasticity.

In connection with plastically deformed crystalline materials and the properties of disloca-
tions an interesting question arises: Is the entropy of dislocations relevant to the thermo-
dynamics of plasticity and should it be involved in the continuum dislocation theory? It is
known that the energy of a single dislocation is so significant that the usual thermal fluctu-
ations are completely ineffective in its nucleation or destruction. Thus, at first glance, the
kinetic vibrational temperature of the crystalline body seems irrelevant to the formation and
movement of dislocations. On the other hand, the entropy of dislocation disorder is small
compared to the total entropy of the crystal, since dislocations involve only a relatively
small amount of total atoms in the lattice; therefore, the phenomenological thermodynamics
of crystal plasticity have completely ignored the entropy of dislocations. However, a the-
oretical concept of dislocation entropy introduced by Langer, Bouchbinder, and Lookman
(2010), or LBL-theory for short, has shown that although dislocation entropy is small, it is
still an essential quantity of dislocation-mediated plasticity that should be included in equa-
tions of motion for a system containing a large number of irregularly moving dislocations.
The remarkable point here is to decouple the thermodynamic system of dislocated crystal
into configurational and kinetic-vibrational subsystems. The former is characterized by the
relatively slow, infrequent atomic rearrangements associated with the irreversible movement
of dislocations, the latter being the rapid oscillations of atoms in a lattice. As an example,
the generation of dislocation by Frank-Read or several cross slip sources is an extremely
slow mechanism compared to the frequencies of atomic oscillations about their equilibrium
positions. The governing equations of LBL-theory are based on the kinetics of thermally
activated depinning of entangled dislocation dipoles and the irreversible thermodynamics of
externally driven systems. These two ideas have been successfully implemented in a con-
sistent thermodynamic dislocation theory to simulate the plastic flow of copper over fifteen
decades of strain rate, and for the temperature between room temperature and about one
third of the melting temperature, which shows full agreement with the groundbreaking ex-
periments of Follansbee and Kocks (1988); Kocks and Mecking (2003); Meyers, Andrade,
and Chokshi (1995) (see Langer (2015, 2016, 2017a, 2017c)).

In order to investigate the further application of this thermodynamic dislocation theory in
modelling plastic deformations of materials subjected to thermomechanical processing, the
theory was later modified and extended to simulate the stress-strain curves for aluminium
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(Le & Tran, 2017; Le, Tran, & Langer, 2017) and steel alloys (Le et al., 2017) showing
thermal softening behavior during plastic deformation. The focus of these studies is on
the physical significance of various parameters occurring in equations of motion. Based on
several physical deliberations, we argue which of these parameters are to be expected as
material-specific constants, independent of temperature and strain rate, and thus as essential
components of the theory. Excellent agreement with the experiments of Shi et al. (1997a)
and Abbod et al. (2007) for aluminium and steel alloys, respectively, is also demonstrated,
with each of them providing nine different stress-strain curves for three temperatures and
three strain rates. Similarly, the LBL-theory was extended in predicting the formation of adi-
abatic shear bands (ASB) in steel HY-100 (see Le, Tran, and Langer (2018)), which shows
a good quantitative agreement with the mechanical test performed by Marchand and Duffy
(1988). The latter authors have observed ASB formation at high shear rates and low tem-
peratures. In particular, they observed strong stress drops, significant temperature increases
in emerging narrow bands, and strong strain localizations leading to crack information and
failure; this is a challenge for this realistic physical theory, which not only simulates this
behavior but also obtains additional information about the properties of structural materials.
Recently, Le, Piao, and Tran (2018) has implemented an extension of this theory in the mod-
eling of single crystal copper bars in the macro length scale exposed to torsion. The primary
goal is to use a small set of physical parameters, expected to be independent of strain rate
and temperature, to simulate the torque-twist curve showing the hardening behavior. This
theoretical result is compared with the experimental result of Horstemeyer et al. (2002), in
which single crystal copper bars of 99.999 purity are deformed under torsion testing.

The above mentioned LBL theory and its extensions are well suited for uniform plastic de-
formations where dislocations are neutral, i.e. the resulting Burgers vector vanishes. This
source is commonly referred to as statistically stored dislocations. Cottrell (1964) has pro-
posed a shorter and more precise name of redundant dislocations that will be used in this
dissertation. In the case of nonuniform plastic deformations of specimens of micron sizes,
another source occurs in addition to redundant dislocations to adapt to the plastic deforma-
tion gradient and ensure compatibility of the total deformation. Most scientists in dislocation
theory call this source geometrically necessary dislocations, but the name of excess dislo-
cations appears more precise from the point of view of statistical mechanics. It is widely
accepted that, although the percentage of excess dislocations in severe plastic deformations
of crystals is low, they play an important role in the development of the microstructure. This
type of dislocations has been included in the basic framework of continuum dislocation
theory (CDT), which was developed by Kondo (1952), Nye (1953), Bilby (1955), Kröner
(1958), Berdichevsky and Sedov (1967) and Le and Stumpf (1996), in order to capture their
influence on the formation of microstructure and the size effect. Nevertheless, the applica-
bility of the theory became possible only in recent years, thanks to the advances in statistical
mechanics and thermodynamics of the dislocation network reported in Berdichevsky (2005,
2006a, 2006b), where free energy is a logarithmic function of scalar dislocation density.
This approach is physically appropriate because the energy of the microstructure increases
linearly at low dislocation densities (where the interaction energy is negligible (Hirth &
Lothe, 1992)), but becomes infinite when the dislocation density reaches a saturated value.
Several successful examples of this theory can be found in Berdichevsky (2006a, 2006b),
Kaluza and Le (2011), Kochmann and Le (2008, 2009a, 2009b), Le and Sembiring (2008a,
2008b, 2009), Le and Nguyen (2010), Le and Nguyen (2012, 2013). (see also nonlinear
CDT proposed by Le and Günther (2014), Koster, Le, and Nguyen (2015)). Similarly,
Baitsch, Le, and Tran (2015) has developed for the first time a finite element implemen-
tation for the indentation problems within this CDT. The numerical results discussed in this



3

paper are compared with the experimental data of Kysar et al. (2010) and Dahlberg et al.
(2014), where single crystals of nickel are deformed with a wedge penetrator at an angle of
90◦. The qualitative agreement with these experiments again supports the proposed CDT.

As already mentioned, the CDT proposed by Berdichevsky can simulate the formation of
microstructure and explain the size effects. However, the main disadvantage of this approach
is the absence of redundant dislocations and configuration entropy responsible for isotropic
hardening. For this reason Le (2018) comes to its revision by including these two missing
quantities, the density of the redundant dislocations and the configuration temperature, as
additional state variables in the constitutive equations of CDT. This newly improved theory
is called Thermodynamic Dislocation Theory (TDT) for nonuniform plastic deformations.
A study of crystals undergoing antiplane constrained shear within this advanced theory is
presented by Le and Piao (2018), where they also consider the asymptotically accurate en-
ergy density of the dislocation network containing a moderately high density of excess dis-
locations (see Berdichevsky (2017)). To investigate the use of TDT for nonuniform plastic
deformations, the anti-plane shear mode is re-examined in the study of Le and Tran (2018),
where the dislocated crystals are exposed to loading, unloading, and then further loading in
the opposite direction. The challenge of this analysis is to simulate the stress-strain curves
with the Bauschinger effect and explain them using the physical mechanism of dislocation
pile-up and the annihilation of excess dislocations during load reversal.

The aim of this dissertation is twofold. First, the extension of the LBL theory is proposed to
include the thermal effects missing in the early versions of thermodynamic dislocation the-
ory for uniform plastic deformations. It also extends the LBL theory to nonuniform plastic
deformation for crystals in the macro length scale where the influence of excess dislocations
can be ignored. Second, it investigates the use of thermodynamic dislocation theory for
nonuniform plastic deformation, which is more advanced than its predecessor, the contin-
uum dislocation theory. To simplify the analysis, the isotropic elastic properties of the single
crystal and the theory of small strain are assumed. The outline of this dissertation follows:
After this introduction the physical backgrounds are discussed in chapter 2 with a short
explanation of plastic deformation on a microscopic scale, basic concepts of dislocations
and their properties and finally an introduction to thermodynamic dislocation theory for
both uniform and non-uniform plastic deformations. Then chapter 3 applies the extended
LBL-theory to three specific mechanical tests: compression test of aluminum and steel ex-
hibiting thermal softening, dynamic simple shear deformation of a thin steel tube showing
the adiabatic shear banding, and torsion test of macrosized copper bars. Chapter 4 presents
a detailed discussion on CDT along with its numerical solution for the quasi-static inden-
tation test. A numerical solution for an anti-plane shear deformation under load reversal is
also discussed illustrating the application of the TDT to nonuniform plastic deformations.
Finally chapter 5 concludes the dissertation.
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2 Physical backgrounds

2.1 Crystalline structure and plastic deformation

The classical theory of elastoplasticity deals with the phenomenological description of for-
mal mathematical studies based on the simplifying assumptions that metals are macroscop-
ically homogeneous and isotropic. For fine-grained metals that are quasistatically loaded,
although precision is not often desired, these formal theories are sufficiently accurate in the
elastic range and may represent the observed behavior in a plastic range. Under the con-
ditions of dynamic and shock loading, however, the assumption that a metal is an isotropic
homogeneous continuum becomes less plausible. Therefore, the ability to predict the behav-
ior of metals with the help of classical elastoplasticity theories under fast loading condition
decreases. As a consequence, the proper understanding of the plastic behavior of metals
requires the study of their crystalline structure.

According to the report of Ewing and Rosenhain (1900) and the experimental discovery of
the diffraction of X-rays by metallic crystals (von Laue, 1912), metals are crystalline solids,
i.e. they essentially consist of atoms arranged in periodic geometric lattices. There have
been many great studies on the relationship between the atomic structure and the plastic
deformation of metals, and many of them have been performed on single or polycrystalline
materials. This Section discusses the basic mechanisms of the plastic behavior of metals at
the microscopic level (single crystals) to understand the underlying performance of metallic
plastic deformation at the macroscopic scale from an experimental point of view.

2.1.1 Crystalline structure of metals

After X-ray diffraction analysis, the atoms in a metalic crystal are regularly arranged in
a pattern repeated in three dimensions and consisting of aggregates of single crystals or
grains. This arrangement of atoms is called the crystal lattice. The repetitive property of
such a crystal lattice makes it sufficient to know only the structure of a unit cell, since the
entire crystal lattice can be obtained from this unit cell by translational invariance. Due
to the arrangement of the atoms in this unit cell, the crystal lattice structure is called face-
centered cubic (fcc), body-centered cubic (bcc) or hexagonally densely packed (hcp), which
are the most common atomic configurations in metals. Fig. 2.1a shows a body-centered
cubic unit cell with one atom at each corner and one additional atom in the center of the cube.
Typical metals with this crystal structure are alpha-iron, columbium, tantalum, chromium,
molybdenum and tungsten. Fig. 2.1b shows the unit cell for face-centered cubic crystals. In
addition to an atom at each of the eight corners, there is an atom at the central locations of
each of the six cube faces. Aluminium, copper, gold, lead, silver and nickel are common
fcc metals. The third common metallic crystal structure, densely packed hexagonally, is
sketched in Fig. 2.1c, where the unit cell is a hexagonal prism containing six atoms at
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each of the upper and lower basal planes and three additional atoms in the middle layer
(inside the prism), and for the upper and lower layers (based on the prism) the central atom
is shared with the adjacent cell. Some typical metals with this structure are beryllium,
titanium, magnesium, zinc and cadmium.

It is necessary to mention here the directed line between two atoms, the crystallographic
directions, and the orientation of the planes containing atoms in the crystal lattice, the crys-
tallographic planes. They are displayed using Miller indices, and this rule can be found in
Callister (2007) for a detailed explanation.

(a) Body-centered cubic. (b) Face-centered cubic. (c) Hexagonal close-packed.

Figure 2.1: Unit cell structure of common metals.

2.1.2 Lattice defects

Experimental observations have shown that crystal lattice configurations in real materials
are hardly ever perfect. The term defect or imperfection is commonly used to describe
anomalies from an ordered array of lattice points. There are several types of defects that can
be roughly grouped by their dimensions.

• Zero-dimensional defects: The deviation from the periodic arrangement of the lattice
includes foreign atoms located in the vicinity of only a few atoms. It is referred to as
point defect. Vacancy, interstitial atom or impurity atom are examples of this type of
defect (see Fig. 2.2a).

• One-dimensional line defects which are the subject of study in this dissertation and
are named dislocations. These line defects are responsible for the phenomenon of
slip, by which most metals deform plastically. Dislocations are groups of atoms that
differ from their regular equilibrium locations. These dislocated atoms are very often
additional or missing half-planes of atoms in the regular lattice (see Fig. 2.2b). These
line defects are not only important for the explanation of plastic slip, but is also closely
related to almost all other important mechanical phenomena such as work hardening,
yield point, creep, fatigue and ductile fracture.
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• Two-dimensional defects: These surface defects arise from the clustering of line de-
fects into plane. Low-angle boundaries (see Fig. 2.2c), grain boundaries, stacking
faults between two densely packed areas of the crystal that have alternative stacking
sequences, or a twinned region of a crystal are examples of surface defects.

(a) Point defects. (b) Line defects.

(c) Surface defects.

Figure 2.2: Lattice defects in crystalline solids.

2.1.3 Plastic deformation of single crystals

Deformation by slip One of the crucial characteristics of the crystalline structure is its
ability to glide easily on certain crystallographic planes, the so-called slip planes, and on
certain crystallographic directions, the so-called slip directions. As reported in Ewing and
Rosenhain (1900), plastic deformation occurs in metals as these special families of crystal
planes slide over each other in certain slip directions. Thanks to the technological devel-
opment of recent years, it is possible not only to grow the single crystals large enough for
mechanical tests, but also to observe the fine structure of the slip lines at high magnification
with the electron microscope. Therefore, scientists can carry out many typical mechani-
cal experiments such as torsion, shear, bending, tensile/compression or indentation tests on
single crystals with different types of material in order not only to obtain the stress-strain
behavior, but also to record the development of the deformed structure. As an illustration,
Fig. 2.3 shows an experiment with plastically deformed zinc single crystals that captures
information about the plastic slips that occur along the most favorable slip planes and direc-
tions.

These experimental results also suggest that gliding is generally easiest on the glide plane,
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Figure 2.3: Slip in a zinc single crystal, Elam (1935). Reprinted by permission.

which is the one with the highest atomic density along the direction of the shortest inter-
atomic distances (densely packed planes and directions). For example, using the Miller
index rule, one can describe the easiest slip planes {1 1 1} in 〈1 1 1〉 directions for FCC met-
als; while for BCC metals, these slip planes are {1 1 0}, {1 1 2}, and {1 2 3} with the slip
directions 〈1 1 1〉. For HCP metals, the choice of slip directions is more limited because
only a few slip systems (plane and slip direction) exist. Typical slip planes of BCC and FCC
are sketched in Fig. 2.4.

Figure 2.4: Example of most readily slip planes in BCC and FCC unit cells.
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Slip by dislocation motion The theoretical estimation of the critical shear strength of the
crystal at which plastic slip occurs was first found by Frenkel (1926). The theoretical shear
strength can be calculated by assuming that the slip is caused by the shearing of one block
of atoms over another. This estimated value is given by

τcr =
µ

2π
, (2.1)

where the typical shear modulus µ for metals lies in the range of 20 to 150 GPa. Therefore,
Eq. (2.1) predicts that the maximum theoretical shear strength will be in the range of 3 to
30 GPa. From various experimental measurements of the yield strength we know, however,
that this estimated theoretical value is at least three or four orders of magnitude greater than
the observed one. Because of this large discrepancy, it must be concluded that the plastic
slips in crystals is realized by a different mechanism than the physical shearing of planes of
atoms passing over another. The concept of dislocation, introduced independently by Taylor
(1934), Polanyi (1934) and Orowan (1934), explain this discrepancy in the following way:
The plastic slip is the result of dislocation motion.

Fig. 2.5 illustrates the movement of the dislocation through the crystal exposed to shear
stress. Initially, the dislocation in A has an upper half-plane of atoms, as shown in Fig. 2.5a.
With a sufficiently large shear stress, half plane A is forced to move to the right, and in the
meantime the interatomic bonds of plane B are broken by the slip plane. Consequently, the
upper half plane of B becomes an additional half plane of atoms, while the half plane of A is
connected to the lower half plane B, see Fig. 2.5b. Thus, the dislocation moves from A to B.
This process is repeated continuously until the additional half plane of the atoms reaches a
free surface, see Fig. 2.5d. This leads to a sliding step of one atomic distance for the simple
cubic lattice.

A B C D

(a)

A B C D

(b)

A B C D

(c)

A B C D

(d)

Figure 2.5: Dislocations traveling through the crystal lattice in response to an applied shear
stress.

It is interesting to calculate the required stress to drive a dislocation through a crystal con-
tinuously in a certain direction, called Peierls-Nabarro stress τp:

τp ≈ 3µ exp

(
−2πw

b

)
, (2.2)

where b is the distance between the atoms in the slip direction and w is the width of the
dislocation (see Fig. 2.6). If w is several atomic spacings in dimension, the dislocation is
wide. Dislocation slip occurs most easily with wide dislocations because the highly dis-
torted region in the core of the dislocation is not located at a particular atom in the crystal
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lattice. For simple ductile metals, the dislocation width is normally in the order of 10 atomic
distances. Assuming the minimum dislocation width in the metal is w = 3b, the maximum
shear stress is roughly estimated: τp,max ≈ 2µ 10−8. This calculation is accurate enough to
show that the stress required to move the dislocation in a metal, which is the main cause of
slip and plastic deformation, is quite small.

w

Figure 2.6: Width of dislocation.

Critical resolved shear stress As already mentioned, a plastic slip occurs due to the glid-
ing of extra half plane of atoms on a slip plane in a slip direction as a response to applied
shear stress. This shear stress component is still present for a pure tensile or compression
test, but not in the directions parallel or perpendicular to the direction of the applied uni-
axial load. This shear stress component is referred to as resolved shear stress. Consider a
cylindrical single crystal with a cross-sectional area of A exerted by the tensile force F , as
outlined in Fig. 2.7. Let the angle between the normal to the slip plane and the tensile axis
be φ, while λ denotes the angle between the slip direction and the tensile axis. Note that in
general φ+λ 6= 90◦ since the tensile axis, the normal to the slip plane, and the slip direction
do not necessarily lie in the same plane. In the slip direction, the shear component of force
F cosλ acts on the slip surface with an area of A/ cosλ, so the resolved shear stress is:

τ =
F cosλ

A/ cosφ
=
F

A
cosφ cosλ. (2.3)

As reported in Schmid (1924), a single-crystal starts to slip when the resolved shear stress
on a slip plane reaches a critical value τcr. This parameter is a constant for each specific
material at a given temperature. This result is well known as Schmid’s law.

Strain hardening Work hardening is one of the main features of the plastic deformation
of metals and is defined as the increase in stress required to produce slip with increasing
shear strain. The micro-mechanism of this phenomenon can generally be divided into two
categories: stack hardening and entanglement hardening. The detailed explanation is as
follows:
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Figure 2.7: Diagram for computing resolved shear stress.

• Stack hardening occurs due to the fact that dislocations on slip planes accumulate
against barriers in the crystal. Such accumulations create the back stress that coun-
teracts the stress applied to the slip plane and therefore causes kinematic hardening
with respect to the specific slip system. In this case, the barriers created by the glide
dislocations on intersecting slip planes can merge to form new immobile dislocations
(sessile dislocations). These dislocations with low mobility act as obstacles to dislo-
cation movement until the stress is increased to a sufficiently high level to break them
down.

• Entanglement hardening is actually an isotropic hardening for a certain slip system.
This phenomenon occurs when dislocations moving in the slip plane pass through
other dislocations intersecting the active slip plane. The dislocations passing through
the active slip plane are called dislocation tangles (or dislocation forests). The cross
slip or jogging turns out to be an important dislocation cutting process in this case.

It should be noted that moving dislocation is influenced not only by stack hardening but also
by entanglement hardening. The total hardening is the sum of both contributions.

2.2 Fundamental of dislocations

As mentioned in the previous section, dislocations are the most important line defects in
crystals as they are responsible for almost all aspects of plastic deformation of metals. In
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this Section, the basic concepts of dislocations such as dislocation line, Burgers vector, types
of dislocations, or the population of dislocations in a crystal are discussed.

Dislocation types Dislocations are regions in which atoms lie outside their regular posi-
tions in the periodic crystal lattice. There are mainly two basic types of dislocations, edge
dislocation and screw dislocation.

A

C

D
B

Dislocation plane

Slip plane

Slip direction

Burgers vector
Dislocation line

b

(a)

A

D

C

B
b

Dislocation lineSlip plane

Slip direction

Burgers vector

(b)

Figure 2.8: Edge and screw dislocation.

Taylor (1934), Polanyi (1934) and Orowan (1934) are pioneers who introduced edge dislo-
cation to explain the significant discrepancy between experiment and theoretical estimation
of critical shear strength. As shown in Fig. 2.8a, this type of line defect is produced by
inserting an additional half-plane of atoms ABCD into a perfectly arranged lattice structure
whose edges lie in a crystal. The line AD is the core of the edge dislocation, known as the
dislocation line. This dislocation plane slides on a slip plane through the crystal and fol-
lows the slip direction perpendicular to the dislocation line AD. Hence the Burgers vector
b is also perpendicular to the dislocation line. This vector is defined as the resulting vec-
tor needed to complete a Burgers circuit around the dislocation core (for metals, the length
of the burger vector corresponds to the interatomic distance). The second primary type of
dislocation is screw dislocation, first introduced by Burger (1939). It is usually generated
by applying shear stress to create distortions so that a crystal shift occurs on one side of the
slip plane ABCD relative to the other side in the slip direction, see Fig. 2.8b. Therefore, the
dislocation line AD, in this case, is parallel to the Burgers vector b.

Dislocation loop Dislocations in real materials are more complex and rarely straight lines.
In general, a dislocation involves a combination of both types of dislocations called a mixed
dislocation. These mixed dislocations are usually represented in the form of curves or loops.
As can be seen in Fig. 2.9, a dislocation loop in a slip plane consists of many small segments
of the dislocation line that can be resolved into edge and screw components. The dislocation
loop is the edge at points A and C and the screw at points B and D, while it is a mixed
edge and screw along most of its lines. However, the Burgers vector remains unchanged
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Figure 2.9: Dislocation loop.

throughout the loop.
At this point it should be mentioned that a dislocation line is a boundary between a slipped
and a un-slipped area. In general, it cannot end inside the crystal, but at the free surface or
a grain boundary. Therefore, it must be closed or branch to other dislocations. Fig. 2.10
illustrates an example of the two separate dislocation lines with the Burger vectors b1 and
b2, which form an immovable node, resulting in a third dislocation with the Burger vectors
b3, where the small eclipses indicate the Burgers circuit according to the dislocation line
sense with the ”right hand” rule. From the diagram it follows that b1 + b2 = b3, which
means that the sum of the Burgers vector must be zero for all dislocations hitting a node.

Dislocation line sense

Dislocatio
n lin

e sense

Dislocation line sense

b1

b2

b3

b1

b2

b3

Figure 2.10: Sum of two dislocation lines.

Dislocation density The dislocation density, usually denoted ρ, is defined by the total
length of the dislocation lines per unit volume of the crystal. In a well annealed crystal,
ρ is usually in a range from 1010 to 1012 m−2. In a heavily cold-rolled metal, it is 1014 to
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1015 m−2. The second way to determine the dislocation density, which seems to be more
applicable, is to count the number of dislocations passed through a unit area of a planar
surface of the crystal. This alternative definition provides a convenient way to predict the
average distance between dislocations in a network of density ρ. Indeed, if we have a ρ
intersections per unit area, then this means that each intersection occupies 1/ρ of the unit
area. Thus, the distance between neighboring dislocations is in the order of 1/

√
ρ.

Plastic strain due to dislocation movement To illustrate how the movement of disloca-
tions is related to macroscopic plastic strain, we consider a single crystal with the volume
hld that for simplicity’s sake contains only edge dislocations, as shown in Fig. 2.11a.

d

l

h

Ƭ

Ƭ

u

xi

(a)

d

l

h

Ƭ

Ƭ u

xi

(b)

Figure 2.11: Schematic illustration for Orowan relation.

These dislocations glide under a sufficiently high shear stress. Therefore, the upper side is
plastically displaced by u relative to the lower side, see Fig. 2.11b. If a dislocation goes all
the way through the crystal a distance d, it adds b to the total displacement u. Assuming that
the dislocation would not have completely gone through the crystal, but only a distance xi,
then it contributes a displacement (xi/d)b. So if there are N moving dislocations, the total
displacement is

u =
b

d

N∑
i=1

xi,

and the plastic shear strain ε is given by

εpl =
u

h
=

b

hd

N∑
i=1

xi.

Denote the mobile dislocation density by ρ = Nl/hld and the average moving distance of
N dislocations by

x̄ =
1

N

N∑
i=1

xi.
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Then the plastic shear strain is simplified to

εpl = bρx̄. (2.4)

The strain rate is therefore

ε̇pl = bρv̄. (2.5)

This relation is called the Orowan equation. Note that ρ in the above equations is the mobile
dislocation density, because those that do not move are not included in the plastic shear
strain.

2.3 Properties of dislocations

2.3.1 Stress field and self energy of dislocations

A dislocation line is surrounded by an elastic stress field that can lead to interactions with
other adjacent atoms or other lattice defects like dislocations or vacancies. Apart from the re-
gion near the dislocation core, the theory of elasticity can be applied as a suitable continuum
approach to obtain the stress around dislocation of both types, screw and edge dislocation.
The results shown here are expressed in the cylindrical coordinate system (r, θ, z) using the
Volterra (1907) model, as shown in Fig. 2.12, without details of the derivation.

b

dr

r

b

r

dr

(a) Edge dislocation

b

r

dr

b

dr

r

(b) Screw dislocation

Figure 2.12: Elasticity model.

For a screw dislocation, the stress field is

σθz =
µb

2πr
, σrr = σθθ = σzz = σrθ = σrz = 0. (2.6)
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For an edge dislocation the stress field becomes more complicated. Its non-zero components
are:

σrr = σθθ = − µb sin θ

2π(1− ν)r
,

σzz = − µb sin θ

π(1− ν)r
,

σrθ =
µb cos θ

2π(1− ν)r
.

(2.7)

Two conclusions can be drawn from this result: i) The stress fields of dislocations are long-
range, but decay rapidly with increasing distance r from the dislocation core. ii) The calcu-
lated stresses for both cases are proportional to 1/r. Thus the stress fields diverge to infinity
as r tends towards zero. Since no real materials can withstand this infinite stress field, the
elastic theory can be applied to obtain the stress concentration only for r ≥ rmin. Accord-
ing to Weertman and Weertman (1964), the minimum core radius of the dislocation where
elasticity theory is still applicable should be rmin = 5b, where b is the length of the Burger
vector.

Due to this stress field around a dislocation line, elastic energy exists in this area, namely
self-energy or stored dislocation energy. According to the assumption rmin = 5b of Weert-
man and Weertman (1964) the self-energy per unit length of a dislocation takes the following
form

Escrew =
1

2

∫ R

5b

σθzb dr + Ecore =
µb2

4π
ln
R

5b
+ Ecore. (2.8)

For an edge dislocation we have

Eedge =
1

2

∫ R

5b

σrθb dr + Ecore =
µb2

4π(1− ν)
ln
R

5b
+ Ecore, (2.9)

where the core energy per unit lengthEcore is normally about one fifteenth of the total stored
energy. Typical values for an annealed crystal R = 100 nm and b = 0.2 nm can be used to
calculate the numerical value of the dislocation self-energy. An additional formula for the
self-energy of the mixed dislocation per unit length whose Burgers vector is inclined at an
angle θ from the dislocation line is as follows

Emixed =
µb2

4π

(
cos2 θ +

sin2 θ

1− ν

)
ln
R

5b
+ Ecore. (2.10)

After some simplified steps (see Dieter and Bacon (1986)) one can conclude that the stored
energy per dislocation length is proportional to the square of its Burgers vector Eelastic =
αµb2 with α ≈ 0.5÷ 1.0, which means that the introduction of a new dislocation increases
the free energy of the system. In nature, the system always tends to minimize its free energy;
therefore, a crystal with dislocations is thermodynamically unbalanced. When the crystal is
free of load, it will attempt to reduce its free energy by eliminating dislocations in a process
such as annealing.

2.3.2 Forces on a dislocation

As we know, dislocation motion is the underlying mechanism of plastic deformation in
crystalline metals. To enable this dislocation motion, the crystal must be subjected to a
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sufficiently large force so that the resolved shear stress τ on the slip plane is higher than
its critical value. This leads to the concept of the force acting on the dislocation line. A
special feature of this applied force is that it always acts in a direction perpendicular to the
dislocation line.

Suppose a cube-shaped crystal of length L containing an edge dislocation1 is subjected to a
resolved shear stress τ . If the dislocation moves a distance x, the displacement of the upper
half of the atoms with respect to the lower half is (x/L)b. With the shear force applied to
the top, τL2, the work done when the dislocation moves is equal to

W = τL2
(x
L
b
)

= τxbL.

Then, the magnitude of force per unit length acting on the dislocation can be expressed as

F =
1

L

dW

dx
= τb. (2.11)

Let us now consider what happens when a dislocation line is exposed to this applied shear
force. In reality, dislocations are usually anchored somewhere in the crystal due to the
immobile dislocation nodes. Consider a dislocation segment AB of length l held at its
ends as shown in Fig. 2.13. The AB line is first straight, because the strain energy of this

T T

F

θ

�

A B

Figure 2.13: Line tension of dislocation.

dislocation tries to reach its lower limit by reducing the total length of the line. Under force,
however, the segment begins to bow out. The dislocation bows out until the line tension
balances this applied force as follows

τ b l = 2T sin
θ

2
. (2.12)

With l = rθ and sin θ/2 ≈ θ/2 for small angle θ, one obtains

τ =
T

br
. (2.13)

1The case of a screw or mixed dislocation is similar.
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As presented in the previous Section, the line tension is nothing more than the elastic strain
energy per unit length T = αµb2. We finally get the stress required to bend a dislocation
into a circular segment of the radius r

τ =
αµ b

r
. (2.14)

Let us just further increase the resolved shear stress τ . As the relationship in Eq. (2.14)
shows, the radius of the curve AB decreases until r reaches its minimum value rmin = l/2.
Assuming α = 0.5, the maximum resolved shear stress gives the following values

τmax =
µ b

l
.

As long as τ > τmax, the dislocation curveAB continues to expand and becomes unstable so
that the two sides swing around and come into contact on the back side of the two immovable
nodes. These contact parts of the dislocation curve have the same Burger vector, but are of
the opposite sign, so they annihilate each other. This process creates a dislocation loop and
the dislocation line AB can be imagined as a dislocation source. If the resolved shear stress
remains τ > τmax, the source would release endlessly dislocation loops. The whole process
of this remarkable phenomenon, known as Frank-Read source (see Frank and Read (1950)),
is schematically illustrated in Fig. 2.14.
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Figure 2.14: Schematic representation of Frank Read source.

The Frank Read source presented here is one of many different natural processes that cause
dislocation nucleation. Another well-known example is the Bardeen-Herring-source, known
as multiple cross slip mechanism for dislocation generation. These sources trigger a series
of dislocations that lie in the same slip planes. The head dislocation of this series encounters
obstacles such as grain boundaries or sessile dislocations, and further loop expansion is
prevented, as illustrated in Fig. 2.15. The next dislocation loops then accumulate behind
the leading dislocation. Due to this event, the leading dislocation acts on a high stress
concentration since it is exposed not only to the applied shear stress but also to the elastically
interactive stress. On the other hand, the dislocations in the vicinity of the barriers generate
a back stress which acts against their movements in the slip direction.

2.3.3 Interaction of dislocations

Let us first consider the interaction between two parallel edge dislocations lying on the same
plane for the sake of simplicity. They can either have the same sign or different sign. When
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Figure 2.15: From Frank-Read source to dislocation pile-up against grain boundary.

the distance between dislocations are considerable for both cases, the total elastic energy
per unit will be calculated from the Eq. (2.9)

Eedge =
2µb2

4π(1− ν)
ln
R

5b
.

However, if they come closer, the configuration of like sign dislocation can now be con-
sidered as only one single dislocation with a Burgers vector magnitude 2b, and the elastic
energy per unit will be

Eedge =
µ(2b)2

4π(1− ν)
ln
R

5b
.

One can easily see that this is twice the energy of the dislocations when a far distance
separates them; thus, the dislocations will tend to repel each other to reduce their total
elastic energy. For the case when the dislocations of opposite sign are close together, the
length of their Burgers vector will be zero; thus, they will attract each other, run together,
and annihilate each other to reduce their total elastic energy, (see Fig. 2.16). The interaction

Attraction

Anihilation

Slip plane

Repulsion
Slip plane

(a) Same sign.

Attraction

Anihilation

Slip plane

Repulsion
Slip plane

(b) Opposite sign.

Figure 2.16: Interaction of two straight edge dislocations lying on the same slip planes.

between dislocations lying not in the same plane can be described by the interactive forces
between them. Consider two edges dislocations lying parallel to z-axis as in Fig. 2.17a, the
forces acting on II due to the presence of I at origin takes the form
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Figure 2.17: Interaction of two straight parallel on different slip planes.

Fx =
µb2

2π(1− ν)

x(x2 − y2)

(x2 + y2)2
and Fy =

µb2

2π(1− ν)

y(3x2 − y2)

(x2 + y2)2
, (2.15)

where Fx is the force in the slip direction and Fy is the force perpendicular to the slip plane.
By first assuming the Burgers vector of two screw dislocations in the same direction as
shown in Fig. 2.17b, the forces acting on II due to the presence of I at the origin is also
presented

Fx =
µb2

2π

x

(x2 + y2)
and Fy =

µb2

2π

y

(x2 + y2)
. (2.16)

It is worth mentioning that a free surface exerts an attractive force on a dislocation, because
an exit from the crystal at the free surface would reduce its strain energy; conversely, a
rigid surface layer would repel the dislocation. A report by Koehler (1941) has shown that
this attraction force, called image force, corresponds to the force acting on an infinite body
between the dislocation and its opposite sign image on the other side of the free surface. If
d denotes the distance from the dislocation to this free boundary, then the image force is
inversely proportional to d as follows:

F =
µb2

4π(1− ν)

1

d
. (2.17)

2.4 Thermodynamic Dislocation Theory (TDT) for uniform plastic
deformations

The thermodynamic dislocation theory is based on two unconventional hypotheses. The first
of these is that a system of dislocations, driven by external forces and irreversibly exchang-
ing heat with its environment, must be characterized by an effective temperature that differs
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from the ordinary thermal temperature. Both of these temperatures are thermodynamically
well-defined variables whose equations of motion determine the irreversible behaviors of
these systems. The second principal hypothesis is that thermally activated depinning of
entangled pairs of dislocations is the overwhelmingly dominant cause of plastic deforma-
tion. These two ideas have led to successfully predictive theories of strain hardening as
in (Langer et al., 2010) or (Langer, 2015), steady-state over exceedingly wide ranges of
strain rates (Langer et al., 2010), adiabatic shear banding (Langer, 2016), (Langer, 2017a),
yielding transitions and grain-size (Hall-Petch) effects (Langer, 2017c).

2.4.1 Effective temperature

The TDT for uniform plastic deformations starts with a statement that the internal degrees
of freedom of plastically deforming polycrystalline solid can be separated into two distinct
subsystems. The first, configurational subsystem consists of coordinates that determine the
mechanically stable positions of all constituent atoms, including positions of the disloca-
tions. The second, kinetic vibrational subsystem consists of fast kinetic-vibrational coordi-
nates that describe small fluctuations of atoms about their stable positions. The degree of
freedom of two subsystems are distinguished by the time scales on which they move, i.e. the
atomic rearrangements that take the configurational subsystem from one inherent structure
to another one are relatively slow in comparison with the motions occur on microscopic time
scales (the order of 10−10 s or less) inside kinetic-vibrational subsystem.

These two subsystems are a weakly interacting pair of the deforming system as a whole.
One can think about two separate entities, with different temperatures and subject to various
external forces, associated with each other by a poor heat conductor. The exchange energy
is done between these subsystems when groups of atoms endure irreversible displacements.

For polycrystalline case, it is useful to think of a slab of material lying in a plane of ap-
plied shear stress. The dislocations oriented perpendicular to this plane is driven by the
stress to move through a ”forest” of dislocations lying primarily in the plane, thus produc-
ing shear flow. Denote the energy of configurational subsystem by UC(SC , ρ) where ρ is the
total length of dislocation lines per unit volume; and SC(UC , ρ) is the entropy calculated by
adding the number of atomic configuration, taking the number of arrangements of disloca-
tions into account, at fixed values of UC and ρ.

The dislocations are driven by external forces to undergo chaotic motion which means they
explore statistically significant parts of their configuration spaces. According to Gibbs, the
entropy SC of this configurational subsystem must be at its state of maximum probability
under a specific value of the energy UC . This is done by the balance between the input
power and the rate at which energy is dissipated to the kinematic-vibrational subsystem,
which serves here as the thermal reservoir. Thus the system finds a minimum of free energy
which is the most probable state of the system

FC = UC − χSC , (2.18)
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and the effective temperature

χ =
∂UC
∂SC

, (2.19)

the term ”effective temperature”, denoted here by χ to distinguish it from the ambient tem-
perature T . Notice that, χ is an extremely large temperature, vastly greater than T because
the dislocation energies are large.

2.4.2 Depinning model

The dislocations are tied by being pinned to each other. The key assumption in this model is
that these pinning interactions can be broken infrequently by ordinary thermal fluctuations.
When a pin is broken, the unpinned segment of a dislocation line moves spontaneously
to a nearby pinning site. Moreover, the pinning times are generally much longer than the
times taken by dislocations to move from one pinning site to another, the thermally activated
depinning mechanism starts with Orowan’s relation (described in Section 2.2) between the
plastic strain rate ε̇pl, the dislocation density ρ, and the average dislocation velocity v:

ε̇pl = ρ b v, (2.20)

where b is the magnitude of the Burgers vector. This relation is only geometric relation with
a multiplication of following factors: shear value b/L of each dislocation as it moves across
a system of linear size L, there are ρL2 dislocations doing it at the same time, then the rate
at which these occurrences are happening is v/L.

Next step is to compute the velocity v. To do this, assume that each dislocation becomes
pinned and unpinned many times, and retain its identity throughout a motion across the
pinning sites. If a depinned dislocation segment spends a characteristic time tP to moves a
distance of about l ≡ 1/

√
ρ between pinning sites, then v ∼ l/tP , where thermally activated

depinning rate given by

1

tP
=

1

t0
e−UP (σ)/kBT . (2.21)

Here t0 is a microscopic time of the order of 10−12 s, and UP (σ) is the activation barrier.

According to Langer et al. (2010), UP (σ) is a decrease function of σ in which the dislocation
is trapped in a pinning energy kBTP at zero stress:

UP (σ) = kB TP e
−σ/σT (ρ) (2.22)

with σT = sµb
√
ρ being Taylor stress. The dimensionless number s is the ratio of a depin-

ning length to the length of the Burgers vector, thus, s should be approximately independent
of temperature and strain rate. When a stress σ is applied, the barrier resisting escape from
the trap is lowered in the direction of σ and raised in the opposite direction. Note also that
σ denotes only the magnitude of stress in this formula because this part of the analysis de-
termines only the scalar time scale tP . Directional information will appear in the other parts
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of the stress-strain relations when stresses and strains become tensors.

The resulting formula for strain rate ε̇pl becomes

ε̇pl =
b

t0

√
ρ exp

[
−TP
T
e−σ/σT

]
. (2.23)

Now, one can find the relation between true stress and Taylor stress from Eq. (2.23):

σ = σT (ρ) ν(ρ, ε̇pl, T ), (2.24)

where, (see Langer (2017b))

ν(ρ, ε̇pl, T ) = ln

(
TP
T

)
− ln

[
ln

(
b
√
ρ

ε̇plt0

)]
. (2.25)

It is interesting to mention here that the pinning energy is large, of the order of electron volts
so that the pinning temperature TP is much larger than the ordinary temperature T . As a re-
sult, the plastic strain rate is an extremely rapidly varying function of σ and T . This strongly
nonlinear behavior is the key to understand yielding transitions and shear banding as well
as many other important features of polycrystalline plasticity. For example, the extremely
slow variation of the steady-state stress as a function of strain rate discussed in Langer et al.
(2010) is the converse of the extremely rapid variation of q as a function of σ in Eq.(2.25).
In the next following chapters, the readers will see that this temperature sensitivity of the
strain rate is the key to understanding important aspects of the thermomechanical behavior.

2.4.3 Non-equilibrium equations of motion

Let us start to introduce these equations of motion by considering a simple shear experi-
mental model on a slab of material mentioned in the previous sub-section with area A, and
thickness L. The total energy of this system can be written as a sum of configurational and
kinematic-vibrational parts:

Utotal = UC(SC , ρ) + UR(SR). (2.26)

Here, UC(SC , ρ) contains not only dislocation energy but also all other energies associated
with all other state variables. SC(UC , ρ) is the total entropy of the configurational subsystem,
calculated by counting the number of configurations at fixed values of UC and ρ. Also,
ρ is the total length of dislocation lines per unit area. UR(SR) is the kinetic-vibrational
energy of this system, whose entropy is SR. This subsystem works as a thermal bath, and its
temperature is so-called ordinary thermal temperature (or kinetic-vibrational temperature)
which is also proportional to the ambient temperature

kB T ≡ θ =
∂UR
∂SR

. (2.27)

Following this assumption, one can think about splitting UC(SC , ρ) as follows:

UC(SC , ρ) = U0(ρ) + U1(S1), (2.28)
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and corresponding SC(UC , ρ)

SC(UC , ρ) = S0(ρ) + S1(U1), (2.29)

where U0 and S0 are, respectively, the energy and entropy of dislocations, and U1 and S1 are
the energy and entropy of all the other configurational state variables.

U0(ρ) = A ρ eD, eD = L γD, (2.30)

with γD is the dislocation energy per unit length, and according to Langer (2017b),

S0(ρ) = −A ρ ln(b2ρ) + A ρ. (2.31)

Then, the first law of thermodynamic for this system can be proposed as:

U̇total = LA σ ε̇pl = U̇C + U̇R,

= χ ṠC +

(
∂UC
∂ρ

)
ρ̇+ θṠR,

(2.32)

the term LA σ ε̇pl is the rate at which the mechanical power transferred to the system by
external driven force (the rate of elastic energy equals to zero). The first term χṠC on
the second line is the rate of change of the configurational heat content while the second
term implies the rate at which the configurational internal energy UC is increasing by the
formation of new dislocations at fixed configurational entropy SC . This term can be derived
to a ρ-dependent energy form by using Eqs. (2.28) and (2.29):

∂UC
∂ρ

=
∂(U0 − χ S0)

∂ρ
≡ ∂F0

∂ρ
. (2.33)

One can easily find the steady-state of dislocations ρss(χ) = 1
b2
e−eD/χ by minimizing this

free energy F0 using Eqs. (2.30) and (2.31) (see Langer (2017b)). Whereas the last term
of Eq. (2.32) implies the heat flux Q, defined to be positive when heat is flowing from the
configurational subsystem into kinematic-vibrational subsystem (thermal bath). Use this
first law equation to evaluate ṠC , and write the second law in the form

ṠC + ṠR =
1

χ
(LA σ ε̇pl − ∂F0

∂ρ
ρ̇) +

(
1− θ

χ

)
ṠR ≥ 0. (2.34)

For present purpose, assume the mechanical power is positive. The remaining negative term
is

∂F0

∂ρ
ρ̇ ≤ 0. (2.35)

Langer and his colleagues have proposed an equation of motion for dislocation density

ρ̇ = κρ
σε̇pl

γD

[
1− ρ

ρss(χ)

]
, (2.36)

with dimensionless factor κρ is the fraction of the mechanical power that is delivered to
dislocations. The second term in the right-hand side of Eq. (2.36) can be seen as the rate of
annihilated dislocations required by the second law.
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Let us rewrite the first law equation in a suitable form for deriving the equation of motion
for effective temperature χ:

χ ṠC = AL σε̇pl −
(
∂F0

∂ρ

)
ρ̇−Q. (2.37)

The Eqs. (2.28) and (2.29) are again used to decompose the left-hand side as

χ ṠC = χ
∂S1

∂χ
χ̇+ χ

∂S0

∂ρ
ρ̇ ≡ AL ceff χ̇+ χ

∂S0

∂ρ
ρ̇, (2.38)

where the effective heat capacity is defined as AL ceff = χ∂S1/∂χ. One can obtain a more
simplified model by substituting Eq. (2.38) into Eq. (2.37)

AL ceff χ̇ = AL σε̇pl −
(
∂U0

∂ρ

)
ρ̇−Q. (2.39)

A key observation is made here that ordinary thermal fluctuations are completely ineffective
in driving these processes due to the fact that very large energies associated with nucleation
and annihilation of dislocations. Langer (2017b) has therefore proposed an approximation
of heat flux

Q ≈ AL σε̇pl
χ

χ0

, (2.40)

with χ0 being the effective temperature at steady state. The equation of motion for χ now
becomes

ceff χ̇ = σε̇pl
[
1− χ

χ0

]
− γD ρ̇. (2.41)

Furthermore, an equation of motion depicting the kinetic-vibrational temperature θ = kBT
should also be mentioned here(

cpρd
kB

)
θ̇ = βσε̇pl −K(θ − θ0), (2.42)

with cp being the thermal heat capacity per unit mass, ρd the mass density. A positive
quantity β is known as Taylor-Quinney factor which is less than unity; this dimensionless
constant gives the percentage of input power that is converted into kinetic-vibrational heat.
K is a thermal transport coefficient, and θ0 = kBT0 is the ambient temperature.

Finally, an equation of motion for the stress must be written here. This is simply the Hooke’s
law in a rate form:

σ̇ = µε̇el = µ(ε̇− ε̇pl), (2.43)

with µ is the elastic shear modulus. This appoximation should be proper as long as µ is large
and the elastic strains are small.

2.4.4 Scaling and dimensionless variables

As a preparation for the use of the equations of motion, it is convenient to transform vari-
ables involved in these equations into dimensionless ones, thus making it easier to identify
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the relevant dimensionless physical parameters. It is worth noting that the new general
form of the original system introduced here will be slightly modified in the next sections
to adapt to each specific physical circumstance. All systems of interest currently undergo
a spatially uniform shear with constant rate ε̇. Therefore, let Q = ε̇t0, where t0 = 10−12s
is an arbitrarily chosen microscopic time scale used to express rates as meaningful dimen-
sionless quantities. Then we can replace the time t with the accumulated total shear ε, so
that t0∂/∂t → Q∂/∂ε. Let q = ε̇plt0, ρ̃ = b2ρ, χ̃ = χ/eD, and θ̃ = T/TP . All these
dimensionless quantities are functions of ε.

The plastic strain rate defined in Eq. (2.23) now becomes:

q =
√
ρ̃ exp

[
−1

θ̃
e−σ/σT (ρ̃)

]
; σT (ρ̃) = sµ

√
ρ̃. (2.44)

Then, its inverse form, Eq. (2.24), reads:

σ = σT (ρ̃)ν̃(ρ̃, q, θ̃), (2.45)

where ν becomes

ν̃(ρ̃, q, θ̃) = ln

(
1

θ̃

)
− ln

[
ln

(√
ρ̃

q

)]
. (2.46)

The equation of motion for the dislocation density in Eq. (2.36) describes some fraction of
the power delivered to the system by external driving which is converted into the energy of
dislocations, and that energy is dissipated according to a detailed-balance analysis involving
the effective temperature χ̃. They can be rewritten in the new scaled variables:

∂ρ̃

∂ε
= κρ

σq

γ̃DQ

[
1− ρ̃

ρ̃ss(χ̃)

]
, (2.47)

where ρ̃ss(χ̃) = e−1/χ̃ is the steady-state value of ρ̃ at given χ̃, and γ̃D = γD/b
2 = eD/b

2L.
It is interesting to reinterpret the conversion factor κρ by using an important discovery from
Kocks and Mecking (2003). Those investigators found that the onset slope of strain hard-
ening, Θ0 = (1/µ)(∂σ/∂ε)onset, often (but not always) remains a material-specific constant
over a wide ranges of strain rates and temperatures. To understand this behavior, we use
the well-known fact that the onset of strain hardening is a transient approach to steady-state
flow, in other words, hardening begins when the deformation switches from elastic to plastic,
that is when q ≈ Q and ρ̃� ρ̃ss so that Eq. (2.47) becomes

∂ρ̃

∂ε
u κρ

rµ

γ̃D
νQ(ρ̃, Q, θ̃)

√
ρ̃. (2.48)

Assume that νQ is a slowly varied function with respect to its arguments ρ̃. Then the hard-
ening rate at this onset state is:

Θ0 =
1

µ

∂σ

∂ε
=
νQ
µ

∂σT
∂ρ̃

∂ρ̃

∂ε
= κρ

µr2

γ̃D
ν2
Q. (2.49)

With this one can obtain κρ as follows

κρ =
2Θ0γ̃D
µs2ν2

Q

=
γ̃D
µsν2

Q

κ1. (2.50)
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Finally, Eq. (2.47) can conveniently be transformed to

∂ρ̃

∂ε
= κ1

σq

µsν2
QQ

[
1− ρ̃

ρ̃ss(χ̃)

]
. (2.51)

The equation for the scaled effective temperature χ̃ is a statement of the first law of thermo-
dynamics for configurational subsystem shown in Eq. (2.41) which can be rewritten:

ceff
∂χ̃

∂ε
=
σq

Q

(
1− χ̃

χ̃0

)
− γ̃D

∂ρ̃

∂ε
, (2.52)

with the same analysis that led from Eq. (2.47) to Eq. (2.51), Eq. (2.52) becomes

∂χ̃

∂ε
= κ2

σq

sµQ

[
1− χ̃

χ̃0

− γ̃D κ1

s µ ν2
Q

(
1− ρ̃

ρ̃0(χ̃)

)]
, (2.53)

where the dimensionless factor κ2 = s µ/ceff . Unlike κ1, whose value is determined directly
from experiment via Eq. (2.51), κ2 must be detected on a case by case basis by fitting the
data. The last term inside the square bracket is the rate at which configurational energy is
stored in the form of dislocations. Although there are circumstances this term is important
as demonstrated in Langer (2015) where it is implemented to reduce the slope of the stress-
strain curves after initial rise at different small grain sizes, this term still can be assumed to
be negligible for the sake of simplicity in most of the cases.

The equation of motion for the scaled, ordinary temperature, Eq. (2.42), is:

∂θ̃

∂ε
= K(θ̃)

σq

Q
− K2

Q
(θ̃ − θ̃0), (2.54)

where K(θ̃) = β/(TP cp ρd) is a thermal conversion factor, while K2 is a thermal transport
coefficient that controls how rapidly the system relaxes toward the ambient temperature T0,
that is θ̃ → θ̃0 = T0/TP . Finally, the stress equation, Eq. (2.43), becomes

∂σ

∂ε
= µ

[
1− q

Q

]
. (2.55)

2.5 Thermodynamic Dislocation Theory (TDT) for non-uniform plastic
deformations

In the previous Section of this Chapter, the TDT was discussed for uniform plastic deforma-
tions of crystals whose dislocations are neutral in the sense that their resultant Burgers vector
vanishes. Cottrell (1964) called these dislocations redundant dislocations. For nonuniform
plastic deformations such as the torsion of a rod, the bending of a beam or the deformation
of two-phase alloys or polycrystals, another type of dislocations occurs in addition to the
redundant ones in order to adapt to the plastic deformation gradient and to ensure the com-
patibility of the total deformations (Ashby (1970), Bilby (1955), Nye (1953)). These dislo-
cations are called excess dislocations which appears natural from the point of view of sta-
tistical mechanics of dislocations ((Berdichevsky, 2006b; Limkumnerd & Van der Giessen,
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2008; Poh et al., 2013; Zaiser, 2015)). Thanks to the development of microstructural crystal-
lographic characterization in recent years, the density of excess dislocation can be measured
indirectly by transmission electron microscopy (TEM) or electron backscattering technique
(EBSD) (Kysar et al., 2010). The Continuum Dislocation Theory (CDT), which includes
the density of excess dislocations as developed by Berdichevsky and Sedov (1967); Gurtin
(2002); Le and Günther (2014); Le and Stumpf (1994, 1996), can describe the evolution of
the dislocation network and predict the formation of a microstructure. However, the main
disadvantage of this phenomenological approach is the absence of redundant dislocations
and configuration temperature.

This section will discuss a TDT for non-uniform plastic deformation first proposed by Le
(2018), who includes two missing quantities, the configurational temperature and the density
of redundant dislocations, as state variables in its constitutive equations.

2.5.1 Kinematics

The theory starts with an assumption that there are only two kinematical quantities, the dis-
placement field u(x, t) and plastic distortion field β(x, t) which characterize the observable
deformation of single crystals (x is the position vector of a generic material point in carte-
sian coordinate). For a crystal deforming in one active slip system, the plastic distortion has
the form

β(x, t) = β(x, t)s⊗m, (2.56)

with plastic slip β(x, t) being a continuously differentiable function, where the pair of the
constant and mutually orthogonal unit vector s and m denote the slip direction and the
normal to the slip planes. It can be easily seen that, in general, trβ = βii = 0, so that the
continuous plastic distortion does not cause any volumetric change. If the crystal possesses
n slip systems, the plastic distortion has the following form

β(x, t) =
n∑
i=1

β(x, t)si ⊗mi. (2.57)

The total compatible strain tensor can be obtained from the displacement field

ε =
1

2
(u∇+∇u). (2.58)

The incompatible strain tensor is the symmetric part of the plastic distortion field

εp =
1

2
(β + βT ). (2.59)

We limit our theory to the small strain case. Thus the additive decomposition of total strain
into elastic and plastic parts will be assumed

εe = ε− εp. (2.60)

These three strain fields and their relations are illustrated schematically in Fig. 2.18. In this
figure, the distortion of shape and lattice is always the same for an elastic deformation. This
means that the internal state of the crystal is changed during an elastic deformation which
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Figure 2.18: Decomposition of total strain.

results in elastic strain. In contrary, the change of shape due to the plastic deformation does
not change the internal state of the crystal unless dislocations appear inside it (the lattice
orientation remains the same).
Consider any infinitesimal area da through which a total number of N dislocation lines in-

tersect. Among them there are N+ dislocations with Burgers vector bs and N− dislocations
with Burgers vector −bs, where b is the length of the Burgers vector. Then the number of
excess dislocations is defined byN g = |N+ −N−|, while the number of redundant disloca-
tions is defined by N r = N −N g. Accordingly, the scalar density of excess and redundant
dislocations is

ρg =
N g

da
, ρr =

N r

da
. (2.61)

Nye (1953), Bilby (1955), and Kröner (1955) introduced the dislocation density tensor,
α = −β × ∇, which takes all excess dislocations into account. This leads to the resultant
Burgers vector of all excess dislocations, whose dislocation lines cross the area da

dB = α · n da, (2.62)

with n being the unit vector normal to da. Therefore, the density of excess dislocation for a
crystal with one active slip system can be related to the plastic distortion

ρg =
|dB|
b da

=
1

b
|n · (∇× β)| . (2.63)

In contrast to the excess dislocations, the redundant ones cannot be expressed in term of
plastic distortion; however, they may significantly affect the creation of excess dislocations
and work hardening of crystals. As a rule, this sort of dislocations exists only in the form
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of dislocation dipoles at a low temperature to render the low energy of the crystal. Also, the
density of dislocation dipoles depends only on temperature, in other words, the dislocation
dipoles can be nucleated by the mutual trapping of dislocations of different signs in a random
way, or eventually, by thermal fluctuations due to their low energy. The total dislocation
density is thus,

ρ = ρg + ρr. (2.64)

2.5.2 Energy of dislocation network

Let us start with the free energy density to construct models of crystals with continuously
distributed dislocations using the non-equilibrium thermodynamics of the externally driven
system. This energy density must depend only on state variables. A variable that character-
izes the body in question is called a state variable if it depends exclusively on the current
state of the body. According to Kröner (1992) and Langer (2016), the elastic strain εe, the
dislocation densities ρr and ρg, the kinetic-vibrational temperature T and the configurational
temperature χ are the state variables of this TDT. The reason why plastic deformation β or
plastic strain tensor εp cannot be regarded as a state variable is that they are dependent on the
cut surfaces and thus on the entire history of dislocation formation (for example, the climb
of glide dislocations are created quite differently). In contrary, the dislocation densities ρg

and ρr are state variable because they depend only on the Burgers vector and the positions
of the dislocation lines that characterize the current state of the dislocations and not on how
they are generated. In this theory, the author limits himself to the isothermal processes, so
that the kinetic-vibrational temperature T is assumed to be constant and can be dropped into
the list of arguments of free energy density. Our main assumption for the free energy is

ψ =
1

2
λ(trεe)2 + µεe : εe + γDρ

r + ψm(ρg)− χ(−ρ ln(a2ρ) + ρ)/L. (2.65)

The first two terms in Eq. (2.65) represent the free energy of the crystal due to the elastic
strains, where λ and µ are the Lame’s constants. The third term is the self-energy of redun-
dant dislocations, where γD is the energy of the dislocation dipole per unit length. The fourth
term represents the energy of excess dislocations. According to Berdichevsky (2006b) and
Le (2018) this type of free energy should have logarithmic form to ensure that the energy for
small dislocation density ρg increases linearly and tends toward infinity when ρg approaches
the saturated dislocation density and thus provides an energetic barrier against supersatura-
tion. A more detailed discussion will be given in the next Subsections. The last term was
introduced by Langer (2016), where SC = −ρ ln(a2ρ) + ρ is the configurational entropy of
dislocations, where a is the admissible nearest distance between dislocations, and L is the
depth of the sample.

With this free energy density at hand, the energy functional of the crystal can be written
down. Let V be the region of an undeformed single crystal. The boundary of this region, ∂V ,
is assumed to be the union of two non-intersecting areas ∂Vk and ∂Vs. Let the displacement
vector u(x, t) be a given smooth function of coordinates, and, consequently, the plastic slips
β(x, t) vanish

u(x, t) = u∗(x, t), β(x, t) = 0 for x ∈ ∂Vk. (2.66)
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The remaining boundary part ∂Vs is assumed to be traction free. If no body-forces act on
the crystal, then its energy functional is

I [u(x, t), β(x, t), ρr(x, t), χ(x, t)] =

∫
V

ψ(εe, ρr, ρg, χ)dV, (2.67)

with dV stands for the volume element.

2.5.3 System of equations

When the external driving forces increase, the resolved shear stress also increases. When it
reaches Taylor stress, the dislocation dipoles are dissolved and the dislocations that become
free begin to move until they are pinned again by dislocations with opposite signs. This
dislocation movement leads to a dissipation of energy, which in turn leads to resistance to the
dislocation movement. Increasing the dislocation density and increasing the configuration
temperature also leads to energy dissipation. In Langer et al. (2010), internal viscosity may
be essential only at low strain rates and low dislocation densities, since in this case the
time required for a freely moving dislocation to overcome the distance between the pinning
sites may be more significant than the pinning times. At higher strain rates the internal
viscosity can be neglected. Since we are considering this case, the dissipation potential can
be proposed as follows

D(β̇, ρ̇, χ̇) = τY β̇ +
1

2
dρρ̇

2 +
1

2
dχχ̇

2, (2.68)

with τY is the flow stress during plastic yielding, dρ and dχ are unknown functions that will
be determined later. Then, the first term of Eq. (2.68) is assumed to be a homogeneous
function of first order with respect to the plastic slip rate. The other two terms represent
the dissipation caused by the formation of dislocations and the increase of the configuration
temperature. As mentioned in Sec. 2.4, the rate of flow stress is obtained as follows:

τ̇Y = µ
Q

t0

[
1− q(τY , ρ)

Q

]
, (2.69)

where Q/t0 is rate of shear strain, and t0 = 10−12 s is the characteristic microscopic time
scale. According to Langer et al. (2010); Le (2018), the plastic slip rate is

β̇ =
q(τY , ρ)

t0
=

1

t0
b
√
ρ exp

[
−1

θ
e−τY /τT

]
, (2.70)

with the dimensionless temperature being θ = T/TP , TP the pinning energy barrier, and
τT the Taylor stress. Then, the governing equations can be derived from the following vari-
ational principle (see Sedov (1968)): Among all admissible fields u(x, t), β(x, t), ρr(x, t)
and χ(x, t) satisfying the constraints (2.66), the true displacement field û(x, t), the true
plastic slip β̂(x, t), the true redundant dislocation density ρ̂r(x, t), and the true configura-
tional temperature χ̂(x, t) obey the variational equation

δI +

∫
V

(
∂D

∂β̇
δβ +

∂D

∂ρ̇
δρ+

∂D

∂χ̇
δχ

)
dV = 0. (2.71)
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For the sake of simplicity, let us first consider a plane strain deformation of a single crystal
occupying an area A and having only one active slip system. Then, the density of excess
dislocations is simplified to:

ρg =
1

b
|∂sβ| ,

where ∂s = si∂i denotes the derivative in the direction s. The quasi-static equations of
equilibrium of macro-forces can be obtained by varying the energy functional with respect
to u

σ · ∇ = 0, σ =
∂ψ

∂εe
= λtr(εe)I + 2µεe, (2.72)

subjected to the boundary conditions (2.66) and

σ · n = 0 on ∂As.

The similar calculus of variations for other quantities β, ρr and χ for Eq. (2.71) leads to:

τ +
1

b
(ζ signβ,s),s − τY +

1

b
(dρ ρ̇ signβ,s),s = 0, (2.73a)

(eD + χ ln(a2ρ))/L+ dρ ρ̇ = 0, (2.73b)
(ρ ln(a2ρ)− ρ)/L+ dχ χ̇ = 0. (2.73c)

Here, eD = LγD, τ = σijsimj is the resolved shear stress, while ζ = ∂ψ/∂ρg, and the two
terms 1

b
(ζ signβ,s),s+ 1

b
(dρ ρ̇ signβ,s),s depict the back stress τB due to the interaction of ex-

cess dislocations. This equation is the balance of micro-forces acting on excess dislocations
subjected to the Dirichlet boundary condition (2.66) on ∂Ak and

ζ + dρ ˙ρ = 0 on ∂As.

It is reasonable to expect these equations of motion to be reduced to the original equations of
Langer et al. (2010) if the plastic deformations become homogeneous, because in that case
the excess dislocations density vanishes. The two functions dχ and dρ should be chosen as
in Le (2018) to achieve this reduction:

dρ =
−eD − χ ln(a2ρ)

Lκ1
τY

a2ν(T,ρ,Q)2
q(τY ,ρ)
t0

[
1− ρ

ρss(χ)

] , (2.74)

dχ =
ρ− ρ ln(a2ρ)

Lκ2τY
q(τY ,ρ)
t0

[
1− χ

χ0(q)

] , (2.75)

with ν(T, ρ,Q), χ0, and ρss defined in Sec. 2.4.

We also expect that this TDT can be reduced to CDT if redundant dislocations and configu-
rational temperature are neglected. This is the case with extremely slow quasistatic loading
and low temperature, as then the nucleation of dislocation dipoles and the thermally assisted
depinning mechanism are significantly reduced. In this case, the energy functional should
have the form (Berdichevsky, 2006a, 2006b):

I [u(x, t), β(x, t)] =

∫
V

(
1

2
λ(trεe)2 + µεe : εe + ψm(ρg))dV. (2.76)
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With regard to the dissipation potential, several models can be considered. The simplest
assumption is that the resistance to dislocation motion during the plastic deformation can
be neglected, which means that the dissipation is zero. In this case, we must minimize
the energy functional under the constraints (2.66). If the dissipation potential D is a first
order homogeneous function with respect to ˙β(x, t), then the energy minimization should
be replaced by the following variation equation:

δI +

∫
V

(
∂D

∂β̇
δβ

)
dV = 0. (2.77)

In recent years, this CDT has been successfully implemented to predict the formation of
micro-structure (Kochmann and Le (2009a); Koster et al. (2015); Le and Nguyen (2012))
and the size effects (Kaluza and Le (2011); Kochmann and Le (2009b); Le and Nguyen
(2013)).
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3 Thermal softening, adiabatic shear banding, and torsion
of bars

This chapter examines the use of thermodynamic dislocation theory (TDT) to model the
uniform deformation of materials subjected to thermomechanical processing. The author
presents an analysis of high-temperature compression tests performed experimentally for
aluminum (Shi et al., 1997a) and steel (Abbod et al., 2007). With the physically based
parameters used here, which seem to be theoretically independent of strain rate and tem-
perature, experimental stress-strain curves can be adapted for three different strain rates and
three different temperatures for each of these two materials. The theoretical curves include
zero strain transitions in accordance with the experiment. It is found that thermal softening
effects are remarkable even at the lowest temperatures and strain rates.

In addition, the effect caused by excess dislocations is not so significant and can be neglected
when considering samples the size of which is in the macro length scale. Thus, an extension
of the TDT proposed by Langer (2017b); Langer et al. (2010), aimed at nonuniform plas-
tic deformation, is possible. The author would like to introduce two applications of TDT
to nonuniform plastic deformation in materials science and engineering, such as adiabatic
shear band in steel from Marchand and Duffy (1988) and torsion of bars in copper from
Horstemeyer et al. (2002). For the first test of Marchand and Duffy (1988) the challenge is
to use a small set of physical parameters that are expected to be approximately independent
of strain rate and temperature to explain experimental stress-strain curves at six different
temperatures and four different strain rates. A simple model of a weak notch-like pertur-
bation is constructed in such a way that, with sufficient loading, shear band instabilities are
triggered that are quantitatively comparable to those in the experiments. For the latter test of
Horstemeyer et al. (2002) the challenge is to simulate the torque-twist curve with the hard-
ening behavior and compare it with the experimental curves. To enable this comparison, we
have to identify a list of material parameters for single crystal copper under torsion from the
experimental data of Horstemeyer et al. (2002).

3.1 Thermal softening effects of high-temperature deformation in
aluminum and steel

3.1.1 Equations of Motion

Strictly speaking, the thermodynamic dislocation theory should be written in three-dimensional
tensorial notation in order to use it in analyses of plane-strain compression tests. Moreover,
Fig.1 in Shi et al. (1997b) shows a diagram of a plane-strain sample like those used in Shi et
al. (1997a). Here, a thin rectangular block under uniaxial compression is shown bulging at
its sides and thinning at its center in addition to undergoing pure shear. These deformations



36 3 Thermal softening, adiabatic shear banding, and torsion of bars

if actually as large as shown would slightly affect the interpretation of the reported stress-
strain data. However, a detailed analysis of those deformations would be well beyond the
scope and needs of this project.

Suppose, for simplicity, that the experimental sample is a two dimensional rectangular block
in the x y plane, being compressed between two rigid plates parallel to the x axis. The
compressive stress in the y direction is σyy ≡ −σ. If the plates are well lubricated so that
the friction between the block and the plates is negligible, then σxx ≈ 0. For this uniaxial
geometry, the stress tensor is naturally expressed in the x′ y′ frame of reference oriented at
45◦ to the x y axes. In that frame, the shear stress is σx′y′ = σy′x′ = −σ/2. If the material
is incompressible, then the total elastic plus plastic strain rate is ε̇yy = −ε̇xx ≡ −ε̇. In
the rotated frame, the shear rate is ε̇x′y′ = ε̇y′x′ = −ε̇. As usual, it is assumed that the
elastic and plastic strain rates are simply additive, e.g. ε̇x′y′ = ε̇elx′y′ + ε̇plx′y′ . Then, by
convention, σ̇x′y′ = 2µ ε̇elx′y′ , where µ is the shear modulus and the factor 2 accounts for the
distinction between “true” and “engineering” strain. Putting these pieces together, one can
write σ̇ = αµ (ε̇ − ε̇pl), where α ' 4 is a geometric factor, and the directional subscripts
have been dropped. In this way, the one-dimensional notation have been recovered.

Now assume that this spatially uniform system is driven at a constant shear rate ε̇ ≡ Q/t0,
where t0 ≡ 10−12s is a characteristic microscopic time scale. The system of equations of
motion for the stress σ and the scaled internal state variables ρ̃, χ̃, and θ̃, which are functions
of εwould be taken from Eqs. (2.51), (2.53), (2.54) and (2.55) without further detail explain:

dσ

dε
= αµ

[
1− q

Q

]
, (3.1)

dρ̃

dε
= κ1

σ q

ν(θ̃, ρ̃, Q)2 µT Q

[
1− ρ̃

ρ̃ss(χ̃)

]
, (3.2)

dχ̃

dε
= κ2

σ q

µT Q

(
1− χ̃

χ̃0

)
, (3.3)

dθ̃

dε
= K(θ̃)

σ q

Q
− K2

Q
(θ̃ − θ̃0). (3.4)

Here, the last term of Eq. (2.53) is assumed to be negligible for the sake of simplicity. In
Langer (2017c), κ2 for copper was found to decrease from 17 to 12 when the strain rate
increased by a factor of 106. Since changes in strain rate of at most a factor of 102 will be
considered here, it is useful to assume that κ2 is a constant. K(θ̃) will be found to be non-
trivially temperature dependent for both of the materials discussed in Secs. 3.1.2 and 3.1.3.
K2 is a thermal transport coefficient that controls how rapidly the system relaxes toward
the ambient temperature T0, that is, θ̃ → θ̃0 = T0/TP . This coefficient turns out to be too
small to be measured for the situations reported here, but that will not always be the case. In
principle, after long enough times of steady deformation, systems must reach steady-state
temperatures determined by the balance between heating and cooling terms in Eq. (3.4).

3.1.2 Comparison with experiment: Aluminum

The experimental results of Shi et al. (1997a) for aluminum, along with theoretical results
based on the equations of motion in Sec. 3.1.1, are shown in Figs. 3.1, 3.2, and 3.3. These
figures are presented in order of increasing strain rate, ε̇ = 0.25 s−1, 2.5 s−1, and 25 s−1.
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Figure 3.1: Stress-strain curves for aluminum at the small strain rate ε̇ = 0.25 s−1, for tem-
peratures 300C, 400C, 500C shown from top to bottom. The experimental
points are taken from Shi et al. (1997a).
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Figure 3.2: Stress-strain curves for aluminum at the strain rate ε̇ = 2.5 s−1, for temperatures
300C, 400C, 500C shown from top to bottom. The experimental points are
taken from Shi et al. (1997a).
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Figure 3.3: Stress-strain curves for aluminum at the highest strain rate ε̇ = 25 s−1, for tem-
peratures 300C, 400C, 500C shown from top to bottom. The experimental
points are taken from Shi et al. (1997a).

Within each figure are curves for the three different temperatures 300C, 400C, and 500C
(blue circles, black triangles, and red squares respectively) shown from top to bottom.

In order to compute the theoretical curves in these figures, values for five system-specific
parameters are needed: the activation temperature TP , the stress ratio s, the steady-state
scaled effective temperature χ̃0, and the two dimensionless conversion factors κ1 and κ2.
We also need initial values of the scaled dislocation density ρ̃(ε = 0) ≡ ρ̃i and the effective
temperature χ̃(ε = 0) ≡ χ̃i, which are determined by sample preparation – presumably
the same for all samples, but possibly a source of experimental uncertainty. In addition, a
formula is needed for the thermal conversion factor K(θ̃) in Eq. (3.4) which, for aluminum,
one can take to have the linear form

K(θ̃) = K0

[
1 + c1 TP (θ̃ − θ̃1)

]
, (3.5)

where TP θ̃1 is a reference temperature, chosen here to be 573K. The numbers K0 and c1

remain to be determined by the data. Finally, a formula for the temperature dependent shear
modulus µ(T ), which can be taken from Chen et al. (1998); Varshni (1970) to be

µ(θ̃) = µ1 −
[

D

exp(T1/TP θ̃)− 1

]
, (3.6)

where µ1 = 28.8GPa, D = 3.44GPa, and T1 = 215K. (A simple linear approximation
to this formula analogous to Eq. (3.5) would be completely adequate for present purposes.)

In earlier papers starting with Langer et al. (2010), the author were able to begin evaluating
the parameters by observing steady-state stresses σss at just a few strain ratesQ and ambient
temperatures T0 = TP θ̃0, and inverting Eq. (2.44) to find

σss = s µ
√
ρ̃ss ν(θ̃0, ρ̃ss, Q); ρ̃ss = e−1/χ̃0 . (3.7)
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Knowing σss, T0 and Q for three stress-strain curves, we could solve this equation for TP , s,
and χ̃0, and check for consistency by looking at other steady-state situations. With that in-
formation, it was relatively easy to evaluate κ1 and κ2 by directly fitting the full stress-strain
curves. This strategy does not work here because the thermal effects are highly nontrivial.
Examination of the experimental data shown in the figures indicates that almost all of these
samples are undergoing thermal softening at large strains; the stresses are decreasing and
the temperatures must be increasing. Even the curves that appear to have reached some kind
of steady state have not, in fact, done so at their nominal ambient temperatures.

To counter this difficulty, large-scale least-squares analyses have been resorted. (A prelim-
inary discussion of this procedure has been presented by Le and Tran (2017).) That is, the
sum of the squares of the differences between the theoretical stress-strain curves and the
experimental points have been computed,

h(TP , s, χ0, κ1, κ2, ρ̃i, χ̃i, K0, c1, K2) =
N∑
i=1

(σ(εi)− σi)2, (3.8)

where (εi, σi), i = 1, ..., N correspond to the data points measured in experiment at temper-
atures and strain rates taken from Shi et al. (1997a), and this sum function h was minimized
in the space of the unknown parameters: TP , s, χ0, κ1, κ2, ρ̃i, χ̃i, K0, c1, K2. Options of
omitting some of the data, fitting the theory to just those portions of the data have been ex-
plored that seemed most reliable. For example, the author have looked to see what happens
if the yield points in this calculation is omitted on the assumption that they are most sensi-
tive to variations in sample preparation. The results appear to be robust. They are found:
TP = 2.40 × 104K, s = 0.040, χ0 = 0.249, κ1 = 0.97, κ2 = 12, ρ̃i = 0.0035, χ̃i =
0.224, K0 = 7.0 × 10−6, c1 = 0.0257, and K2 = 0. So far as one can tell, values of K0

and c1 are consistent with values of the Taylor-Quinney factor β of the order of unity or less.
For simplicity, it is convenient to set α = 1 in Eq. (3.1) because the slopes of the initial
elastic parts of the stress-strain curves are too large to be meaningful here. Note, however,
that with α ∼= 4 and s = 0.04, the ratio of the depinning length to the length of the Burgers
vector becomes 0.16, which seems physically reasonable.

The agreement between theory and experiment seems to be well within the bounds of exper-
imental uncertainties. Even the initial yielding transitions appear to be described accurately
by this dynamical theory. There are only a few apparent discrepancies. For example, the
experimental data in Fig. 3.1 for ε̇ = 0.25 s−1, T = 500C exhibit a small, abrupt increase
in the stress at about ε ∼= 0.8, which may indicate some kind of instrumental problem. Also,
the stresses for T = 400C in that figure are slightly below those predicted by the theory, and
there is a smaller discrepancy of the opposite sign on the curve at ε̇ = 2.5 s−1, T = 300C
in Fig. 3.2. Nothing about these results leads us to believe that there are important physical
ingredients missing in this theory.

It is interesting to discuss the behavior of the fractional plastic strain rate q/Q for pure
aluminum at fixed strain rate ε̇ = 0.25 s−1 as function of the strain ε, shown in Fig. 3.4,
where the curves are magnified near 1 to describe the strongly nonlinear behavior of the
dimensionless quantity q/Q. The increase of the slope of q/Q according to the temperature
rise from 300 C to 500 C can be explained as follows: At the same strain rate, the higher
the normal temperature, the faster the dislocation depinning and the higher the plastic strain
rate. Another important feature is that due to the additional heat generated by the movement
of dislocations, in the second phase of these curves there is a slow linear increase that leads
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Figure 3.4: Theoretical fractional strain rate distribution for pure aluminum at the strain rate
ε̇ = 0.25 s−1, for temperatures 300C, 400C, 500C shown from bottom to top.

to q > Q when the strain ε increases. This results in the negative tangent of the stress-strain
curve represented by Eq. (3.1), which is the cause of thermal softening phenomenon.
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Figure 3.5: Theoretical fractional strain rate distribution across the initial yielding tran-
sition for pure aluminum at the strain rate ε̇ = 2.5 s−1, for temperatures
300C, 400C, 500C shown from right to left.

Let us consider what is happening near ε = 0 where the three outputs under the same strain
rate ε̇ = 2.5 s−1 and temperatures from 300C to 500C exhibit what appear to be yielding
transitions. All curves in Fig. 3.2 start with elastic sections and then bend smoothly to plastic
behavior. Fig. 3.5 again confirms that the normalized dimensionless plastic strain rate q/Q
jumps rapidly but smoothly during the transition from elastic to plastic deformation.

Another interesting question is how strongly the ambient temperature affects the dislocation
density ρ and the configurational temperature χ. Fig. 3.6 and Fig. 3.7 show their normalized
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Figure 3.6: Theoretical dislocation density distribution for pure aluminum at the strain rate
ε̇ = 25 s−1, for temperatures 300C, 400C, 500C shown from right to left.
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Figure 3.7: Theoretical configurational temperature for pure aluminum at the strain rate ε̇ =
25 s−1, for temperatures 300C, 400C, 500C shown from left to right.
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distributions at strain rate ε̇ = 25 s−1 for three different temperatures 300C, 400C, 500C.
The equation of motion relating to the internal variable χ̃ is the first law of thermodynam-
ics applied to the configurational subsystem. The right-hand side of Eq. (3.3) shows the
fraction of plastic power delivered to this system that increases the configurational tempera-
ture. At fixed strain rate Q, the higher the ambient temperature, the higher plastic strain rate
q/Q, however, the lower the stress σ since the dislocations are easier to be depinned. It is,
therefore, the configurational temperature would be lower for higher ambient temperature.
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Figure 3.8: Temperature as a function of strain for each of the nine stress-strain tests shown
for aluminum in the preceding figures. The initial ambient temperatures are
300C, 400C and 500C (blue, black, and red) as seen on the left axis. Each
group of three curves is for strain rates of ε̇ = 0.25 s−1, 2.5 s−1, and 25 s−1,
from bottom to top.

To complete the analysis of the Shi et al. (1997a) data for pure aluminum, Fig. 3.8 shows
computed temperatures as functions of strain for each of the nine stress-strain curves shown
in the previous figures. Here, the author may be finding an interesting discrepancy between
the interpretation and that of Shi et al. (1997a). Those investigators say that “In the high
strain rate tests, particularly at low temperatures, temperature rises of up to 30K was ob-
served at the start of steady state.” temperature rises of roughly that magnitude can be seen
in this calculation. However, as stated above, the author does not think that these tests have
reached steady state, especially not the one at the highest strain rate and lowest tempera-
ture is shown at the top of Fig. 3.3, which is still softening at large strain. Also, as shown in
Fig. 3.8, a prediction is taken that the larger increases of temperature occur at the higher am-
bient temperatures; because the data analysis tells that the thermal conversion factor K(θ̃)
in Eq. (3.4), is more significant there.
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3.1.3 Comparison with experiment: Steel

As a second example of thermal processing data is demonstrated here, the Fe-30% Ni
austenitic alloy studied by Abbod et al. (2007). According to those authors, this alloy is
a good model material for studying hot deformation of the austenitic phases of carbon-
manganese steels. For simplicity, it is referred to henceforth simply as “steel”. The exper-
imental data was digitized from their Fig. 1 and shown it here in Figs. 3.9, 3.10 and 3.11.
In analogy to the presentation of the aluminum data in Sec. 3.1.2, these figures are shown in
order of increasing strain rate, ε̇ = 0.1 s−1, 1.0 s−1, and 10 s−1. Within each figure, there are
curves for the three different temperatures 850C, 950C, and 1050C (blue circles, black
triangles, and red squares respectively) shown from top to bottom.
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Figure 3.9: Stress-strain curves for steel at the small strain rate ε̇ = 0.1 s−1, for temperatures
850C, 950C, 1050C shown from top to bottom. The experimental points are
taken from Abbod et al. (2007).

In analyzing this data, the same least-squares method that used for aluminum have been
implemented here. they are found: TP = 4.59 × 104K, r = 0.122, χ0 = 0.284, κ1 =
0.958, κ2 = 5.43, ρ̃i = 0.0023, χ̃i = 0.215, and K2 = 0. The one interesting difference is
that a slightly nonlinear thermal conversion factor of the form

K(θ̃) = K∗ e−T
∗/TP θ̃ (3.9)

seems to produce a better fit to the data than the linear form used previously. they are found
to be K∗ = .00879 and T ∗ = 8390K. The activated form of this equation is suggestive
but probably not meaningful; note that it is used only over a narrow range of temperatures.
The following approximation for the shear modulus is also used (derived from data given in
Galindo-Nava and Rivera-Dı́az-del Castillo (2013)):

µ(θ̃) = 85, 970− 33.6TP θ̃ + 0.0009 (TP θ̃)
2. (3.10)

Once again, the results of this analysis seem to be within the bounds of experimental un-
certainties. The one visible discrepancy is for the top curve in Fig. 3.9, for ε̇ = 10 s−1 and
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Figure 3.10: Stress-strain curves for steel at the strain rate ε̇ = 1.0 s−1, for temperatures
850C, 950C, 1050C shown from top to bottom. The experimental points are
taken from Abbod et al. (2007).
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Figure 3.11: Stress-strain curves for steel at the highest strain rate ε̇ = 10 s−1, for temper-
atures 850C, 950C, 1050C shown from top to bottom. The experimental
points are taken from Abbod et al. (2007).
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ambient temperature 850C, where the experimental data drops below the author’s prediction
at a relatively small strain.
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Figure 3.12: Temperature as a function of strain for each of the nine stress-strain tests
shown for steel in the preceding figures. The initial ambient temperatures are
850C, 950C and 1050C (blue, black, and red) as seen on the left axis. Each
group of three curves is for strain rates of ε̇ = 0.10 s−1, 1.0 s−1, and 10 s−1,
from bottom to top.

The potentially most serious discrepancy pertains to the strain dependence of predicted tem-
peratures, shown here in Fig. 3.12 in analogy to the temperatures for aluminum shown in
Fig. 3.8. Supposedly the same temperatures are shown by Abbod et al. (2007) in their Fig.2,
but those temperatures are not measured directly. Apparently, they are computed from the
stress-strain data, perhaps using a temperature-independent thermal conversion factor. Their
orders of magnitude and growth as functions of strain rate at fixed ambient temperatures
are similar to the simulated results here, but their dependence on the ambient temperatures
themselves is qualitatively different.

Note finally that, with s = 0.122 and α = 4, the ratio of the depinning length to the length
of the Burgers vector becomes 0.48 which, if true, would imply an interestingly nontrivial
atomic-scale structure for the interaction between dislocations.
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3.1.4 Discussions

On the whole, these results seem to be quite satisfactory. Note that the thermodynamic
dislocation theory is used now not just to test its validity but also as a tool for discovering
properties of structural materials. For example, the author did not know at the beginning of
this investigation that thermal softening would play so important a role even for the samples
subjected to very slow deformations at moderately low temperatures. One of the main rea-
sons for the success of this theory is the extreme sensitivity of the plastic strain rate to small
changes in the temperature or the stress.

To put this point in perspective, note the difference between the expression for the dimen-
sionless plastic strain rate q in Eq. (2.44) and the phenomenological approach adopted by
Shi et al. (1997a) and Abbod et al. (2007). Both of these groups of investigators base
their analyses on the Zener-Hollomon parameter which, in the present notation, is Z ≡
ε̇ exp (TZ/TP θ̃), where TZ is an activation temperature analogous to TP . They express
their results for different stresses, strains, strain rates and temperatures as functions of Z
which, in analogy to Eq. (2.44), means that their strain rate ε̇ is proportional to the acti-
vation factor exp (−TZ/TP θ̃) multiplied by some function of the stress. By fitting their
data in this way, they find TZ/TP ∼= 0.79 for aluminum and 1.7 for steel. In other words,
their estimated activation energies are of roughly the same magnitude as the outcome of this
thermodynamic dislocation theory.

One crucial difference between this approach and theirs is that, in Eq. (2.44), the depinning
activation barrier is itself a function of the stress and the dislocation density. In this way,
the thermodynamic dislocation theory is qualitatively different from conventional theories
dating back to Peierls and Nabarro in which dislocations are perceived to be gliding inde-
pendently through imperfect lattices, resisted by barriers whose dynamical properties are
independent of the dislocations themselves. That is not what is happening in the thermo-
dynamic dislocation theory. The nonlinear sensitivity to thermal variations that appears in
the present investigation is just a mild version of the same dynamical mechanism that pro-
duces yielding transitions and adiabatic shear bands, which have been beyond the reach of
conventional dislocation theories.

Even more importantly, the conventional theories are not truly dynamic. For example, in a
fully dynamic theory, an activation factor such as the one occurring in the Zener-Hollomon
formula should mean that an increase in temperature produces an increase in strain rate
which, in turn, increases the rate of heat generation. This is the nonlinear feedback loop that
produces the thermal softening seen in this paper and the runaway instability in the theory
of adiabatic shear banding Langer (2017a). However, it is not easy to see how such an
equation of motion could be incorporated into conventional phenomenological descriptions
of dislocation enabled plasticity. This thermodynamic theory has found better ways to make
progress in this field by focussing on the nonequilibrium statistical thermodynamics of these
systems.
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3.2 Adiabatic shear banding in steel

3.2.1 Equations of Motion

According to the work by Marchand and Duffy (1988), they made stress-strain measure-
ments over a range of substantially different temperatures and shear rates using thin steel
tubes bonded to torsional Kolsky bar. This experimental model can be simplified by con-
sidering a strip of polycrystalline material, of width 2W , driven in simple shear in the x
direction at constant velocities Vx and −Vx at its top and bottom edges respectively. The to-
tal strain rate is Vx/W ≡ Q/t0, where t0 = 10−12s is an arbitrarily chosen microscopic time
scale that is used in order to express rates as meaningful dimensionless quantities. In order
to observe shear localization, spatial variations in the y direction are observed, perpendicular
to the x axis.

The local, elastic plus plastic strain rate is ε̇(y) = dvx/dy, where vx is the material velocity
in the x direction. This motion is driven by a time-dependent, spatially uniform, shear stress
σ. Because the overall shear rate is constant, the time t can be replaced by the accumulated
total shear strain, say ε, so that t0∂/∂t → Q∂/∂ε. Then the dimensionless, y-dependent
plastic strain rate is denoted by q(y, ε) ≡ t0 ε̇

pl(y, ε).

The system of equations of motion for the scaled internal state variables ρ̃, χ̃, and θ̃, which
are functions of ε would be taken from Eqs. (2.51), (2.53), (2.54) with minor modification:

dρ̃

dε
= κ1

σ q

ν(θ̃, ρ̃, Q)2 µT Q

[
1− ρ̃

ρ̃ss(χ̃)

]
, (3.11)

dχ̃

dε
= κ2

σ q

µT Q

(
1− χ̃

χ̃0

)
, (3.12)

∂θ̃

∂ε
= K(θ̃)

σ q

Q
+
K1

Q

∂2θ̃

∂y2
− K2

Q
(θ̃ − θ̃0). (3.13)

The equation of motion for the scale, ordinary temperature θ̃ is the usual thermal diffusion
equation with a source term proportional to the input power. We assume that, of the three
state variables, only θ̃ diffuses in the spatial dimension y. Here, K(θ̃) = β/(TP cp ρd) is a
thermal energy conversion factor, while K1 = k1t0/(cp ρd) characterizes heat conduction in
the axial direction of the tube. cp is the thermal heat capacity per unit mass, ρd is the mass
density, 0 < β < 1 is a dimensionless constant known as the Taylor-Quinney factor, and k1

the thermal conductivity. K2 is a thermal transport coefficient that controls how rapidly the
system relaxes toward the ambient temperature T0, that is, θ̃ → θ̃0 = T0/TP . As discussed
in Le et al. (2017), K(θ̃) may be non-trivially temperature dependent which, in the range of
temperature under consideration, is taken to be

K(θ̃) = c0 + c1 e
−c2/(TP θ̃). (3.14)

We assume that K1 and K2 are constants, independent of the strain rate and temperature.

It remains to write an equation of motion for the stress σ(ε) which, to an excellent approxi-
mation, should be independent of position y for this model of simple shear. Langer (2017a)
derived such an equation under the assumption that the shear modulus µ does not depend on
temperature. However, if the temperature rises by 600 ◦C during ASB formation as reported
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in Marchand and Duffy (1988), then such dependence could be essential. Therefore, We
take Hooke’s law σ = µ(θ̃)[ε(y)− εpl(y)], where µ depends on the ordinary temperature θ̃.
Differentiating this equation with respect to ε,

∂σ

∂ε
= µ(θ̃)[

t0
Q

dvx
dy
− q(y, ε)

Q
] + µ′(θ̃)

∂θ̃

∂ε
[ε(y)− εpl(y)]. (3.15)

Neglecting the second term as small compared with the first and averaging over the width,
we obtain

∂σ

∂ε
=

1

2W

{[
µ(θ̃)

t0
Q
vx

]θ̃(+W )=θ̃0

θ̃(−W )=θ̃0

−
∫ +W

−W
µ′(θ̃)

dθ

dy

t0
Q
vxdy −

∫ +W

−W
µ(θ̃)

q(y, ε)

Q
dy

}
.

(3.16)

When integrating terms on the right-hand side of Eq. (3.16), the term containing the deriva-
tive µ′(θ̃) is neglected as being small compared to the remaining terms. Also, Dirichlet
boundary conditions are assumed: θ̃(±W ) = θ̃0, Eq. (3.16) simplified to:

∂σ

∂ε
= µ(θ̃0)−

∫ +W

−W

µ(θ̃)

2W

q(y, ε)

Q
dy. (3.17)

Note that Eq. (3.17) differs slightly from Eq. (2.55) in Chapter 2, because here the de-
pendence of shear modulus on temperature is taken into account. For the numerical so-
lution of Eqs. (3.13) and (3.17) it is convenient to introduce the dimensionless coordinate
ỹ = y/W . Then, Eqs. (3.13) and (3.17) keep their form if ỹ is substituted for y, while
K1 → K̃1 = k1t0/(cp ρdW

2).

To complete this model of the ASB experiments, one needs to specify an instability-triggering
mechanism analogous to the long, shallow “notch” that Marchand and Duffy inscribed along
their equivalent of our x axis. This is done – somewhat arbitrarily – by choosing a ỹ depen-
dent value of the initial effective temperature:

χ̃(0, ỹ) = χ̃i − δ exp(−ỹ2/2y2
0), (3.18)

where δ and y0 are the depth and width of the perturbation. In using this formula δ, y0 � 1
are usually set to describe a small notch that is about as deep as it is wide. It is emphasized
that neither the notch itself nor its assumed dimensions are necessarily realistic aspects of
this model and that, for present purposes, one does not need them to be so.

3.2.2 Data Analysis

The experimental results of Marchand and Duffy (1988) for steel HY-100, referred to from
here on simply as “steel,” along with our theoretical results based on the preceding equations
of motion, are shown by the stress-strain curves in Figs. 3.13-3.16. In each of these figures,
the points represent the Marchand and Duffy data, and the solid curves are our theoretical re-
sults including the ỹ-dependent initial perturbation defined in Eq. (3.18). The dashed curves
are the partial fits to the small-strain data that used to determine the system parameters as
discussed in the following paragraphs.

In order to compute the theoretical stress-strain curves, values for ten system-specific pa-
rameters, two initial conditions, and the two perturbative parameters introduced in Eq. (3.18)



3.2 Adiabatic shear banding in steel 49

are required. The ten basic parameters are the following: the activation temperature TP , the
stress ratio r, the steady-state scaled effective temperature χ̃0, the two dimensionless con-
version factors κ1 and κ2, the three coefficients c0, c1, and c2 defining the function K(θ̃)
in Eq. (3.14), and the two thermal factors K̃1 and K2. Among them K̃1 can be determined
directly from the known material characteristics of steel and the geometry of the tube. The
thermal diffusivity of steel HY-100 is k1/(cp ρd) = 9× 10−6 m2 s−1 Holmquist (1987), and
W = 1.25 mm; thus the author has found K̃1 = 5.76 × 10−12. Initial values of the scaled
dislocation density ρ̃i(0, ỹ) ≡ ρ̃i(ỹ) and the effective temperature χ̃i(0, ỹ) ≡ χ̃i(ỹ) are re-
quired; all of which are determined by sample preparation – presumably the same for all
samples, but possibly a source of experimental uncertainty. For the ordinary temperature,
it is supposed that θ̃(0, ỹ) = θ̃0. Finally, a formula for the temperature-dependent shear
modulus µ(T ), which is taken from Goto et al. (2000) to be

µ(θ̃) = µ1 −
[

D

exp(T1/TP θ̃)− 1

]
, (3.19)

where µ1 = 7.146× 104 MPa, D = 2910 MPa and T1 = 215 K.
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Figure 3.13: Quasi-static stress-strain curves for steel at the strain rate ε̇ = 10−4/s, for

temperatures -190 ◦C, -73 ◦C, 25 ◦C, 70 ◦C shown from top to bottom. The
experimental points are taken from Marchand and Duffy (1988).

In earlier studies starting with Langer et al. (2010), Langer and his coworkers were able to
begin evaluating the parameters by observing steady-state stresses σss at just a few strain
rates Q and ambient temperatures T0 = TP θ̃0. Knowing σss, T0 and Q for three stress-strain
curves, they could solve Eq. (2.46) for TP , s, and χ̃0, and check for consistency by looking at
other steady-state situations. With that information, it was relatively easy to evaluate κ1 and
κ2 by directly fitting the full stress-strain curves. This strategy does not work here because
the thermal effects are highly nontrivial. Examination of the experimental data shown in the
figures indicates that all of these samples are undergoing thermal softening at high strain
rates and large strains; the stresses are decreasing slowly, and the temperatures must be
increasing. Even the curves that appear to have reached some kind of steady state have not,
in fact, done so at their nominal ambient temperatures.

Another possible strategy is to use the version of Eq. (2.46) that is valid just at the yield
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stress σy, where the deformation is switching abruptly from elastic to plastic:

σy = s µ
√
ρ̃i ν(θ̃0, ρ̃i, Q). (3.20)

Again, one could use measurements of σy to determine TP , s, and ρ̃i. Here, however, the
problem is that, as seen in the Figures at the higher strain rates, these curves exhibit appre-
ciable stress overshoots that make it difficult to evaluate the yield stresses accurately. In fact,
computed curves are presumably consistent with Eq. (3.20), but the author has found it best
not to rely exclusively on data at the yield points.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

100

200

300

400

500

600

700

800

St
re

ss
 σ

 (M
Pa

)

Strain ε
Figure 3.14: Stress-strain curves for steel at the strain rate ε̇ = 1000/s, for temperatures

-190 ◦C, 25 ◦C, 134 ◦C shown from top to bottom. The experimental points are
taken from Marchand and Duffy (1988).

To counter these difficulties, the large-scale least-squares analyses used in Le and Tran
(2017); Le et al. (2017) have been resorted. That is, the sum of the squares of the differ-
ences between theoretical stress-strain curves and a large set of selected experimental points
are computed, and minimized this sum in the space of the unknown parameters. In order
that this procedure is computationally feasible, the author has assumed that the observed
stress-strain curves are independent of the notch-like perturbations during the early stages
of these experiments, i.e. during what Marchand and Duffy call stages I and II in Figure 12
of their paper Marchand and Duffy (1988). Only this early-stage data has been used for the
fitting procedure. In this way, only the four ordinary differential equations considered in Le
et al. (2017) is needed to solve. That is, setting δ = 0 in Eq. (3.18) and neglecting the ỹ
dependence of state variables. The results are shown by the dashed curves in our Figures.

With just one exception, it is found that all twelve of the Marchand and Duffy early-stage
stress-strain curves can be fit with just a single set of system parameters. These are: TP =
5.16× 105 K, s = 0.0178, χ0 = 0.229, κ1 = 7.65, κ2 = 14.3, c1 = 4× 10−7(MPa)−1, c2 =
2×10−7(MPa)−1, c3 = 400 K, ρ̃i = 0.0076, χ̃i = 0.212, and K2 = 1.66×10−14. The single
exception is that, at the lowest temperature reported by Marchand and Duffy, − 190◦C, and
for the higher strain rate reported at that temperature, 103 s−1, a somewhat larger value of the
initial dislocation density is required, ρ̃i = 0.0097 instead of 0.0076 in order to fit the data.
If a equals, say, 10 nm, then initial dislocation densities are all of the order of 1014/m2 (cf.
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Figure 3.15: Stress-strain curves for steel at the strain rate ε̇ = 1000/s , for temperatures

-73 ◦C, 70 ◦C, 250 ◦C shown from top to bottom. The experimental points are
taken from Marchand and Duffy (1988).

Basinski and Basinski (1966)). It seems that this agreement between theory and experiment
is well within the bounds of experimental uncertainty.

Here is one useful check on the internal consistency of this analysis. With ρd = 7748 kg/m3

and cp = 502 J/kg K (see Holmquist (1987)), the function K(θ̃) implies a maximum Taylor-
Quinney factor β ≈ 0.99 that is slightly smaller than unity within the range of temperatures
under consideration.

3.2.3 Adiabatic Shear Banding

Let us turn now to the main topic of this section – the onset and early development of adi-
abatic shear banding instabilities. To study these phenomena theoretically, the ỹ-dependent
notchlike initial perturbation defined in Eq. (3.18) is introduced into the equations of motion.
Now, the dynamical variables ρ̃, χ̃, and θ̃ become functions of ỹ, and the complete system
of integro-differential equations (3.11)-(3.17) subject to initial and boundary conditions are
needed to be solved. To do this, the equations in the interval (−1 < ỹ < 1) are discretized
by dividing it into 2n sub-intervals of equal length ∆ỹ = 1/n. Then the second spatial
derivative of θ̃ in equation (3.13) is approximated by

∂2θ̃

∂ỹ2
(ỹi) =

θ̃i+1 − 2θ̃i + θ̃i−1

(∆ỹ)2
, (3.21)

where θ̃i = θ̃(ỹi). Similarly, the integral over ỹ of any function f(ỹ) is computed by using
the trapezoidal rule∫ 1

−1

f(ỹ) dỹ = ∆ỹ[f−n/2 + f−n+1 + . . .+ fn−1 + fn/2]. (3.22)

In this way, the four integro-differential equations are reduced to a system of 6n+1 ordinary
differential equations. These can be numerically solved using the Matlab-ode15s solver with
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Figure 3.16: Stress-strain curves for steel at the strain rates ε̇ = 3300/s and ε̇ = 1600/s

shown from top to bottom, for room temperature. The experimental points are
taken from Marchand and Duffy (1988).

T (◦C) -190 -73 25 25 25 70 134 250
ε̇ (1/s) 1000 1000 1000 1600 3300 1000 1000 1000
δ 0.08 0.026 0.0271 0.0396 0.0172 0.059 0.0823 -
y0 0.0362 0.026 0.03 0.042 0.0295 0.059 0.0705 -

Table 3.1: The values of δ and y0

n = 1000 and the ε step equal to 0.001. This specific stiff solver can help to improve the
efficiency and reliability by supplying the Jacobian matrix or its sparsity pattern. A Matlab
supplementary code is also included in the Appendix 5 so that it supports this concept more
apparently. Those solutions are shown by the solid lines in Figs. 3.13-3.16 and by the graphs
of strain rate and temperature as functions of ỹ in Figs. 3.17-3.20.

As shown in these figures, the perturbation produced by the notch does not affect the overall
stress-strain relation either for very small, quasistatic strain rates or during the early stages
of the more rapid shear deformations. This is consistent with the assumption when arguing
in favor of parameter-fitting procedure. In the quasistatic cases, any extra heat generated
near the notch diffuses away quickly on the time scale of the inverse shear rate. During the
early stages of the faster deformations, it takes appreciable times (in strain units) before the
nonlinear instabilities near the notch grow enough to destabilize the system as a whole. That
time before onset, or equivalently the strain at which the stress begins to drop abruptly, is
strongly sensitive to the strain rate, the temperature, and the strength of the notch. The values
of δ and y0 that has been chosen to fit the observed onsets are shown in 3.1. It is emphasized
again that the irregularity of these values is almost certainly an experimental artifact. There
is no reason to believe that this notch model is realistic enough or that Marchand and Duffy
could control their initial conditions accurately enough to expect greater precision.

The highly nonlinear onset of banding is seen most clearly in the graphs of the computed
fractional strain rate q(ε, ỹ)/Q shown in Fig. 3.17 for ε̇ = 3300 s−1 at room temperature,
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Figure 3.17: Theoretical fractional strain rate distributions for steel for ε̇ = 3300/s at room
temperature: (i) at strain ε = 0.45 (blue), (ii) at strain ε = 0.47 (green), (iii) at
strain ε = 0.49 (black), (iv) at strain ε = 0.497 (red).
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Figure 3.18: Plastic strain distributions for the strain rate ε̇ = 3300/s and room temperature
at the strains ε = 0.47 (red), ε = 0.49 (blue), and ε = 0.51 (black).
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T ∼= 25 ◦C. The apparent onset strain is ε ∼= 0.50. However, at ε = 0.45, q/Q at ỹ = 0 has
increased by only a factor of about 2, and the width of the perturbation has not increased
appreciably from its initial value of 2 y0

∼= 0.1. By ε = 0.47, q/Q has grown by another
factor of 2 but the width has not changed, nor has q/Q changed from its initial value of
unity outside the emerging band. Finally, by ε = 0.49, the band has begun to sharpen
dramatically. By ε = 0.497, it has collapsed into a narrow region of width approximately
0.01 at ỹ ∼= 0. q/Q has vanished outside the narrow band, and the total strain rate Q is now
concentrated inside the band with the maximum of q/Q achieving 1000 in the middle of the
band (not shown on the Figure). The overall, uniform stress has dropped to the value that is
needed to drive the highly concentrated plastic flow at a high temperature.

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0

100

200

300

400

500

600

700

y

T (°C)

~

Figure 3.19: Temperature distributions for the strain rate ε̇ = 3300/s and room temperature
at the strains ε = 0.46 (blue), ε = 0.48 (green), and ε = 0.505 (red). The black
curve is the empirical law proposed by Marchand and Duffy (1988).

By integrating q(ε, ỹ)/Q over ε, the distribution of the plastic strain shown in Fig. 3.18 is
obtained for ε̇ = 3300 s−1 at room temperature. At ε = 0.47 the plastic strain is nearly
uniform. However, at ε = 0.49 near the onset of ASB the maximum of plastic strain has
grown by factor 2. After the formation of ASB, at ε = 0.51 the localization of plastic strain
is clearly seen, with the maximum of plastic strain slightly larger than 19. Keeping in mind
that the elastic strain remains small, this magnitude agrees with that reported in Marchand
and Duffy (1988).

Several graphs of temperature T = TP θ̃(ε, ỹ) − 273 K (in Celsius) for ε̇ = 3300 s−1 at
the ambient room temperature, T ∼= 25 ◦C, are shown in Fig. 3.19, and a graph of the
temperature at the center of the band as a function of ε is shown in Fig. 3.20. By ε ∼=
0.505 which is the onset of ASB, the latter temperature has reached about 600 ◦C, which is
consistent with the value reported by Marchand and Duffy as shown in their Fig. 20. This
consistency is significant. It is based on independently determined thermal parameters; thus
it is a sensitive test of the strong nonlinearity of the theory. We also show in Fig. 3.19 the
empirical law proposed by Marchand and Duffy, T = a e−7.875|ỹ| (a = 543 ◦C), that is based
on several measurements of temperature at somewhat different strain rates. This empirical
distribution of temperature is wider than our simulated distribution, possibly because it was
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Figure 3.20: Temperature at the center of the shear band (ỹ = 0) for the strain rate ε̇ =
3300/s and room temperature as the function of the strain.

measured at a significantly larger strain where more heat had been generated in the band and
had diffused into the neighboring material.

The experimental stress drops following the onset of banding are generally much deeper
than predicted by our theory. This seems reasonable because there must be other physical
mechanisms that come into play in this regime. There is probably a transition between shear
banding and fracture, during which the resistive mechanism switches from high-temperature
plasticity to friction between the faces of two separate materials in contact with each other.

3.2.4 Discussions

The main conclusion of this section is that the statistical thermodynamic dislocation theory
provides an accurate picture of adiabatic shear banding as observed by Marchand and Duffy
(1988). The theory’s description of the coupling between stress, temperature, and strain rate
accounts quantitatively for the strong thermal instabilities leading to abrupt stress drops seen
in those experiments.

More generally, two different kinds of issues are addressed here, one pertaining to first-
principles theoretical physics and the other to applied materials research. On the one hand,
the validity of the thermodynamic dislocation theory is being tested. On the other, the author
is trying to find ways in which these new insights can be used to predict the performance of
materials in engineering applications.

Because this theoretical starting point is unconventional, the author has made special efforts
to construct and test it as rigorously as possible. Stringent requirements have been imposed
on the equations of motion and on the choice of the parameters that appear in them. The
equations themselves are statements of well known physical principles – conservation of
energy and flow of entropy in accord with the second law of thermodynamics –, and they are
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expressed in terms of properly defined internal state variables – the dislocation density and
the two thermodynamically defined temperatures. No phenomenological fitting functions
are postulated. Each of the parameters that occur in the equations can, in principle, be
determined either by independent measurement or first-principles computation.

A strong additional postulate is designed to test the validity of this theory. Specifically, an
assumption has been proposed that almost all of the fundamental parameters remain constant
across the wide range of strain rates and temperatures that are explored. This postulate
includes conversion factors like κ1 and κ2, which are variables in some circumstances, and
it also includes initial conditions that are subject to uncertainties of sample preparation.
Nevertheless, this postulate works remarkably well. The twelve stress-strain curves shown
in Figs. 3.13-3.16 are all in reasonable agreement with experiment. The main exception is
the top curve in Fig. 3.14 where there is slightly adjusted the initial value of the dislocation
density ρ̃i as discussed at the end of Subsection 3.2.2. A similar adjustment of one of the
ρ̃i’s in Fig. 3.16 might have improved the agreement with the experiment for the two curves
shown there. The important point, however, is that these minor disagreements are much
more likely to have been caused by experimental inaccuracies than by systematic errors in
the theory.

Similarly, the stress overshoots at the initial yield points that appear in all the high-strain-rate
experimental Marchand and Duffy curves in Figs. 3.14-3.16 are almost certainly instrumen-
tal effects having to do with the sudden onset of shear stress. As shown in Fig. 7 of Langer
(2017b), the author can reproduce those overshoots simply by reducing the initial values of
the scaled effective temperature χ̃i slightly. However, doing so would require readjusting
the χ̃i’s for the quasistationary cases where no overshoots occur. Thus, like the failure dur-
ing late-stage ASB, the initial stress overshoots are caused by physical mechanisms outside
the range of this theory.

By far the most important outstanding questions are those pertaining to physical interpreta-
tions of this theory and, thus, to connections between the theory and its applications. The
skeptical reader will have noticed that terms such as “cross slip,” “stacking fault,” “dislo-
cation pile-up,” or even “crystal symmetry” or “glide plane” do not appear in this chapter.
It is argued that physical concepts like these belong in first-principles calculations of dy-
namic quantities such as κ1, κ2 or the parameter r that determines the relationship between
stress and plastic strain rate. The standard practice in conventional literature has been to
try to go directly from observed microscopic behaviors of small groups of dislocations to
phenomenological models of strain hardening or fracture toughness. That strategy, however,
has not succeeded in producing usefully predictive theories. The present line of investigation
seems to be more promising.

3.3 Torsion of bars in copper

3.3.1 Equations of motion

Suppose a single crystal bar with a circular cross-section, of radius R and length L, is
subjected to torsion (see the bar with its cross-section in Fig. 3.21). For this particular
geometry of the bar and under the condition R� L it is natural to assume that the warping
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Figure 3.21: Torsion of a single crystal bar.

of the bar vanishes, while the circumferential displacement is uϕ = ωrz, with ω being the
twist angle per unit length. Thus, the total shear strain of the bar γ = 2εϕz = ωr and the
shear strain rate γ̇ = ω̇r turn out to be non-uniform as they are linear functions of radius r.
The equation of motion for the shear stress which is Hooke’s law in rate form

τ̇ = µ(γ̇ − q(γ)/t0), (3.23)

with µ being the shear modulus. Note that q(γ)/t0 equals the plastic shear rate and t0 is a
characteristic microscopic time scale. Now, let this system be driven at a constant twist rate
ω̇ ≡ $0/t0. We can replace the time t by the total twist angle (per unit length) ω so that
t0 ∂/∂t→ $0 ∂/∂ω:

$0

t0

∂τ

∂ω
= µ

(
r
$0

t0
− q(γ)

t0

)
. (3.24)

After simplification, the Hooke’s law in rate form becomes

∂τ

∂ω
= µ

[
r − q(γ)

$0

]
. (3.25)

The system of equations of motion for the scaled internal state variables ρ̃, χ̃, which are
functions of r and ω would be taken from Eqs. (2.51), (2.53) with minor modification:

∂ρ̃

∂ω
= κ1

τ q

ν̃(θ, ρ̃, $0r)2µT $0

[
1− ρ̃

ρ̃ss(χ̃)

]
, (3.26)

∂χ̃

∂ω
= κ2

τ q

µT$0

(
1− χ̃

χ̃0

)
, (3.27)

For the purpose of numerical integration, let us introduce the following variables:

r̃ = r/R, τ̃ = τ/µ, φ = Rω/η, η =
πR

180◦L
, $̃0 = (a/b)R$0,

where the scaled shear stress is τ̃ = τ/µ, the scaled radius r̃ changes from zero to 1. The
variable φ has the meaning of the total twist angle measured in degree (in Horstemeyer et
al. (2002) φ changes from zero to φ∗ = 73.35◦). The calculation of the torque as a function
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of φ is convenient for the later comparison with the torque-twist curve from Horstemeyer et
al. (2002). Then, the system of equation Eqs. (3.25), (3.26), (3.27) becomes

∂τ̃

∂φ
= η

[
r̃ − q(τ̃ , ρ̃)

$̃0

]
, (3.28)

∂ρ̃

∂φ
= ηκ1

τ̃ q

ν̃(θ, ρ̃, $̃0r)2$0

[
1− ρ̃

ρ̃ss(χ̃)

]
, (3.29)

∂χ̃

∂φ
= ηκ2

τ̃ q

$̃0

(
1− χ̃

χ̃0

)
. (3.30)

To solve this system of differential equations subject to initial conditions numerically, we
discretize the equations in the interval (0 < r̃ < 1) by dividing it into n sub-intervals of
equal length ∆r̃ = 1/n and writing the corresponding equations at n nodes r̃i = i∆r̃,
i = 1, . . . , n. In this way, we reduce the three differential equations depending on r̃ to
a system of 3n ordinary differential equations at n nodes that will be solved by Matlab-
ode15s.

After finding the solution, we can compute the torque as a function of the twist angle ac-
cording to

T = 2πµR3

∫ 1

0

τ̃ r̃2dr̃. (3.31)

3.3.2 Parameter identification and numerical simulations

In order to simulate the theoretical torque-twist curves, we need values for five system-
specific parameters and two initial conditions from each sample. The five basic parameters
are the following: the activation temperature TP , the stress ratio s, the steady-state scaled
effective temperature χ̃0, and the two dimensionless conversion factors κ1 and κ2. We also
need initial values of the scaled dislocation density ρ̃i and the effective disorder temperature
χ̃i; all of which are determined by the sample preparation. The other parameters required
for numerical simulations but known from the experiment are: the ambient temperature
T = 298K, the shear modulus µ = 48GPa, the length L = 17.6mm and radius R =
6.35mm of the bar, the length of Burgers’ vector b = 2.55Å, the twist rate φ̇ = 0.25◦/s,
and consequently, $̃0 = 1.57427× 10−15/s. Since a corresponds to the smallest admissible
distance between dislocations in the state of maximum disorder in crystal, we take a = 10b.
Note that a only affects the dislocation density, not the torque-twist curves.

In earlier studies dealing with the uniform deformations (Langer, 2015, 2016, 2017a; Langer
et al., 2010), it was possible to begin evaluating the parameters by observing steady-state
stresses σss at just a few strain rates Q and ambient temperatures T0 = TP θ̃0. Knowing σss,
T0 and Q for three stress-strain curves, one could solve equation

σ = σT (ρ̃) ν(θ̃, ρ̃, Q), (3.32)

which is the inverse of Eq. (2.44) for TP , s, and χ̃0, and check for consistency by looking
at other steady-state situations. With that information, it was relatively easy to evaluate
κ1 and κ2 by directly fitting the full stress-strain curves. This strategy does not work here
because the stress state of twisted bars is non-uniform. We may still have local steady-state
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Figure 3.22: The torque-twist curves at the twist rate φ̇ = 0.25◦/s and for room tempera-
ture: (i) sample 1: TDT-theory: black curve, experiment Horstemeyer et al.
(2002): black circles (ii) sample 2: TDT-theory: red/dark gray curve, experi-
ment Horstemeyer et al. (2002): red/dark gray circles.

stresses as a function of the radius r, but it is impossible to extract this information from the
experimental torque-twist curve. Furthermore, the similar parameters for copper found in
(Langer, 2015, 2016, 2017a; Langer et al., 2010) cannot be used here, since we are dealing
with torsional deformations having the energy barrier TP and other characteristics different
from those identified in the above references.

To counter these difficulties, we have resorted to the large-scale least-squares analyses that
we have used in (Le and Tran (2017); Le et al. (2017)). That is, we have solved the system of
ordinary differential equations (ODEs) numerically, provided a set of material parameters
is known. Based on this numerical solutions we then computed the sum of the squares
of the differences between our theoretical torque-twist curves and a large set of selected
experimental points, and minimized this sum in the space of the parameters. The ODEs were
solved numerically using the Matlab-ode15s, while the finding of least squares was realized
with the Matlab-globalsearch. To keep the calculation time manageable and simultaneously
ensure the accuracy, we have chosen n = 1000 and the φ-step equal to φ∗/7335. We have
found that the torque-twist curves for both samples taken from Horstemeyer et al. (2002)
can be fit with just a single set of system parameters. These are: TP = 26976 K, s =
0.0152, χ0 = 0.2496, κ1 = 50.3, κ2 = 377. The initial parameters for sample 1 are:
ρ̃i1 = 6.04×10−5, χ̃i1 = 0.187, while for sample 2 we have: ρ̃i2 = 6×10−5, and χ̃i2 = 0.2.
The precision of the fit could be measured by the minimum of the sum of squares which is
equal to fmin = 48.442 N2m2 in this case. Note that fmin depends also on the number of
points selected from the experimental torque-twist curves. The mean square of the deviation
(or the square of the error per point) can be characterized by fmin/N , where N is the total
number of points. We took 48 points from each curve of Horstemeyer et al. (2002), so the
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Figure 3.23: Stress distribution τ(r) at the twist rate φ̇ = 0.25◦/s and for room temperature:
(i) φ = 10◦ (black), (ii) φ = 30◦ (red/dark gray), (iii) φ = 50◦ (yellow/light
gray).

mean square of the deviation is approximately 0.5 N2m2. Numerous numerical results of
the least squares analysis with the disturbed torque-twist curves (not shown in the paper)
confirm that our method for parameter identification is robust against small experimental
uncertainties. For comparison we show the values of basic parameters for copper identified
for uniform compression tests in Langer et al. (2010): TP = 40800 K, s = 0.032, χ0 =
0.25, κ1 = 96.875, κ2 = 350. As already mentioned, the dislocations in those tests, in
contrast to the predominantly screw dislocations in our torsion tests, are of edge character,
so that the differences between the basic parameters are not surprising.

With the identified parameters we can now simulate the torque-twist curves for the single
crystal copper bars. The result is presented in Fig. 3.22. In this figure, the circles represent
the selected experimental points in Horstemeyer et al. (2002) while the solid curves are our
theoretical simulation. One can see that even the initial yielding transition appears to be
described accurately by this theory. There is only two visible discrepancies: for sample
1 and for φ ∈ (0◦, 25◦) the torques are slightly above those predicted by the theory, and
for large twist angles (φ > 70◦) they are slightly below those predicted by the theory. For
sample 2 the torques are slightly above those predicted by the theory for φ ∈ (60◦, 70◦).
Nothing about this result leads us to believe that there are relevant physical ingredients
missing in the theory.

The results of numerical simulations for other quantities using the above set of parameters
and the initial values of sample 1 are shown in Figs. 3.23-3.26. We plot in Fig. 3.23 the shear
stress distribution τ at three different twist angles φ = 10◦ (black), φ = 30◦ (red/dark gray),
and φ = 50◦ (yellow/light gray). In a small elastic zone near the center of the cross-section,
the stress depends linearly on r. In the plastic zone, the stress does not remain constant but
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Figure 3.24: Total density of dislocations ρ(r) at the twist rate φ̇ = 0.25◦/s and for room
temperature: (i) φ = 10◦ (black), (ii) φ = 30◦ (red/dark gray), (iii) φ = 50◦

(yellow/light gray).

increases with increasing r and reaches a maximum at r = R, as opposed to the similar
distribution obtained by the phenomenological theory of ideal plasticity. This exhibits the
isotropic hardening behavior due to the entanglement of dislocations. Fig. 3.24 presents the
density of dislocations at the above three different twist angles. The density of dislocations
is an increasing function of r and achieves the highest value at r = R.

Another interesting question is how strongly the twist rate and ambient temperature affect
the torque-twist curve. Fig. 3.25 shows the three torque-twist curves for three samples
loaded at the room temperature and at three different twist φ̇ = 0.25◦/s (black), φ̇ = 2.5◦/s
(red/dark gray), and φ̇ = 25◦/s (yellow/light gray). The radius of the samples is R =
6.35mm, while all other parameters remain unchanged. We see that the twist rate affects
the strain hardening: the higher the twist rate, the higher the slope of the torque-twist curve.
Fig. 3.26 shows the three torque-twist curves for three samples loaded at the same twist rate
φ̇ = 0.25◦/s but at three different ambient temperatures: T = 25◦C (black), T = 250◦C
(red/dark gray), and T = 500◦C (yellow/light gray). Thus, the higher the temperature, the
lower the slope of the torque-twist curve and the smaller the hardening. As far as the size
effect is concerned, we could not find reliable experimental data for single crystal copper
under torsion at different bar radii, in contrast to twisted polycrystalline copper wires of
different radii (cf.Liu, Zhang, Li, and Dunstan (2018)).
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Figure 3.25: The torque-twist curves for the bars twisted at different twist rates and for room
temperature: (i) φ̇ = 0.25◦/s (black), (ii) φ̇ = 2.5◦/s (red/dark gray), (iii)
φ̇ = 25◦/s (yellow/light gray).
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Figure 3.26: (Color online) The torque-twist curves for the bars twisted at the same twist
rate φ̇ = 0.25◦/s and for three different ambient temperatures: (i) T = 25◦C
(black), (ii) T = 250◦C (red/dark gray), (iii) T = 500◦C (yellow/light gray).
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4 Micro-indentation and anti-plane shear

In this chapter, the author introduces finite element simulations of the displacement con-
trolled wedge indentation for single crystals within a simplified TDT (former name is Con-
tinuum Dislocation Theory) material model incorporating the density of excess dislocations.
Under the assumption of plane strain deformation of the crystal having only one active slip
system on each side of the wedge the load-displacement curve, as well as the excess dislo-
cation density, are computed for the loading and unloading path in terms of the indentation
depth. The results of numerical simulations are compared with those obtained from the
experiments which show qualitative agreement.

Furthermore, the thermodynamic dislocation theory (TDT) developed for non-uniform plas-
tic deformations is used here to simulate the stress-strain curves for crystals subjected to
anti-plane shear-controlled load reversal. It is shown that the presence of the positive back
stress during the load reversal reduces the magnitude of shear stress required to pull excess
dislocations back to the center of the specimen. There, the excess dislocations of opposite
signs meet and annihilate each other leading to the Bauschinger effect.

4.1 Dislocation structure during micro-indentation

4.1.1 Plane strain wedge indentation

x

y

F

s
m

ϕ

Figure 4.1: Wedge indentation.

Consider a single crystal subjected to indentation by a rigid cylindrical wedge (see Fig. 4.1).
The depth of the crystal in the z-direction (which is equal to the length of the rigid indenter)
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is taken large enough to guarantee the plane strain state has two components of displace-
ment ux = u(x, y) and uy = v(x, y). Besides, the sizes of the crystal’s cross-section are
much larger than those of the indenter so that the influence of the outer boundary can be ne-
glected. If the crystal is oriented in such a way that its lattice and mechanical properties are
symmetric with respect to the reflection about the y-axis, then it is sufficient to consider the
left-half of the crystal, provided the indenter is also symmetric with respect to the y-axis.
We assume that, during the plastic deformation of the crystal, only one slip system from
each side of the wedge is active. Letting s = (cosϕ, sinϕ) denote the slip direction, and
m = (− sinϕ, cosϕ) the normal vector to the slip plane, the plastic distortion tensor may be
expressed in the form β = β(x, y)s⊗m. Regarding the vertical displacement of the inden-
ter−h as the control parameter in our problem, we are going to determine the displacements
u(x, y), v(x, y), and the plastic slip β(x, y) in terms of the indentation depth h. For the plane
strain state the in-plane components of the symmetric strain tensor ε = 1

2
(∇u + u∇) are

εxx = u,x, εxy =
1

2
(u,y + v,x), εyy = v,y.

Throughout this section, the comma standing before an index is used to denote the partial
derivative with respect to the corresponding coordinate. The in-plane components of the
symmetric plastic strain tensor εp = 1

2
(β + βT ) equal

εpxx = −1

2
β sin 2ϕ, εpxy =

1

2
β cos 2ϕ, εpyy =

1

2
β sin 2ϕ.

With these total and plastic strain tensors, we obtain the in-plane components of the sym-
metric elastic strain tensor εe = ε− εp in the form

εexx = u,x +
1

2
β sin 2ϕ, εexy =

1

2
(u,y + v,x − β cos 2ϕ), εeyy = v,y −

1

2
β sin 2ϕ. (4.1)

Let us compute Nye-Bilby-Kröner’s dislocation density tensor α = −β × ∇, with × be-
ing the vector product (Bilby (1955); Kröner (1955); Nye (1953)). For plane strain plastic
distortion there are two non-zero components of this tensor given by

αxz = (β,x cosϕ+ β,y sinϕ) cosϕ, αyz = (β,x cosϕ+ β,y sinϕ) sinϕ.

These are the component of the net Burgers’ vector of all excess dislocations whose dislo-
cation lines cut the area perpendicular to the z-axis. Thus, the net Burgers’ vector of excess
dislocations shows in the slip direction s and the scalar dislocation density equals

ρ =
1

b

√
α2
xz + α2

yz =
1

b
|β,x cosϕ+ β,y sinϕ| = 1

b
∇β · s. (4.2)

Since the lattice rotation can directly be measured by the Electron Back Scatter Diffraction
(EBSD) technique, it is interesting to express it in terms of the displacement gradient and
plastic slip. Using the additive decomposition for the displacement gradients u∇ = ε+ ω,
we find the components of the total rotation tensor in the form

ωij =
1

2
(ui,j − uj,i).

This tensor is obviously skew-symmetric. The plastic rotation tensor is the skew-symmetric
part of the plastic distortion

ωpij =
1

2
(βij − βji) =

1

2
β(simj − sjmi).
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The elastic (lattice) rotation tensor is the difference between these two tensors

ωeij = ωij − ωpij =
1

2
(ui,j − uj,i)−

1

2
β(simj − sjmi).

Since all these rotation tensors are skew-symmetric, they can be associated with the axial
vectors called rotation vectors. In our two-dimensional case only the z-components of these
vectors are non-zero, so, from the above formulas the lattice rotation is obtained in the form

wez = −ωexy = ωeyx =
1

2
(v,x − u, y) +

1

2
β. (4.3)

For most metals, the elastic strain tensor εe is usually small. Therefore the free energy
density per unit volume of the crystal with continuously distributed dislocations can be
proposed in the form (Berdichevsky (2006a, 2006b))

ψ(εe, ρ) =
1

2
λ(trεe)2 + µεe:εe + µk ln

1

1− ρ
ρs

, (4.4)

with λ and µ being the Lamé constants, ρs the saturated dislocation density, and k the ma-
terial constant. The first two terms in Eq. (4.4) represents the contribution to the energy
coming from the elastic strain, while the last term corresponds to the energy of the disloca-
tion network. The logarithmic energy term stems from two facts: i) energy of the dislocation
network for small dislocation densities is the sum of energy of non-interacting dislocations
(see the reasonings based on the statistical mechanics of dislocations in (Le (2010); Le and
Berdichevsky (2001)), and ii) there exists a saturated dislocation density which characterizes
the closest packing of dislocations admissible in the discrete crystal lattice. The logarithmic
term (Berdichevsky (2006b)) ensures a linear increase of the energy for small dislocation
density ρ and tends to infinity as ρ approaches the saturated dislocation density ρs hence
providing an energetic barrier against over-saturation. This energy density form is schemat-
ically depicted in Fig. 4.2.
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Figure 4.2: Energy density of dislocation network.

With Eq. (4.1, 4.2, and 4.4), the bulk energy density per unit volume of the crystal with
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continuously distributed dislocations in our plane strain case reads

ψ(εe, ρ) =
1

2
λ(u,x + v,y)

2 + µ(u,x +
1

2
β sin 2ϕ)2 + µ(v,y −

1

2
β sin 2ϕ)2

+
1

2
µ(u,y + v,x − β cos 2ϕ)2 + µk ln

1

1− ρ
ρs

, (4.5)

and the total energy functional per unit depth becomes

I[u, v, β] =

∫
Ω

[
1

2
λ(u,x + v,y)

2 + µ(u,x +
1

2
β sin 2ϕ)2 + µ(v,y −

1

2
β sin 2ϕ)2

+
1

2
µ(u,y + v,x − β cos 2ϕ)2 + µk ln

1

1− ρ
ρs

]
dxdy, (4.6)

where Ω = (−L, 0) × (−H, 0) is the domain occupied by the left-half of the undeformed
crystal.

Since the material points of the crystal cannot penetrate the rigid indenter, its deformed
upper boundary must lie below the lower boundary of the indenter. Let the lower boundary
of the indenter be described by the set of points (x,w0(x)) in the (x, y)-coordinate system,
where w0(x) is a smooth function. We shall assume that the material points of the crystal,
once in contact, stick to the contact area of the indenter and no sliding occurs. Since the
displacements in the contact zone are smooth, dislocations cannot reach this part of the
boundary, so the plastic slip must vanish there. Because the remaining part of the upper
boundary is free, no kinematic constraints apply to u, v and β so that they can be varied
arbitrarily. Along the y-axis which is the anti-symmetry axis the displacement u mush
vanish. Because of this, the plastic slip must vanish too. On the left (and at the lower)
boundary which are far away from the indenter, we may pose the boundary conditions of
vanishing horizontal (respectively vertical) displacement and plastic slip. In this contact
problem, it is convenient to present the above-formulated constraints in the incremental
form. Consider the time-discretization 0 = t0 < t1 < . . . < tn = T and assume that
the solution (uj−1, vj−1, βj−1) as well as the length lj−1 of the contact zone are known at the
time instant tj−1 corresponding to the indentation depth hj−1 (in this rate-independent quasi-
static loading process the time instants and the time increment represent the indentation
depths and the indentation depth increment). We want to find the solution (uj, vj, βj) and lj
at tj at which the indentation depth is hj . Due to the non-sliding boundary condition on the
contact area we set

uj(x, 0) = uj−1(x, 0), vj(x, 0) = w0(x)− hj, βj(x, 0) = 0 (4.7)

for x ∈ (−lj, 0), and w0(x) = − cot α
2
x with α being the angle of the indenter. It is seen

from Eq. (4.7)2 that the vertical displacement of the material points underneath the indenter
is equal to the given vertical displacement of the indenter. For the remaining part of the
upper boundary x ∈ (−L,−lj) no kinematic constraints apply to uj, vj, βj . Along the y-
axis, due to the mirror symmetry, the boundary conditions are posed

uj(x, y) = 0, vj(x, y) = 0, β(x, y) = 0 for y ∈ (−H, 0), (4.8)

but vj(0, y) may be varied arbitrarily. Finally, on the left and the lower boundaries which
are far away from the indenter we may pose the boundary conditions

uj(−L, y) = 0, βj(−L, y) = 0, vj(x,−H) = 0, βj(x,−H) = 0. (4.9)
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Figure 4.3: Boundary conditions for symmetric left-half.

The crystal is loaded so slowly that the inertia can be neglected and at each small indentation
depth increment the final equilibrium state can be established (quasi-static loading process).
Fig. 4.3 schematically shows a visualization of boundary conditions mentioned above.
By the final state of indentation we mean the equilibrium state which is established at fixed
loading condition after dislocation nucleation and after the movement of dislocations toward
their equilibrium positions is finished. If the dissipation caused by the dislocation motion is
negligible, then the true displacements uj(x, y), vj(x, y) and plastic slip βj(x, y) in the final
state of indentation minimize energy functional Eq. (4.6) among all admissible displace-
ments and plastic slips satisfying the boundary conditions (4.7)-(4.9).
In case the dissipation due to the dislocation motion cannot be neglected, the energy mini-
mization should be replaced by the variational equation (Sedov (1968))

δI +

∫
Ω

∂D

∂β̇
δβ dxdy = 0. (4.10)

The last term in this equation describes the energy dissipation due to the dislocation motion,
where the dissipation function D(β̇) is assumed to depend only on the rate of the plastic
distortion. The simplest rate-independent theory is considered for which

D(β̇) = K|β̇|,

with K the critical resolved shear stress.

4.1.2 Finite element formulation at Zero Dissipation

Let us now discretize the above two-dimensional variational problems by the finite element
method. For this purpose, it is convenient to reformulate them using Voigt’s notation. We
let w denote function of the generalized displacement vector

w = (u, v, β)T .

Furthermore, we introduce the total strain vector

ε = (u,x, v,y, u,y + v,x)
T ,
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and the plastic strain vector

εp = (−1

2
β sin 2ϕ,

1

2
β sin 2ϕ, β cos 2ϕ)T ,

such that the elastic strain vector is εe = ε − εp. Inserting the elastic strain vector εe, the
free energy density (4.5) in Voigt’s notation is now presented as

ψ(εe, ρ) =
1

2
(εe)T Eεe + ψm(ρ) (4.11)

with the plane strain elasticity matrix

E =

λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ

 .

In order to express the free energy density (4.11) in terms of the displacement function w,
the matrix differential operator

Dε =

∂x 0 1
2

sin 2ϕ

0 ∂y −1
2

sin 2ϕ

∂y ∂x − cos 2ϕ


is introduced such that εe = Dεw. By an additional differential operator

Dρ = (0, 0, cosϕ∂x + sinϕ∂y)

the scalar dislocation density (4.2) is expressed in terms of w as

ρ =
1

b
|β,x cosϕ+ β,y sinϕ| = 1

b
|Dρw|.

Thus, the energy density of dislocation network can be defined as function

ψ̃m(Dρw) = µ k ln
1

1− 1
ρs b
|Dρw|

.

such that (4.11) finally becomes

ψ(w) =
1

2
(Dεw)T E Dεw + ψ̃m(Dρw).

Now we can rewrite the functional (4.6) in terms of the generalized displacement as

I[wj] =

∫
Ω

[
1

2
(Dεwj)

TE(Dεwj) + ψ̃m(Dρwj)

]
dxdy (4.12)

The necessary condition for (4.12) to achieve a (local) minimum is that the variation

δI[w, δw] =

∫
Ω

[
(Dεw)TE(Dεδw) + ψ̃′m(Dρw)Dρδw

]
dxdy (4.13)

vanishes for all admissible test functions δw = (δu, δv, δβ)T . Furthermore, we need the
linearization

DδI[w, δw,∆w] =∫
Ω

[
(Dε∆w)TE(Dεδw) + ψ̃′′m(Dρwj) Dρ∆w Dρδw

]
dxdy (4.14)

of (4.13) in direction ∆w = (∆u,∆v,∆β)T in order to set up the tangential stiffness matrix
in the Newton-Raphson solution procedure (see, e.g., (Holzapfel, 2000)).
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Figure 4.4: Discretization of the domain Ω into bilinear isoparametric elements Ωe, e =
1, . . . , ne. Each element Ωe is obtained by the mapping (4.15) from the square
Ω̂ = (−1, 1)× (−1, 1) in the (ξ, η)-plane, with counterclockwise node number-
ing.

Figure 4.5: Example of bilinear shape functions in reference space Ω̂.

Finite element discretization Let Ω be now subdivided into a finite number ne of bilinear
isoparametric quadrilateral elements Ωe (e = 1, . . . , ne) as shown schematically in Fig. 4.4.
Each element Ωe can be obtained from a square Ω̂ = (−1, 1) × (−1, 1) in the (ξ, η)-plane
by the mapping

x = Φe(ξ, η) =
4∑
i=1

Ni(ξ, η) xei , (4.15)

where xei = (xei , y
e
i )
T are coordinates of node i and Ni(ξ, η) the shape functions.

N1(ξ, η) =
1

4
(1− ξ)(1− η), N2(ξ, η) =

1

4
(1 + ξ)(1− η),

N3(ξ, η) =
1

4
(1 + ξ)(1 + η), N4(ξ, η) =

1

4
(1− ξ)(1 + η).

Following the iso-parametric concept, we use the same shape functions in order to approx-
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imate the displacements u, v, and the plastic slip β on each element e as

we
h = (ueh, v

e
h, β

e
h)
T =

12∑
i=1

Niû
e
i = Nûe, (4.16)

with the vector valued shape functions

Ni(ξ, η) = Nj(ξ, η)ek, i = 3(j − 1) + k, j = 1, . . . , 4, k = 1, . . . , 3

forming the columns of the shape function matrix N and the coefficient vector

ûe = (ûe1, v̂
e
1, β̂

e
1, û

e
2, v̂

e
2, β̂

e
2, û

e
3, v̂

e
3, β̂

e
3, û

e
4, v̂

e
4, β̂

e
4)T .

Eqs. (4.15) and (4.16) in conjunction with the nodal shape functions ensure that (x, y) =
(xei , y

e
i ) and we

h = (ûei , v̂
e
i , β̂

e
i ) at each node since the shape function Ni equals 1 at node i

and zero at all other nodes (see Fig. 4.5). Thus, the displacements and the plastic slip are
equal to their respective nodal values as required.

The current configuration of a bilinear element is isoparametrically mapped from the phys-
ical space onto the square element; there is a discrepancy between the actual position of
points of the element in the physical space and of those in the mapped square element. Due
to this mapping in (4.15), the spatial derivatives of displacements and plastic slip with re-
spect to x, y have to be transformed to the derivatives with respect to ξ, η using the Jacobian
matrix

Je =

(
x,ξ x,η
y,ξ y,η

)
=

1

4

(
xe1 xe2 xe3 xe4
ye1 ye2 ye3 ye4

)
−(1− η) −(1− ξ)
(1− η) −(1 + ξ)
(1 + η) (1 + ξ)
−(1 + η) (1− ξ)

 .

We denote the determinant of the Jacobian matrix by Je and define the spatial derivatives

∇xNi =

(
Ni,x

Ni,y

)
= (Je)−T

(
Ni,ξ

Ni,η

)

in terms of the local coordinates ξ, η.

In order to obtain the vector of internal forces, which is the basis for the Newton-Raphson
solution procedure, we insert the discretized virtual displacements δwe

h = Nδûe in the
variation of the energy functional (4.13) and integrate element-wise to obtain

δI(ûe, δûe) =
ne∑
e=1

(δûe)T
∫

Ω̂e

[
BTEBûe + ψ̃′m(Qûe)QT

]
Jedξdη

=
ne∑
e=1

(δûe)T f eint(û
e),
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where f eint(û
e) is the internal force vector of element e and

B = DεN

=

N1,x 0 s2/2N1 N2,x 0 s2/2N2

0 N1,y −s2/2N1 0 N2,y −s2/2N2

N1,y N1,x −c2N1 N2,y N2,x −c2N2

N3,x 0 s2/2N3 N4,x 0 s2/2N4

0 N3,y −s2/2N3 0 N4,y −s2/2N4

N3,y N3,x −c2N3 N4,y N4,x −c2N4

 ,

Q = DρN

=
(
0, 0, cN1,x + sN1,y, 0, 0, cN2,x + sN2,y,

0, 0, cN3,x + sN3,y, 0, 0, cN4,x + sN4,y

)
.

Note that we used the shorthand forms s = sinϕ, c = cosϕ, s2 = sin 2ϕ and c2 = cos 2ϕ.
Finally, we plug the discretized displacement increment ∆we

h = N∆ûe into the linearized
variation of the internal energy (4.14) and find

DδI(ue, δue,∆ue) =
ne∑
e=1

(δûe)T
∫

Ω̂e

[
BTEB + ψ̃′′m(Qûe)QTQ

]
Jedξdη ∆ûe

= (δûe)TKe
int(û

e)∆ûe,

with the element tangent stiffness matrix Ke
int(û

e).

Contact formulation The boundary conditions (4.7) stemming from the rigid indenter are
incorporated into the numerical model by a node-to-rigid-surface contact formulation. The
domain of the indenter is implicitly represented by the set of points

{(x, y) ∈ R2 | g(x, y) < 0}

where g is a function R2 → R. For example, in the case of rounding wedge-shaped indenter,
we take

g(x, y) =

{
−
(
x cos α

2
+ (y + h− r) sin α

2

) 1
2m − r 1

2m if s ≥ 0

(x2 + (y + h− r)2)
1

4m − r 1
2m if s < 0

with parameter m being chosen incrementally from 1, 2, 3, ..., and selection criterion s =
−x sin α

2
+ (y + h− r) cos α

2
. Parameter m is introduced to make the finite element code

robust with respect to the change of geometry of the indenter. Note that function g(x, y) also
depends on the indentation depth h. Correspondingly, we replace the boundary condition
(4.7)2 by the requirement that g(xn + un, yn + vn) ≥ 0 which has the advantage that we
do not have to compute the a priori unknown length of the contact zone. Following the
classical approach from contact mechanics (Wriggers & Zavarise, 2004), we introduce nodal
Lagrange multipliers λnx, λ

n
n, λ

n
β for the x-direction, the normal-direction, and β respectively.

All nodal unknowns are collected in a vector wn = (unj , v
n
j , β

n
j , λ

n
x, λ

n
n, λ

n
β)T . Then, at time

instant tj , the contribution of node n to the contact energy Ic becomes

Inc (wn
j ) = λnx,j · (unj − unj−1) + λnn,j · g(xn + unj , y

n + vnj ) + λnβ,j · βnj (4.17)
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where xn, yn is the position of node n and unj = uj(x
n, yn), vnj = vj(x

n, yn) and βnj =
βj(x

n, yn). Furthermore, we employ the conditions g(xn + unj , y
n + vnj ) ≤ 0 and λn,j ≤ 0

in order to identify the set of nodes with active contact constraints.

Since the contact energy contribution Inc is already defined in terms of discrete nodal vari-
ables, the nodal contact force vector

fncon(wn
j ) =


λnx + λnn · g,x
λnn · g,y
λnβ

unj − unj−1

g
βn


and the nodal tangent stiffness matrix

Kn
con(wn

j ) =


g,xx · λnn g,xy · λnn 0 1 g,x 0
g,yx · λnn g,yy · λnn 0 0 g,y 0

0 0 0 0 0 1
1 0 0 0 0 0
g,x g,y 0 0 0 0
0 0 1 0 0 0


are easily obtained as the gradient and the Jacobian of (4.17). Note that g in these formulas
refers to g(xn + unj , y

n + vnj ).

4.1.3 Newton-Raphson solution procedure

Using an assembly operator A, we obtain the global force vector

f(û) =
ne

A
e=1

(f eint(û
e)) +

nc

A
n=1

(fncon(ûn))

from the element internal force vectors and the nodal contact forces. Since no external forces
are acting on the specimen, the discrete stationarity condition is

f(û) = 0,

where the global vector of internal and contact forces f is a nonlinear function Rnu → Rnu

of the nu unknown nodal values. Similarly, the global stiffness matrix

K(û) =
ne

A
e=1

(Ke
int(û

e)) +
nc

A
n=1

(Kn
con(ûn))

consists of the element and contact contributions.

Convergence rate and stability of the Newton-Raphson solution procedure depend on the
properties of the function f . In our case, we have to consider strong nonlinearities and
the possibility of arithmetic exceptions. For these reasons, we employ a Newton-Raphson
iteration scheme with linesearch. The update of the current solution vector ûn is

ûn+1 = ûn + αdn
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Figure 4.6: Smooth approximations of |x| and its derivatives for ν = 20. It can be seen
that the consistent derivative in (4.19) on the left hand side has a bump close to
x = 0 while the relaxed approximation of the derivative in (4.20) on the right
hand side does not expose this behaviour. Furthermore, the second derivative of
the relaxed formulation is strictly positive.

where the search direction in step n is

dn = −K−1(ûn)f(ûn),

and the step-width α is obtained by minimizing the norm of the internal force vector such
that

α = argmin
α > 0

|f(ûn + αdn)|. (4.18)

Other linesearch criteria (e.g. the system energy, see De Borst et al. (2012)) for this one-
dimensional minimization problem are discussed in the literature, but for the problem at
hand, the norm of the residual turns out to be favorable. Problem (4.18) is solved using
Brent’s algorithm (Brent, 2013).

Modification of energy of dislocation network In order to mitigate numerical prob-
lems associated with the non-smooth abs function in the formulation of the dislocation
density (4.2), we approximate the sign function by the smooth sigmoid function sigν (see
(Kochmann, 2009))

sign(x) ∼= sigν(x) =
2

1 + e−νx
− 1,

with the approximation parameter ν ∈ R+ which has to be chosen sufficiently large. Using
sigν , we obtain

|x| ∼= absν(x) = x · sigν(x) and
d

dx
|x| ∼= abs′ν(x) = sigν(x) + x · sig′ν(x) (4.19)

as consistent smooth approximation to the absolute value of x and the corresponding deriva-
tive. As an alternative to (4.19), it is possible to insert

|x| ∼= absν(x) = x · sigν(x) and
d

dx
|x| = sgn(x) ∼= sigν(x), (4.20)

where the exact derivative of the absolute value is approximated by a smooth function (in-
stead of computing the derivative of the approximated absolute value). Although the relaxed
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Figure 4.7: Quality of the approximate function for sign and absolute value functions with
different ν.

(a) Dislocation energy. (b) Internal force vector. (c) Quadrature points.

Figure 4.8: Integrands for energy and the element internal force vector.

formulation (4.20) is not consistent with the derivatives of the energy density of dislocation
network, it turned out to be numerically more stable. The comparison in Figure 4.6 shows
the functions for both approaches while Fig. 4.7 presents how precise the relaxed formu-
lation may obtain by increasing ν. Numerical results presented in Subsection 4.1.4 are
obtained with ν = 103 and the relaxed approximation.

The energy of dislocation network ψm = kµ ln 1
1−ρ/ρs used in the linear CDT is well suited

for analytical considerations but, since it is undefined for ρ > ρs, potentially dangerous in a
numerical setting. Therefore, we choose the alternative energy density (Kochmann, 2009)

Ψ̃m(ρ) = kµ

[
n∑
i=1

1

i

(
ρ

ρs

)i
+ ec(ρ/χρs−1) − e−c

]
which is very close to the original density for small values of ρ while being well-defined
for any ρ ∈ R. The constants n, c, χ are selected according to the desired precision, we
commonly use n = 3, c = 90 and χ = 0.95.

Numerical integration It is well-known that Gauss-Legendre quadrature works with sat-
isfactory accuracy only for sufficiently smooth functions such as the integrands related to
the elastic energy. However, the absolute value introduced by the energy density of the dis-
location network, causes the exact integrand of the internal force vector components related
to the density of excess dislocations (4.2) to show a jump across the line∇β ·s = 0 such that
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Figure 4.9: Quadrature on triangles, T̂ = {(x, y)T ∈ R2 | x, y > 0, x+ y < 1}.
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(a) 8 × 8 standard Gauss-
Legendre quadrature.

-1 1
ξ

f eint,12

(b) 4 × 4 quadrature on trian-
gles.

Figure 4.10: Plot of internal force vector component for f eint(((1− ξ)ûe1 + (1 + ξ)ûe2)/2).

a standard Gauss-Legendre quadrature scheme cannot be applied efficiently, see Fig. 4.8.
Furthermore, whenever the line ∇β · s = 0 crosses an integration point on a change of the
β function during the solution procedure, the corresponding entries of f eint expose a jump.

In order to carry out the numerical integration of the terms related to the energy of dis-
location network with good accuracy, we divide the element Ωe in triangles T ek such that
β,x cosϕ + β,y sinϕ is strictly positive or strictly negative on T ek , k = 1, . . . , nt. On those
triangles, we are again integrating smooth functions. The subdivision of the reference do-
main is based on the intersections of the line∇β ·s = 0 with the boundary of Ω̂. By using the
two intersection points, the actual triangles are constructed using a Delaunay triangulation
algorithm.

In order to obtain an integration rule of arbitrary order, we start from the Gauss-Legendre
points on the quadratic reference domain Ω̂ which is mapped to the actual triangle by the
application of a sequence of geometry maps as shown on Figure 4.9. First, Ω̂ is mapped on
the standard triangle T̂ using the Duffy transformation ΦD (see (Duffy, 1982)). Then, T̂ is



76 4 Micro-indentation and anti-plane shear

projected on the actual triangle T ek which results from the Delaunay triangulation using ΦT
k .

Finally, the original geometry map Φe is applied such that the integration points for triangle
k of the element e are obtained as

ξeki = (Φe ◦ΦT
k ◦ΦD)(ξi)

with the standard Gauss-Legendre points ξi. The corresponding integration weights stem
from the multiplication of the determinants of the involved Jacobi matrices.

The outlined integration procedure can easily be extended to more general cases with a
curved boundary between the smooth subregions. Figure 4.10 shows a comparison of a
standard quadrature procedure to our quadrature on triangles. It is clearly visible that the
standard procedure fails to give a smooth function for the internal force vector components
related to the dislocation energy. This situation is not substantially improved if a higher-
order integration rule is employed. In the contrary, the quadrature on triangles, even with
less number of integration points, gives a much better result for the internal force vector.

4.1.4 Numerical simulations and results

Geometry and material parameters setup

 

 

 

Figure 4.11: Mesh distribution and the zooming near the indenter tip.

In this Section, finite element simulations of a pure single-crystalline fcc Nickel indented by
a rigid wedge indenter is reported. The aim is to compute the load acting on the indenter per
unit length as well as the dislocation distribution, the lattice rotation, and the corresponding
plastic slip as functions of the indentation depth for different loading and unloading paths
and compare them with the experimental results obtained in (Kysar et al., 2010). These nu-
merical simulations have been performed using an in-house FE code where we implemented
the methods presented in Subsections 4.1.2 and 4.1.3.

We choose the cartesian coordinate system such that the x, y, and z-axis coincides with the
crystallographic direction [1̄10], [001], and [110] of the fcc single crystal, respectively. A
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symmetric rigid wedge indenter (in Kysar’s experiment the material of the wedge indenter
is tungsten carbide) having an angle α = 90◦ and axis parallel to the z-axis is indented into
the (x, z)-plane of the crystal in the y-direction. The sharp profile (consisting of two straight
lines) near the tip of the indenter is replaced by a circular arc having the radius rd = 100µm
(Dahlberg et al., 2014). The plane-strain geometry of the indenter and crystal was shown
schematically in Fig. 4.1, where it is sufficient to analyze only the left-half of the specimen
owing to the mirror symmetry of the problem with respect to the y-axis. The sizes of the
cross-section domain are chosen as L = H = 6600µm. Fig. 4.11 shows the mesh for the
domain to be simulated under the indenter (represented as a gray area). This Figure also
shows the zooming of the mesh and its distribution near the indenter tip. This mesh with
approximately 500000 elements is designed so that it has fine elements near the indenter
tip and progressively coarser elements far away from the indenter. The chosen mesh should
adapt to the stress and dislocation density which are concentrated near the indenter tip while
keeping the computational time for the complete loading and unloading process accessible.

We let the nodal displacement satisfy the boundary conditions (4.7), (4.8), and (4.9). The
displacement in the horizontal direction and the plastic slip are zero on the very left edge and
the anti-symmetric boundary of the domain, while the vertical displacement and the plastic
slip are zero at the bottom of the domain.

The material parameters used in the numerical simulations are presented in Table 4.1. The
Lamé constants, as well as the Poisson’s ratio, are taken from (Hirth & Lothe, 1992), while
for the magnitude of Burgers vector we refer to (Callister, 2007). Since the critical resolved
shear stress for Nickel is quite small as compared to µ: K = 5.7 MPa (see, e.g., (Dieter
& Bacon, 1986)), the account of dissipation with such small K does not change the load-
displacement curve significantly as compared to the case K = 0. Therefore we shall take
K = 0 and neglect completely the dissipation. The only one active slip system in the left-
half of the specimen is chosen to be oriented at an in-plane angle of −54.7◦ relative to the
x-axis (this corresponds to the slip system (iii) in Kysar’s nomenclature, see (Dahlberg et
al., 2014; Kysar et al., 2010)). On the right half of the specimen the active slip system
would then be the system (i) oriented under the angle 54.7◦ relative to the x-axis. Actually,
there are three possible slip systems in this plane strain problem as shown in (Kysar et al.,
2010), but only one slip system in each half of the specimen will be dominant due to its
large Schmid factor there.

Name Symbol Value Unit
First Lamé constant λ 116.63 GPa
Elastic Shear Modulus µ 94.66 GPa
Poisson ratio ν 0.276
Magnitude of Burgers vector b 2.5 Å
Material constant k 4 · 10−5

Saturated dislocation density ρs 1015 m−2

Table 4.1: Material parameters of single-crystalline Nickel used for simulations.

The specimen is loaded and unloaded quasi-statically by controlling the indenter displace-
ment with the maximum depth of indentation during the simulation to be 200 µm. Thus,
we see that the maximum indentation depth is quite small as compared to the sizes of the
cross-section of the specimen, so the influence of the outer boundary conditions can be
neglected.
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Results
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Figure 4.12: Load-displacement curve.

Load-displacement curve After finding the solution, we compute the applied load acting
on the indenter per unit length by integrating the traction acting at the bottom of the domain
multiplied by factor two. This is advantageous because we need neither to know the length
of the contact zone nor to deal with the traction acting on the contact area between the
indenter and the specimen which is less accurate. A comparison of the load-displacement
curve corresponding to the loading and unloading stages of the Nickel single crystal under
indentation is shown in Fig. 4.12. Although the load turns out to be higher in both stages of
loading and unloading, a qualitative agreement between the experimental data from (Kysar
et al., 2010) and the numerical computation data can be observed. During the loading stage
when the indentation depth increases, dislocations are nucleated and pile up against the
rigid indenter causing the increase of the load. We stop this loading process when the
indentation depth reached its maximum value, 200 µm. Then the unloading process follows
in which we decrease the indentation depth gradually until the load becomes zero. Since the
difference between the resolved shear stress and the back stress becomes smaller than the
critical threshold, the dislocations and the plastic slip will be frozen during this unloading
process (elastic unloading). Therefore the slope of the load-displacement curve at this elastic
unloading is much higher than that at the loading stage. The missing qualitative agreement
could be due to the fact that two other slip systems, as well as the interaction between
different groups of dislocations, are completely neglected in this simple model. As the
other slip systems also produce dislocations and by this reduce the energy and consequently
the stresses in the crystal. It is reasonable for us to guess that the CDT could predict a
better load-displacement curve if all three slip systems together with their interaction will
simultaneously be taken into account (see the load-displacement curve obtained in (Reuber
et al., 2014) where all active slip systems are taken into account).

Dislocation density The dislocation distribution of the slip system (iii) in the left half of
the specimen underneath the indenter tip at the maximum value of the indentation depth
h = 200µm, computed from the experimentally measured lattice rotation (see the next para-
graph), is shown in Fig. 4.13a and Fig. 4.13b (these Figures are obtained as the left half of
Fig. 9 from (Kysar et al., 2010)). It is seen that a high density of dislocations is concen-
trated underneath the indenter tip, at the contact surface as well as on the anti-symmetric
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(a) ρ+, with crystallographic traces normal to the
slip direction, h = 200µm.

(b) ρ−, with crystallographic traces tangential to
the slip direction, h = 200µm..

Figure 4.13: Experimental GND density of the slip system (iii) from Kysar et al. (2010).
Reprinted by permission.
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Figure 4.14: Simulated GND density 1
b
(β,x cosϕ+ β,y sinϕ), h = 200µm.

boundary line. The zones of high densities of positive and negative dislocations are closely
oriented to the direction of normal to the slip planes of the slip system (iii). Besides, the
negative dislocations are located close to the anti-symmetry line and concentrated in sev-
eral strips emanating from the contact point and the symmetry line. On the contrary, the
positive dislocations are concentrated mainly in a zone emanating from the contact surface
and partly from the zone of negative dislocation on the symmetry line. The distribution of
1
b
(β,x cosϕ+β,y sinϕ) computed in our numerical simulations at the same indentation depth

giving both the positive and negative dislocation density is shown in Fig. 4.14. One can see
on the left that, except the small region underneath the indenter, the dislocation density is
zero everywhere. On the right of this Figure, the zooming of the region underneath the in-
denter together with the dislocation density distribution is shown. Although there are still
some quantitative difference in the dislocation density distribution, the numerical computa-
tion outputs give the qualitatively similar features of the dislocation distribution compared
to those obtained from experiments: i) high density of dislocations are concentrated at the
indenter tip, at the contact surface as well as on the anti-symmetric boundary line, ii) the
negative dislocations are located close to the anti-symmetry boundary and at several strips
emanating from the contact point and from the symmetry line, iii) the positive dislocations
are concentrated mainly in a strip from the contact area. Far away from the indenter tip,
the strips are closely oriented to the direction of normal to the slip planes of the slip system
(iii). Surprisingly, as compared to the similar results obtained in a much more complicated
continuum dislocation dynamics model in (Reuber et al., 2014) the results obtained in our
study capture even better the details of the distribution of dislocations in the experiment.

Lattice rotation The experimentally measured lattice rotation in the left half of the speci-
men underneath the indenter tip at the maximum value of the indentation depth h = 200µm
is shown in Fig. 4.15 (cf. the left half of Fig. 3a in (Kysar et al., 2010)). Due to the mirror
symmetry, the lattice rotation on the antisymmetry axis must ideally be zero. It is remarkable
that the lattice rotation jumps from about +20◦ to about −20◦ when crossing the upper part
of the line of antisymmetry. There are two zones of positive (anti-clockwise) and negative
(clockwise) lattice rotation: the zone of positive lattice rotation emanates from the indenter
tip and the anti-symmetric line, while that of negative lattice rotation from the contact sur-
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Figure 4.15: Experimental lattice rotation wez from Kysar et al. (2010). Reprinted by per-
mission.

face. These zones are closely aligned with the direction of the normal to the slip system (iii)
in the left half of the specimen. To be able to compare with the experimental lattice rotation
given in degree, we plot in Fig. 4.16 the following distribution

[
1

2
(v,x − u,y) +

1

2
β]× 180◦/π

obtained from numerical solution at the same indentation depth, which is the lattice rotation
according to CDT (in degree). On the right of this Figure, the zooming of the region together
with the lattice rotation distribution is shown. Except for some quantitative differences, one
can recognize there quite similar features as those obtained in experiments. The simulated
lattice rotation also exhibits the jump from about +20◦ to about −20◦ when crossing the
upper part of the line of antisymmetry. There are also two zones of positive and negative
lattice rotation: the zone of positive lattice rotation emanates from the anti-symmetric line,
while that of negative lattice rotation from the contact surface. On the left of Fig. 4.16 the
distribution of lattice rotation is shown in the whole domain, where it is seen that the zones
of non-zero lattice rotation are closely aligned with the direction of the normal to the slip
system (iii).

Plastic slip The plastic slip obtained by the numerical simulations is shown in Fig. 4.17.
Near the indenter (shown on the right of this Figure) we observe two zones of positive
and negative plastic slip: the zone of positive plastic slip emanates from the contact area and
partly from the anti-symmetry line. There exists a zone of high plastic slip of the slip system
(iii) extending down toward the antisymmetry boundary along the local s1 direction. The
zone of negative plastic slip is detached from the contact surface. Far away from the indenter
(see the left of this Figure) we observe the slip bands of positive and negative plastic slip
which are aligned with the normal direction to the slip plane. It is interesting to compare
our results with the similar numerical simulations within the single crystal plasticity theory
provided by Saito, Oztop, and Kysar (2012) (see also (Saito & Kysar, 2011)). It was shown
in (Saito et al., 2012) that the dominant slip system having the largest plastic slip rate in
the right half of the specimen is the system (i) oriented under the angle 54.7◦ relative to
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Figure 4.16: Simulated lattice rotation [1
2
(v,x − u,y) + 1

2
β]× 180◦/π, h = 200µm.

 

 

Figure 4.17: Simulated plastic slip, h = 200µm.



4.2 Anti-plane constrained shear 83

the x-axis. This means that the dominant slip system in the left-half of the specimen must
be the system (iii) oriented under the angle −54.7◦ relative to the x-axis that agrees with
our choice of the active slip system. Saito et al. (2012) obtained also in the right-half of
the specimen a concentrated glide shear on slip system (i) that emanates from the contact
point singularity and extends down toward the antisymmetry boundary along the local s1

direction from which concentrated kink-shear is activated and extends down and away from
the antisymmetry line in the direction of the local m1. This is similar to the above features
of the plastic slip distribution obtained in our simulations.

4.2 Anti-plane constrained shear

4.2.1 Energy density of excess dislocations and its extrapolation

The thermodynamic dislocation theory (TDT), proposed initially by Langer, Bouchbinder,
and Lookmann (Langer et al., 2010) and developed further in Langer (2015, 2016, 2017a,
2017c); Le et al. (2017, 2018), deals with the uniform plastic deformations of crystals
driven by a constant strain rate. During these uniform plastic deformations, the crystal
may have only redundant dislocations whose resultant Burgers vector vanishes. As shown
in Le (2018); Le and Piao (2018), the extension of TDT to non-uniform plastic deforma-
tions including excess dislocations due to the incompatibility of the plastic distortion Nye
(1953) is based on the phenomenological free energy density proposed by Berdichevsky
(2006b). Berdichevsky (2017) has shown later that the asymptotically exact free energy
density of excess dislocations in a twisted bar can be found, and Le and Piao (2018) has ex-
tent Berdichevsky’s idea to the anti-plane shear deformation. The formula is the following:

ψm(ρg) = µb2ρg
[
ψ? +

1

4π
ln

1

b2ρg

]
. (4.21)

Where excess dislocation density ρg is a function of the gradient of plastic distortion β. µ
and b is shear modulus and magnitude of Burger’s vector respectively, and ψ? is a parameter
depending on the periodic dislocation structure. For the hexagonal periodic dislocation
structure ψ? = −0.105.

The Eq. (4.21) can be written into the dimensionless energy density of excess dislocations
as

f(y) = ψm/µ = y

(
ψ? − 1

4π
ln y

)
, (4.22)

where y = b2ρg is the dimensionless dislocation density. This function is plotted for y ∈
(0, 1) as in Fig. 4.18. There are three remarkable properties of this Eq. (4.22): First, f(y) is
concave; Second, f(y) tends to −∞ when y → ∞; Third f ′(y) = ∞. With these features,
it is problematic to apply Eq.(4.22) in order to determine the average plastic slip via energy
minimization within the continuum approach. For the well-posed boundary value problems
within the continuum approach, the energy density and its derivative with respect to ρg

respectively require to be convex and regular (the latter is needed for the regularity of the
back-stress). Looking more closely at the assumptions made in deriving Eq. (4.21) where the
dislocation density is assumed to be locally double-periodic distribution (see Berdichevsky
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Figure 4.18: Dimensionless energy density f(y) = ψm/µ.

(2017); Le and Piao (2018)), these assumptions can be violated for the extremely small or
large dislocation densities. Such extreme values of dislocation densities may occur near the
head or the tail of the dislocation pile-up. In these cases, the dislocations are either at the
wall or adjacent to the dislocation free-zone, so the local periodicity is no longer valid there.
It is, therefore, the energy density Eq. (4.21) must be extrapolated to the extremely small or
large dislocation densities. Le et al. (2018) proposed the following extrapolation for the free
energy density

ψm(ρg) = µb2ρg
(
ψ? +

1

4π
ln

1

k0 + b2ρg

)
+

1

8π
µk1(b2ρg)2. (4.23)

with k0 and k1 being two new material parameters. The small constant k0 corrects the be-
havior of the derivative of energy at ρg = 0, while the last term containing k1 corrects the
behavior of the energy at large density of the excess dislocations. The two parameters k0

and k1 are chosen so that, the energy density is not only close to the asymptotic exact energy
density for moderate dislocation densities but also is the convex function for all positive dis-
location densities. The latter requirement guarantees the existence of the energy minimizer.
Le and Piao (2018) also proposed a sufficient constraint for these two coefficient k0k1 > 2 in
order to ensure the convexity of function ψm. Fig. 4.19 shows the comparison between two
dimensionless energy density ψm/µ defined according to Eq. (4.21) and Eq. (4.23) within
the range ρg ∈ (0, 1014/m2) and the range ρg ∈ (0, 1016/m2), here, b = 10−10 m, k0 = 10−6,
k1 = 2.1× 106. one can see that the two energy densities are approximately the same in the
range ρg ∈ (0, 1014/m2), but differ substantially for ρg larger than 1014/m2.

4.2.2 Equations of Motion

Suppose, for simplicity, that the single crystal beam has a rectangular cross-section, of width
c and height h, that lies in the (x, y)-plane. This crystal beam is placed in a “hard device”
such that at its side boundary the displacement in the z-direction is prescribed: w = γ(t)y,
with γ(t) being the shear strain regarded as a control parameter (see Fig. 4.20). Under
this condition, dislocations cannot reach the boundary, as otherwise, the steps formed by
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Figure 4.19: The dimensionless energy density ψm/µ within two different range of ρg. The
dashed line refers to Eq. (4.21), and the bold line refers to Eq. (4.23).



86 4 Micro-indentation and anti-plane shear

L

x
h

c

y

z

γh

Figure 4.20: Anti-plane constrained shear.

them (equal to the length of the Burgers vector) would contradict the smoothness of the
displacement specified there. In this sense, the ”hard” boundary conditions model the grain
boundaries that serve as obstacles and prevent dislocations from leaving the grain. If h� c,
the end-effect near y = 0 and y = h may be neglected and assume that all state variables
depend only on the spatial coordinate x.

Now, let this system be driven at a constant shear rate γ̇ ≡ Q/t0, where t0 is a characteristic
microscopic time scale. Because the system is undergoing steady-state anti-plane shear, the
time t can be replaced by the total strain γ so that t0 ∂/∂t → Q∂/∂γ. The equations of
motion are taken from Eqs. (2.73a),(2.73b), and (2.73c) with minor modification:

∂τY
∂γ

= µ

[
1− q(γ)

Q

]
, (4.24)

∂ρ

∂γ
= κ1

τY q

a2ν(θ, ρ,Q)2 µQ

[
1− ρ

ρss(χ)

]
, (4.25)

∂χ

∂γ
= κ2

τY eD q

µQ

(
1− χ

χ0

)
, (4.26)

with µ being the shear modulus. Note that, for the uniform plastic deformation involving
only redundant dislocations q(γ)/t0 equals the plastic shear rate β̇, with β being the uniform
plastic distortion, but in general when β is non-uniform it is not necessarily so. The state
variables that describe this system are the elastic strain γ−β, the areal densities of redundant
dislocations ρr and excess dislocations ρg ≡ |β,x|/b (where b is the length of the Burgers
vector), and the effective disorder temperature χ (cf. Kröner (1992); Langer (2016)). All
four quantities, γ − β, ρr, ρg, and χ, are functions of γ.
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The equation for the plastic distortion β reads

τ − τB − τY = 0. (4.27)

This equation is the balance of microforces acting on excess dislocations. Here, the first term
τ = µ(γ−β) is the applied shear stress, the second term the back-stress due to the interaction
of excess dislocations, and the last one the flow stress. This balance of microforces can
be derived from the variational equation for irreversible processes Le (2018); Le and Piao
(2018) yielding

τB = −1

b
(
∂φm
∂ρg

),xsignβ,x = − 1

b2

∂2φm
∂(ρg)2

β,xx, (4.28)

with φm being the free energy density of excess dislocations. Berdichevsky (2017) has found
φm for the locally periodic arrangement of excess screw dislocations. However, as shown
by us in Le and Piao (2018), his expression must be extrapolated to the extremely small
or large dislocation densities to guarantee the existence of solution within TDT. Using the
extrapolated energy proposed in Le and Piao (2018), the back-stress is obtained

τB = −µb2k1ξ
2 + (2k0k1 − 1)ξ + k1k

2
0 − 2k0

4π(k0 + ξ)2
β,xx, (4.29)

where ξ = b|β,x|. Equation (4.27) is subjected to the Dirichlet boundary condition β(0) =
β(c) = 0.

4.2.3 Discretization and method of solution

For the purpose of numerical integration of the system of equations (4.24)-(4.29) it is con-
venient to introduce the dimensionless variables and quantities

x̃ = x/b, ρ̃ = a2ρ, τ̃ = τ/µ, τ̃Y = τY /µ, τ̃B = τB/µ. (4.30)

The variable x̃ changes from 0 to c̃ = c/b. The dimensionless plastic strain rate q is rewritten
in the form

q(τY , ρ) =
b

a
q̃(τ̃Y , ρ̃), (4.31)

where

q̃(τ̃Y , ρ̃) =
√
ρ̃[f̃P (τ̃Y , ρ̃)− f̃P (−τ̃Y , ρ̃)]. (4.32)

We set µ̃T = (b/a)µT = µs and assume that s is independent of temperature and strain rate.
Then

f̃P (τ̃Y , ρ̃) = exp
[
− 1

θ
e−τ̃Y /(r

√
ρ̃)
]
. (4.33)

We define Q̃ = (a/b)Q so that q/Q = q̃/Q̃. Then,

ν̃(θ, ρ̃, Q̃) ≡ ln
(1

θ

)
− ln

[
ln
(√ρ̃
Q̃

)]
. (4.34)



88 4 Micro-indentation and anti-plane shear

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
-6

-4

-2

0

2

4

6

8 10-3

γ

τ/μ−

O
A

B

C

D

Figure 4.21: Stress-strain curves at the strain rate Q̃ = 10−13, for room temperature, and
for γ∗ = 0.08: (i) loading path OAB (black), (ii) load reversal BCD (red/dark
gray), (iii) second load reversal DO (yellow/light gray), (iv) flow stress versus
strain (dashed black curve).

The dimensionless steady-state quantities are

ρ̃ss(χ̃) = e−1/χ̃, χ̃0 = χ0/eD. (4.35)

Using q̃ instead of q as the dimensionless measure of plastic strain rate means that t0
is effectively rescaled by a factor b/a. For purposes of this analysis, it is assumed that
(a/b)t0 = 10−12s.

In terms of the introduced dimensionless quantities the governing equations read

∂τ̃Y
∂γ

=

[
1− q̃(τ̃Y , ρ̃)

Q̃

]
, (4.36)

∂ρ̃

∂γ
= κ1

τ̃Y q̃

ν̃(θ, ρ̃, Q̃)2 Q̃

[
1− ρ̃

ρ̃ss(χ̃)

]
, (4.37)

∂χ̃

∂γ
= κ2

τ̃Y q̃

Q̃

(
1− χ̃

χ̃0

)
, (4.38)

γ − β − τ̃B − τ̃Y = 0, (4.39)

where

τ̃B = −k1ξ
2 + (2k0k1 − 1)ξ + k1k

2
0 − 2k0

4π(k0 + ξ)2
β,x̃x̃, (4.40)

and ξ = |β,x̃|. To solve this system of partial differential equations subject to initial and
boundary conditions numerically, the equations are discretized in the interval (0 < x̃ < c̃)
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Figure 4.22: Evolution of β(x̃) at the strain rate Q̃ = 10−13 and for room temperature during
the loading along AB: (i) γ = 0.02 (black), (ii) γ = 0.04 (red/dark gray), (iii)
γ = 0.06 (yellow/light gray).

by dividing it into n sub-intervals of equal length ∆x̃ = c̃/n. Then the first and second
spatial derivative of β in equation (4.39) are approximated by

∂β

∂x̃
(x̃i) =

βi+1 − βi
∆x̃

, (4.41)

∂2β

∂x̃2
(x̃i) =

βi+1 − 2βi + βi−1

(∆x̃)2
, (4.42)

where βi = β(x̃i). In this way, the four partial differential equations are reduced to a system
of 4n ordinary differential-algebraic equations. These have been solved numerically using
the Matlab-ode15s solver with n = 1000 and the γ step equal to 10−6.

After shearing the specimen up to the shear strain γ∗, the crystal is unloaded and loaded
further in the opposite direction by reversing the direction of change of γ. The latter will now
be reduced with the same rate from γ∗ to some negative value γ∗, to be specified later. The
author postulate that the system of governing equations (4.36)-(4.39) remains valid during
this load reversal. Besides, as initial conditions, all quantities τ̃Y , ρ̃, χ̃, and β assume those
values τ̃Y (γ∗), ρ̃(γ∗), χ̃(γ∗), and β(γ∗) achieved at the end of the loading, thus satisfying
the continuity requirement. Since the equations remain valid during the load reversal with
the same magnitude of the strain rate, Q̃ is unchanged, reverse the expression for q̃ to

q̄(τ̃Y , ρ̃) =
√
ρ̃[f̃P (−τ̃Y , ρ̃)− f̃P (τ̃Y , ρ̃)], (4.43)

and integrate the system (4.36)-(4.39), with q̃ being replaced by q̄, backwards in γ. If the
next load reversal with the same shear rate should be made after reaching γ∗, q̃ is switched
again and the system (4.36)-(4.39) is integrated, with the initial conditions satisfying the



90 4 Micro-indentation and anti-plane shear

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
-1

0

1

2

3

4

5

6

7 108Ng

O

BC

D
γ

Figure 4.23: Ng versus γ at the strain rate Q̃ = 10−13, for room temperature, and for γ∗ =
0.08: (i) loading path (black), (ii) load reversal (red/dark gray), (iii) second
load reversal (yellow/light gray).

continuity requirement, forwards in γ. The magnitude of the strain rate Q̃ can also be
changed if necessary. Thus, the numerical simulation with several load reversals and differ-
ent strain rates can be realized in this way.

After finding the solution, the average rescaled stress can be computed according to

τ̄ /µ =
1

c̃

∫ c̃

0

τ̃ dx̃. (4.44)

The average flow stress is computed similarly. The total number of dislocations per unit
height is

N =

∫ c

0

ρ dx =
b

a2

∫ c̃

0

ρ̃ dx̃. (4.45)

The number of excess dislocations per unit height equals

Ng = 2

∫ c/2

0

ρg dx =
2

b

∫ c/2

0

β,x dx =
2

b
βm, (4.46)

where βm = β(c̃/2). Then, obviously, Nr = N −Ng.

4.2.4 Numerical simulations

Let the anti-plane shear test be done at room temperature T = 298K and at the strain rate
Q̃ = 10−13. The parameters for copper at this room temperature are chosen as follows
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Figure 4.24: Nr versus γ at the strain rate Q̃ = 10−13, for room temperature, and for γ∗ =
0.08: (i) loading path (black), (ii) load reversal (red/dark gray), (iii) second
load reversal (yellow/light gray).

Langer et al. (2010)

s = 0.0323, θ = 0.0073, κ1 = 96.1κ2 = 350, χ̃0 = 0.25.

We take c = 5.1 micron, b = 2.55Å and a = 10b. In addition, the parameters k0 and k1

required to compute the back stress Le and Piao (2018) are: k0 = 10−6, k1 = 2.1× 106. We
choose also the initial conditions

τ̃Y (0) = 0, ρ̃(0) = 6.25× 10−5, χ̃(0) = 0.18, β(0) = 0.

This initial dislocation density in real dimension equals 1013/m2.

The results of numerical simulations are presented in Figs. 4.21-4.29. In Fig. 4.21 the av-
erage normalized shear stress versus shear strain curve (called for short stress-strain curve)
with the strains at the beginning of load reversals γ∗ = 0.08 and γ∗ = −0.00414 is shown.
We plot there also the average rescaled flow stress τ̄Y /µ versus γ (dashed black curve)
for comparison. The loading path OAB (black curve) consists of the elastic line OA and
the hardening curve AB. The yielding transition occurs at A. Fig. 4.22 shows the plastic
distortion β at three different γ along the hardening curve AB that agrees well with the
approximate analytical solution found in Le and Piao (2018). The excess dislocations pile
up against the left and right boundaries, leaving the center of the specimen free of excess
dislocations. As γ increases the number of excess and redundant dislocations as well as the
effective temperature also increase as shown in Fig. 4.23-4.25.

During the load reversal BCD (red/dark gray), it is first observed the elastic unloading BC
where the redundant and excess dislocations as well as the effective temperature (in the
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Figure 4.26: Evolution of β(x̃) at the strain rate Q̃ = 10−13 and for room temperature during
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Figure 4.27: The normalized back stress τ̃B near the boundary versus γ at the strain rate
Q̃ = 10−13, for room temperature, and for γ∗ = 0.08: (i) loading path (black),
(ii) load reversal (red/dark gray), (iii) second load reversal (yellow/light gray).

middle of the specimen) are frozen as seen in Figs. 4.23-4.25. The yielding transition occurs
at C, where the magnitude of the stress is much lower than that at the end of the loading path
exhibiting the Bauschinger effect. To explain this effect the author plots in Fig. 4.27 the
evolution of the normalized back stress τ̃B (near the boundary) as γ changes. This back
stress increases during the loading due to the increasing number of excess dislocations, and
then remain unchanged during the unloading when the dislocations are frozen along the
line BC. The presence of this positive back stress reduces the magnitude of shear stress
required for pulling the excess dislocations back to the center of the specimen. There, the
excess dislocations of opposite signs meet and annihilate each other, so the number of excess
dislocations reduces gradually to zero along the curve CD as shown in Fig. 4.23. Fig. 4.26
shows the evolution of the plastic distortion at three different γ that confirms this tendency.
It is interesting that the number of redundant dislocations do not decrease at all, except that
they are also frozen along the elastic line BC as shown in Fig. 4.24.

If the loading direction is reserved again by increasing γ from γ∗ to zero, (γ, τ̃) moves along
the elastic line DO (yellow/light gray) where the dislocations and the effective temperature
are frozen (see Fig. 1). Note that the effective temperature always increases during the
loading along AB and loading in the opposite direction along CD as seen in Fig. 4.25, in
agreement with the second law of thermodynamics.

It is remarkable that the loading path in the opposite direction CD differs essentially from
the loading path AB due to the increase of the total number of dislocations along CD. Thus,
along CD the material is closer to the steady state than along AB, and consequently, the
slope of CD must be less than that of AB. This asymmetry between loadings in opposite
directions becomes more pronounced as γ∗ increases.
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Figure 4.28: The stress-strain curves for specimens with different sizes at the strain rate
Q̃ = 10−13, for room temperature, and for γ∗ = 0.08: (i) c = 5.1 micron
(dashed), (ii) c = 51 micro (bold).
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Figure 4.29: The stress-strain curves for the specimen loaded at different strain rates, for
room temperature, and for γ∗ = 0.08: (i) Q̃ = 10−13 (dashed), (ii) Q̃ = 10−11

(bold), (iii) Q̃ = 10−8 (dashed and dotted).
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It is interesting to examine the influence of the size of the sample on the Bauschinger effect.
Fig. 4.28 shows two stress-strain curves for two samples with different widths c = 5.1
micron (dashed line) and c = 51 micron (bold line) and with all other parameters being left
unchanged. We see that the size strongly influences the slope of the hardening curve because
the dislocation pile-up for the smaller sample leads to stronger kinematic hardening than for
the larger sample (smaller is stronger). This affects the stress level at which the yielding
transition occurs during load reversal. For the smaller sample, this stress is even positive.

Another important question is how much the strain rate affects the Bauschinger effect.
Fig. 4.29 shows three stress-strain curves for three samples loaded at three different strain
rates Q̃ = 10−13 (dashed line), Q̃ = 10−11 (bold line), and Q̃ = 10−8 (dashed and dotted
line). The width of samples is c = 5.1 micron, while all other parameters remain un-
changed. We see that the strain rate mainly affects the isotropic hardening, but much less
the Bauschinger effect. Even for Q̃ = 10−8 (corresponding to the fast strain rate Q = 104/s
which is typical of Hopkinson bar testing) the Bauschinger effect remains nearly the same
as for the much slower loading. The reason is that the kinematic hardening due to the excess
dislocations is much less sensitive to the change in strain rate. Also note that it is practically
difficult to stop the load and instantly realize the load reversal at the same rate of strain,
especially for the fast loading. Therefore, the real stress-strain curve usually deviates from
the theoretical one in a small transient period. Perhaps this is one of the reasons for the
differences between unloading and immediate reloading.

4.2.5 Discussions

The physical explanation of the Bauschinger effect on the basis of the back stress and the
excess dislocations seems to be quite reasonable. In constructing the STZ-theory for glasses
(Langer, 2008), Langer has argued that ”The Bauschinger effect is one example where the
system remembers the direction in which it has been deformed, and responds differently –
more compliantly or less so – to further loading in different directions. The natural way
to include such effects in the theory is to let the STZ’s possess internal degrees of freedom
that carry information from one event to the next.” This argument holds true for dislocation
mediated plasticity as well. Here, the incompatible plastic distortion is the natural variable
that keeps the memory of excess dislocations. It cannot enter the free energy, but the curl
of this quantity should enter the free energy causing the back stress. In this way the theory
differs substantially from the phenomenological plasticity that introduces the back stress
along with an assumed constitutive equation to fit the stress strain curves exhibiting the
kinematic hardening. In contrary, this thermodynamic dislocation theory allows to find the
back stress from the first principle calculation of the free energy of dislocated crystals and
thus to predict the stress-strain curves and the Bauschinger effect.

As the comparison with the experiments is concerned, the experimental data in anti-plane
shear-controlled deformations are not known yet, in contrast to the tension-compression
tests provided in Abel and Muir (1972); Bate and Wilson (1986) or plane strain shear tests
in Lewandowska (2003); Vincze et al. (2005), so the justification of the theory by the ex-
periments is not possible at present time. However, the proposed theory may serve as a
useful guide for the future experimental investigation on the Bauschinger effect in several
directions: (i) the asymmetry between loadings in opposite directions at different level of
γ∗, (ii) the influence of the size effect, (iii) the sensitivity of the back stress on the strain



96 4 Micro-indentation and anti-plane shear

rate and temperature, et cetera. Last, but not least, the thermodynamic dislocation theory
for uniform plastic deformations Langer et al. (2010) yields in the proportional compression
tests for copper an excellent agreement with the experiments conducted in Follansbee and
Kocks (1988) over a wide range of temperatures and strain rates. This gives a hope that the
same will happen for the theory proposed in this section.
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5 Conclusion

In this thesis the Thermodynamic Dislocation Theory (TDT) was successfully developed
and used to determine the plastic behavior of crystals subject to different types of deforma-
tion, such as planar strain shear deformation, planar strain pressure, planar strain indenta-
tion, anti-planar shear deformation or torsion of bars.

In the first approach, where excess dislocations and kinematic strain hardening can be ig-
nored, the theoretical curves take into account exactly the different stress-strain curves ob-
served at very different strain rates and temperatures. Each curve begins with a yielding
transition from elastic to plastic deformation at infinitesimally small strains. Each then
passes through the hardening and softening regimes and ends (for high strain rates) with a
robust shear band instability. One of the main reasons for the success of this theory is the
extreme sensitivity of the plastic strain rate to small temperature or stress changes. On the
other hand, the author tries to find ways to use these new findings to predict the performance
of materials in engineering applications. Since this theoretical starting point is unconven-
tional, the author has made extraordinary efforts to construct and test it as rigorously as
possible. High demands are placed on the equations of motion and the selection of their
parameters. The equations themselves are statements of known physical principles - conser-
vation of energy and flow of entropy in accordance with the second law of thermodynamics
- and they are expressed in terms of sufficiently defined internal state variables - dislocation
density and the two thermodynamically defined temperatures. No phenomenological fitting
functions are postulated. Each of the parameters occurring in the equations can basically
be determined either by independent measurement or by calculation according to the first
principles. We do not know this in conventional literature.

In the second approach, where the excess dislocations are taken into account, the author has
built a meaningful framework of thermodynamic dislocation theory for nonuniform plastic
deformation that helps to explain Bauschinger’s physical mechanism and size effect. Here,
incompatible plastic deformation is the natural variable that preserves the memory of excess
dislocations. It cannot enter the free energy, but the curl of this quantity should enter the
free energy that causes the back stress. In this way, the theory differs substantially from
the phenomenological plasticity that introduces back stress together with an assumed con-
stitutive equation to mimic the stress-strain curves with kinematic hardening. In contrary,
this thermodynamic dislocation theory allows us to find the back stress from the first princi-
ple calculation of the free energy of dislocated crystals and thus to predict the stress-strain
curves and the Bauschinger effect.

Besides, it is worth mentioning in this conclusion the finite element solution within the
continuum dislocation theory, which is a simplified version of thermodynamic dislocation
theory that takes into account only excess dislocations. This finite element implementation
can be extended to TDT. This will open a promising and exciting research direction and
enable one to solve more complex problems such as 3-D indentation test for single crystals
with more than one slip system or 3-D plastic deformations.
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Matlab supplement

The complete system of four integro-differential equations (3.11)-(3.17) are reduced to a
system of 6n+1 ordinary differential equations and implemented by using equations (3.21)-
(3.22).

1 f unc t i on dude = PDE(u , dy , ny , tp , r , chi0 , kappaChi , kappaRho , c0 , c1 ,
c2 , k1 , k2 , theta0 , q0 )

2 sigma=u (1) ;
3 rho=u ( 2 : ny+1) ;
4 ch i=u( ny+2:2*ny+1) ;
5 theta=u(2*ny+2:3*ny+1) ;
6
7 i n t e g r o =0;
8 f o r i =1:ny
9 mui=mu( theta ( i ) , tp ) ;

10 q i=q ( sigma , rho ( i ) , theta ( i ) , tp , r ) ;
11 i f ( i ==1|| i==ny ) i n t e g r o=i n t e g r o+mui* q i *dy/(4*q0 ) ;
12 e l s e i n t e g r o=i n t e g r o+mui* q i *dy/(2*q0 ) ;
13 end
14 end
15 dsigmade=mu( theta (1 ) , tp )−i n t e g r o ;
16
17 f o r i =1:ny
18 mui=mu( theta ( i ) , tp ) ;
19 q i=q ( sigma , rho ( i ) , theta ( i ) , tp , r ) ;
20 nu0i=nu0 ( rho ( i ) , theta ( i ) , q i ) ;
21 k i=k ( theta ( i ) , c0 , c1 , c2 , tp ) ;
22
23 drhode ( i )=(kappaRho /( nu0i ) ˆ2) *( sigma* q i /(mui* r*q0 ) )

*(1− rho ( i ) /exp(−1/ ch i ( i ) ) ) ;
24 dchide ( i )=kappaChi* sigma *( q i /(mui* r*q0 ) )*(1− ch i ( i ) /

ch i0 ) ;
25
26 i f ( i==1 | | i==ny ) dthetade ( i ) =0;
27 e l s e dthetade ( i )=k i * sigma* q i /q0+(k1/q0 ) *( theta ( i +1)−2*

theta ( i )+theta ( i −1) ) /( dy ˆ2)−k2*( theta ( i )−theta0 ) /q0
;

28 end
29 end
30
31 dude=[dsigmade ; drhode ; dchide ; dthetade ] ;
32 end
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A piece of Matlab code which supports to run the least-square analysis for the sum square
function (3.8):

1 f unc t i on output=opt imizat ionSS ( pars0 , lb , ub )
2 func = @(z ) sumsquares ( z ) ;
3 problem = createOptimProblem ( ' fmincon' , ' o b j e c t i v e ' , func , 'x0' ,

pars0 , ' lb ' , lb , 'ub' , ub ) ;
4 gs = GlobalSearch ;
5
6 output = run ( gs , problem ) ;
7 end

1 f unc t i on s s = sumsquares ( z )
2
3 load data 298 1000 . txt ;
4 %% T=298 K, q0=1000/ s================================
5 sigmaData=data 298 1000 ( : , 2 ) ;
6 eps i lonData=data 298 1000 ( : , 1 ) ;
7 temperature =298;
8 q0=1000*10ˆ(−12) ;
9

10 [ epsilonNum , sigmaNum]= l a n g e r S o l v e r ( z , temperature , q0 ) ;
11 sigmaNumInteP = in t e rp1 ( epsilonNum , sigmaNum , eps i lonData , '

s p l i n e ' ) ;
12
13 f o r k=1: l ength ( data 298 1000 )
14 s s=s s +(sigmaNumInteP ( k )−sigmaData ( k ) ) ˆ2 ;
15 end
16 end
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