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Abstract

The lack of effective exploration methods during mechanized tunneling can lead to a damage
of the tunnel boring machine and to a delay in the excavation process. A promising instru-
ment for the reconnaissance of soil properties is provided by exploration seismics, in which
propagating waves deliver a detailed fingerprint that is to be decrypted. State-of-the-art
exploration systems omit parts of the arriving information for the benefit of shorter com-
putation times and therefore show deficiencies concerning precision and resolution. With
exponentially increasing computational capacities, a methodology called full waveform in-
version becomes attainable, in which the full recorded waveform is exploited. In the most
common full waveform inversion methods, so-called adjoint methods, the inversion is per-
formed with respect to a high number of unknowns (where the number of unknowns is
also referred to as dimensionality of the inverse problem) since the material properties are
variable all over the model domain – for instance at the nodes or elements. The inverse
problem is then solved with gradient-based optimization. Due to the high dimensionality,
these methods can provide a detailed image; however, a drawback is that they may easily
tend to one of the local minima of the objective function. Possible consequences are inac-
curate results, especially if measurement and modeling errors are included. An alternative
is to reduce the dimensionality of the inverse problem. This can be achieved by imple-
menting either a generally suitable but simplified parametrization of the subsoil model or a
parametrization grounded on prior knowledge. On the reduced set of parameters, statistical
inverse theory can be applied to find the optimal parameter set. This approach considers
the non-uniqueness of inverse problems by assigning probability distributions to the model
parameters revealing which parameter configurations are certainly or uncertainly describ-
ing a representation close to the true model. Based on all available prior information, the
model is multiply updated with Bayesian inference. The final output is a complete statis-
tical description of the model parameters, also enabling uncertainty quantification. This
thesis starts here and further develops and applies two methods grounded on the principles
of dimensionality reduction of the inverse problem and statistical inverse theory based on
Bayesian inference. The investigations are to reveal if and how the methods can be consid-
ered for exploration during mechanized tunneling. Besides the validation of the methods
with synthetic data, a meaningful part of this work is the validation with experimental data,
where ultrasonic data is acquired in a small-scale laser experiment. This type of validation
brings a significant gain compared to the validation with synthetic data since real data is pro-
cessed. This data naturally induces noise, measurement errors and later modeling errors that
also occur during field scenarios. Therefore, strategies are developed to maximize the qual-
ity of measurement and to achieve an adequate forward model. After developing the two
Bayesian full waveform inversion approaches unscented hybrid simulated annealing and
the unscented Kalman filter-controlled parametric level-set method, they are successfully
applied to various synthetic and experimental examples in two and in three dimensions. It is
shown that the methods can provide precise results with a certain robustness against noise,
measurement errors, and modeling errors. The strategies and findings from the small-scale
experiments are related to potential large-scale scenarios and on this basis, suggestions and
challenges related to mechanized tunneling are outlined.
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1. Introduction

1.1. Motivation

Underground tunnels are a key to the creation of an effective infrastructure. In densely pop-
ulated cities with lack of space, they may be the only possibility to extend the road system
and to provide fast and effective journey times. Both in and apart from cities, tunnels allow
overcoming obstacles like water or mountains. Over time, different strategies for the excava-
tion of tunnels have evolved. Conventional tunneling is a category of methods in which the
rock is loosened in a non-automated way with explosives and tools like hammers and dig-
gers. Although this methodology is still widely used, it suffers from several disadvantages
like a comparatively low construction velocity and a restriction to hard rock due to the lack
of active support of the tunnel face (Jetschny, 2010). Unlike in conventional techniques, the
field of mechanized tunneling provides a more automated way of tunneling by making use
of tunnel boring machines (TBMs). TBMs include a big cutting wheel at the front, enabling
to excavate the whole diameter of the tunnel at once. Different working steps are automated,
for instance the removal of the soil and – dependent on the architecture of the TBM – the
stabilization of the tunnel face or the attachment of the tunnel lining. TBMs can drill through
almost all kinds of rocks with velocities higher than the velocities reached with conventional
tunneling techniques. Due to the shield excavation and the immediate stabilization, the im-
pact on surrounding buildings by induced settlements is minimized. Furthermore, TBMs
are comparatively environment-friendly and safe for the workers (Maidl et al., 2011). Al-
though the dangers concerning settlements and humans are rather low, a detailed knowledge
of the subsoil properties prior to drilling is beneficial for several reasons: firstly, if the TBM
drills into voids or water-filled fractures, a pressure imbalance may be released (Kneib et al.,
2000). Secondly, drilling into abrupt soil changes can lead to high wear or a blocking of the
cutting wheel, where all of the described cases can lead to expensive damages or delays in
the construction process. With detailed prior knowledge, the cutting tools can be changed,
or the excavation velocity can be adapted accordingly. Induced settlements can be further
minimized by adapting the excavation velocity of the TBM. The following section gives
an overview of current methods in the context of seismic and non-seismic exploration and
identifies their deficiencies.

1.2. Non-seismic vs. seismic exploration

A coarse estimation of the subsoil properties is performed prior to construction when the
tunnel trajectory is planned. Thereby, also techniques are utilized which are not related to
wave propagation, referred to as non-seismic exploration techniques. An extrapolation of the
geological situation from the Earth’s surface to its interior is usually used in order to predict
the soil properties along the planned tunnel track. The obtained image can be enhanced
by additional geophysical measurements (Jetschny, 2010). However, the estimation is not
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necessarily correct. For instance, boulders may easily be missed by this procedure and the
course of a layer change may be misinterpreted. Exploratory drillings provide a reliable
method in order to obtain a locally precise image but are, however, time-consuming and
costly – especially for larger overburdens – and can therefore only sparsely be used. One
possibility for exploration during construction is to conduct exploratory drillings through the
tunnel face, but this procedure, too, is time-consuming and costly. Furthermore, it requires
direct access to the tunnel face, which needs to be considered when building the TBM.
Another possibility for exploration is constructing an exploratory tunnel parallel to the main
tunnel trajectory, which has been performed during the construction of the Brenner Base
tunnel (Bergmeister & Reinhold, 2017). The advantage in the case of the Brenner Base is
that it has been planned to be utilized as a drainage tunnel when the construction period
is finished. However, the costs for the exploratory tunnel of the Brenner Base add up to
about 1.5 billion euro, which is about 15% of the project volume, showing that the method
is highly expensive and cannot always be applied.

An effective instrument for exploration is the field of exploration seismics, where knowl-
edge about the subsoil is gained on the basis of wave propagation. Seismic surveys can be
conducted from the Earth’s surface even before the excavation of the tunnel starts; however,
difficulties may arise, especially in urban areas (due to buildings and infrastructure) or in
the case of large overburdens (due to large distances to the tunnel trajectory). Surveys from
the tunnel site bring a different exploration angle and varying distances to anomalies, which
may be advantageous for the imaging. During a seismic survey, seismic sources trigger
elastic waves which propagate through the soil and eventually provide information about
the soil properties. The sources can for instance be explosives (Sattel et al., 1992), pneu-
matic impulse hammers, or sweep vibrators (Borm et al., 2003). These kinds of sources can
be placed anywhere inside the tunnel, in boreholes, or, in the case of shallow tunnels, even
at the Earth’s surface. Alternatively, the vibrations induced by the cutting head of the TBM
may be utilized as a passive seismic source (Petronio et al., 2007). If the traveling waves en-
counter material property changes, they are e.g. reflected, refracted, scattered, or converted.
A part of the energy is arriving back at seismic receivers, which can be placed, same as the
seismic sources, inside the tunnel, in boreholes, or at the Earth’s surface. The waveforms
may be analyzed with seismic techniques in order to estimate the subsoil properties. The
working principle of seismic exploration during mechanized tunneling described above is
visualized in Figure 1.1.

boulder

sources

receivers

traveling 
waves

reflected waves

refracted
waves

TBM

Figure 1.1.: Working principle of seismic exploration during mechanized tunneling. Sources
(red) and receivers (green) can potentially be placed anywhere; however, in
state-of-the-art methods they are usually placed inside the tunnel only.

The state-of-the-art of seismic methods for mechanized tunneling is based on seismic to-
mography methods. These methods commonly evaluate just parts of the seismic wave-
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forms, extracting and processing reflected waves or applying migration techniques. Sources
and receivers are usually placed inside the tunnel only. Some of the typically used systems
are Sonic Softground Probing (SSP) (Kneib et al., 2000), Integrated Seismic Imaging Sys-
tem (ISIS) (Borm et al., 2003), Tunnel Seismic Prediction (TSP) (Sattel et al., 1992), and
True Reflection Tomography (TRT) (Otto et al., 2002). SSP is used for exploration in soft
rock. In this method, sources and receivers are located at the cutting wheel of the TBM.
Reflected compressional waves are extracted from the recorded seismic data and the subsoil
properties are estimated with a technique based on 3D migration. In contrast to SSP, ISIS is
used in hard rock. Pneumatic hammers are placed directly at the tunnel wall and the signal
responses are recorded with 3-component receivers in rock anchors along the tunnel wall.
Also here, migration of reflected waves is utilized for subsoil imaging, in this case on the ba-
sis of reflected tunnel surface waves. In TSP, explosive charges and 3-component receivers
are placed in boreholes along the tunnel wall. The technique separates compressional and
shear waves and applies various geotechnical techniques which evaluate the reflected waves.
TRT uses explosive charges or pneumatic hammers at the tunnel face as seismic sources and
seismic receivers placed in boreholes along the tunnel walls. The evaluation of the seismic
records is, as the name of the system says, based on reflection tomography.

Due to the different working principles of the tomography methods mentioned, ranges and
resolutions vary. According to Schmitt et al. (2004), SSP has a range of about 40m, TRT
of about 60 − 100m, TSP of 150 − 200m, and ISIS of about 200m. However, resolutions
decrease and uncertainties increase with increasing distance to the tunnel face. Dickmann
& Sander (1996) specify that the TSP error margin in the predicted distance to the bound-
ary of an anomaly amounts to 5% for an investigation range of 0 − 50m, to 10% for an
investigation range of 50 − 200m, and to at least 20% for higher distances. Schmitt et al.
(2004) state that none of the systems can bring an absolutely safe prediction and indicate
the resolutions of TRT and SSP to lie at about 1m in the region directly behind the TBM,
decreasing rapidly with increasing distance to the tunnel face.

1.3. Full waveform inversion

The quality of the seismic prediction can be improved with full waveform inversion (FWI).
A FWI exploits – as its name implies – the full waveforms recorded at the seismic receivers.
In this method, a so-called misfit functional is defined that expresses the difference of the
measured seismic records to synthetic waveforms generated with a computational model of
the subsoil. During the inversion, the model is altered with the aim to minimize the misfit
functional. The model with the minimum misfit is then considered for an estimation of the
subsoil properties. FWI in general can gain a resolution of about half a wavelength of the
operating waves (Virieux & Operto, 2009); however, this relation strongly depends on the
applied measurement setup. With advantageous source-receiver configurations, the range of
FWI is expected to be much more far-reaching with a resolution much more precise than
of the above-mentioned tomography methods – with limitations rather caused by applied
working frequencies and technical issues. Still, the greatest technical restriction lies in the
computational cost. Although FWI in general became applicable in many fields – experi-
encing an exploding number of publications since the years after the turn of the millennium
(Igel, 2017) – the methods are still distant from delivering results close to real-time or during
a time which would be necessary for an application during mechanized tunneling. However,
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with exponentially growing computational power, FWI may become applicable in the sector
in a few years.

Early FWI approaches exist in time-domain (Tarantola, 1984) and in frequency-domain
(Pratt & Worthington, 1990). In its first decades, FWI was rather limited to 2D and acous-
tic cases due to the computational cost. Nowadays, the field of applications is large – also
in 3D elastics – ranging from laboratory scales up to local scales, continental scales, and
global scales. Examples for FWI on local scales give the works of Sirgue et al. (2010) and
Schiemenz & Igel (2013), who investigate the Valhall data set with FWI, both providing
high resolutions of the territory. Colli et al. (2013) provide an example for FWI on a con-
tinental scale, where adjoint FWI is applied to data sets of the upper mantle in the South
Atlantic region. Another famous example for FWI on the continental scale is the work of
Fichtner & Villaseñor (2015), who create a full waveform tomographic model of the west-
ern Mediterranean crust and mantle. In recent years, computational resources even enabled
FWI on global scales, where examples are provided by French & Romanowicz (2015) and
Lei (2019). Note that the above-mentioned references are only some prominent examples
from a large and continuously growing pool of literature. This thesis, however, focuses on
smaller scales than the above-mentioned. In mechanized tunneling, scales ranging from a
few decades of meters to the kilometer scale are interesting. Publications in this range also
exist but are, however, less frequent. Romdhane et al. (2011) apply FWI in order to char-
acterize shallow structures. Smith et al. (2019) use their FWI approach in order to detect
an underground tunnel. The current research is concerned with even smaller scales since
the methods shall be directly validated on the laboratory scale with the aid of ultrasonic
measurements. An example in this order of magnitude is provided by Bretaudeau et al.
(2013), who apply FWI in order to reconstruct anomalies in epoxy resin models with FWI
– similarly, with the aim to draw conclusions about the performance of the algorithm on
larger scales. Another example is provided by Rao et al. (2016), who utilize FWI for the
reconstruction of wall thicknesses in aluminum plates.

Few approaches exist that are designed for an application during mechanized tunneling. A
frequency-domain adjoint gradient method for FWI in a tunnel environment is proposed by
Musayev et al. (2013). The performance of this FWI approach in the context of 2D and
3D acoustic synthetic examples is investigated in detail by Riedel et al. (2021a), who later
extend the approach to elastic wave modeling cases (Riedel et al., 2021b). Bharadwaj et al.
(2017) provide a time-domain 2D adjoint FWI approach for application in soft soil, which is
designed to be applied to 3D data directly with the help of certain transformation techniques.
The method is validated with synthetic data as well as with surrogate field experiments.
Lamert & Friederich (2018) provide another 2D adjoint FWI approach in time-domain for
application in mechanized tunneling, which is later extended to 3D (Lamert, 2019). The
approach is based on the nodal discontinuous Galerkin method, where tetrahedral elements
allow a regular meshing in the tunnel environment and thus also the implementation of a
comparatively large time step. The approach is tested on several synthetic examples as well
as on laboratory-generated data, which is generated in Trapp et al. (2019) and also used for
the validation of our FWI methods (see Chapter 6).
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1.4. Dimensionality reduction and statistical full waveform inversion

Most of the recent FWI methods are based on a gradient search within the frame of so-called
adjoint methods. These methods usually include a high number of unknowns since the mate-
rial properties are variable (e.g. at the nodes or elements) all over the model domain, where
the number of unknowns is also referred to as the dimensionality of the inverse problem.
Due to the high dimensionality, adjoint methods are in general able to supply a more or less
exact image of the subsoil. However, the occurring inverse problem is highly ill-posed with
a high number of minima in the misfit functional. As a consequence, adjoint methods are
often trapped in one of the local minima, especially if the initial model is not close to the
real model. The results of the inversion may then be blurred reconstructions with underesti-
mated material property changes. In scenarios, where due to source-receiver configurations
only reflected waves are considered (for instance in a tunneling scenario, where sources
and receivers are only placed inside the tunnel), the non-uniqueness of the inverse problem
combined with the high dimensionality makes a reconstruction of the anomaly behind the
first upcoming boundary of the anomaly (seen from seismic sources and receivers) diffi-
cult. One possibility to overcome the above-mentioned problems is to reduce the number
of unknowns of the inverse problem by implementing either a generally suitable but simpli-
fied parametrization of the subsoil model or a parametrization grounded on prior knowledge.
This dimensionality reduction or inversion parameter space reduction is central to this work.
The procedure reduces the complexity of the misfit functional, providing a smoother func-
tion. As a consequence, the risk of ending up in one of the local minima is lowered since
many of the local minima, in which classical methods may be trapped, do not exist since the
parametrization of the model does not allow them. The disadvantage of a dimensionality
reduction is that certain details are missed out if the computational model cannot approxi-
mately describe the real model due to the simplification, or, in the extreme case, a failure
of the inversion if the parametrization is not valid. However, if the computational model
with the reduced dimensionality is able to approximately describe the real model, inversion
results may be highly precise, which will be shown in the further course of this work.

A methodology which can tackle the parameter estimation of the resulting reduced model is
statistical inverse theory (e.g. Tarantola 2005). This approach considers the non-uniqueness
of the solution of inverse problems by assigning probability distributions to the model
parameters revealing which parameter configurations are certainly and which are uncer-
tainly describing a representation that is close to the true model. Prior knowledge about
measurement and modeling uncertainties may be implemented prior to inversion. Starting
from a prior guess with initial uncertainties, parameter configurations are sampled and the
model parameters and uncertainties are updated until a satisfactory small misfit functional is
reached for the current mean value of the model parameters. The result of the inverse prob-
lem is a statistical description of the model parameters. The mean value of the parameters
may then be used to define the model that is most probably representing a model which is
close to the true model. Note that, due to the finite number of parameters and due to assump-
tions and approximations, a computational model can never fully illustrate the true model
but rather output a computational model which is, if all assumptions are to large parts valid,
certainly close to the true model. The final covariance of the model parameters can be used
to perform uncertainty quantification in order to find out where anomalies may potentially
be missed or where estimated objects may be falsely imaged. The two main FWI methods
used in this work are based on the above-mentioned principles of dimensionality reduction
and statistical inverse theory based on Bayesian inference.
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Statistical inverse problems commonly require more forward simulations than gradient-
based approaches. Since forward simulations in FWI are computationally demanding, sta-
tistical FWI is usually combined with dimensionality reduction – same as in this work.
Numerous recent examples in which those two ideas are combined can be found in litera-
ture. Again, the following examples are only some recent ones out of a large pool. Statistical
FWI is often applied to coarsened velocity grids of subsoil models. Sajeva et al. (2016) use a
gridded parametrization and apply a genetic algorithm for FWI, where the final model is im-
proved with descent-based FWI. Another example is provided by Wang et al. (2019), where
the ensemble Kalman filter is integrated into a semi-random framework for FWI. Gebraad
et al. (2020) apply a Hamiltonian Monte Carlo approach to solve for gridded velocity mod-
els. Besides the approach of gridded models, also a problem-specific parametrization may
be defined. Visser et al. (2019) apply Markov chain Monte Carlo (MCMC) to a parametriza-
tion of dipping layers. Hunziker et al. (2019) apply MCMC to a reduced geostatistical model
based on relative permittivity and electric conductivity. Statistical approaches for FWI with
a problem-oriented application in mechanized tunneling are – besides the two methods ex-
plained in the following – not found in literature.

The first method to be applied in this work is unscented hybrid simulated annealing (UHSA),
introduced by Nguyen & Nestorović (2016). UHSA combines two algorithms – simulated
annealing (SA) (Kirkpatrick et al., 1983) and the unscented Kalman filter (UKF) (Julier
& Uhlmann, 2004), with SA being the global and the UKF being the local optimization
algorithm. The resulting algorithm is a non-deterministic global optimization algorithm.
The method is based on the implementation of prior knowledge in order to achieve the di-
mensionality reduction. Prior knowledge about the subsoil may be available from several
sources. As previously explained, a coarse estimation of the subsoil properties is already
provided prior to excavation when the tunnel trajectory is planned by extrapolation of the
geological situation from the Earth’s surface to its interior, additional geophysical measure-
ments, exploratory drillings and prior seismic surveys. Even before, geological maps can
provide knowledge. Another approach to gain prior knowledge is described in the three-
stage concept in Chapter 9, where a supervised machine learning algorithm provides infor-
mation. Gained prior knowledge can for instance be the knowledge about the existence of a
boulder or a layer change, with unknown/uncertain location and size or angle. In urban ar-
eas, it is also conceivable that knowledge about the existence of further obstacles like slurry
walls or steel beams is available. This knowledge may be implemented in the form of a
parametrization of the disturbance. The parametrization of a layer change could for instance
include location coordinates, angles around all spatial directions, and material properties.
A (cuboid) boulder could be specified with a parametrization defining location coordinates,
edge lengths, and material properties. With a given set of parameters, the disturbance can
then be exactly specified inside the model domain and a misfit functional can be computed.
The aim of the inversion is to find the optimal parameter configuration (which is the set of
parameters with the lowest misfit functional). Due to the global search nature of UHSA, a
parameter configuration close to the global minimum will be found if the number of cycles
is high enough and if the parametrization of the disturbance is valid. It is noted that if no
prior knowledge can be supplied, UHSA is difficult to apply.

The second method to be applied is the UKF-controlled parametric level-set method (UKF-
PaLS) introduced by Nguyen & Nestorović (2018). Two methods are combined here as
well: the UKF and the parametric level-set method (PaLS) (Aghasi et al., 2011). In con-
trast to UHSA, UKF-PaLS is a deterministic method with the UKF as the optimization
algorithm and PaLS as the parametrization algorithm used for the definition of anomalies.
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The level-set parametrization is implemented in a numerical model of the subsoil, enabling
the definition of the shapes and the material properties of disturbances. The UKF mini-
mizes the misfit functional in order to find the optimal parameter configuration of the im-
plemented parametrization. The method allows to flexibly define irregularly shaped objects
but is still based on parameter space reduction, where also prior knowledge can be imple-
mented: firstly, the region of investigation is restricted to a predefined area. Secondly, also
a resolution determining the smallest possible size of an object that still can be imaged is
implemented by the user. Thirdly, the examples in this work reduce the number of possible
disturbance materials to one. Ideas on how these criteria could be loosened if they are too
restrictive will be presented in Section 10.4.

1.5. Goals and structure of the thesis

The two major goals of this work are (1) the further development of UHSA and UKF-PaLS
and (2) their application to seismic data, where also several side goals exist, which are ex-
plained in the following. Some of the developments include the extension of the inversion
methods to 3D, the implementation of a multi-scale approach, the provision of methods for
parameter tuning and a parallelization of forward simulations. The performance of UHSA is
to be tested against other comparable global optimization methods. Furthermore, a variation
of source-receiver configurations is to be tested in order to be able to make statements about
possible configurations for field applications. Besides the application to synthetic data, a
special focus of this work lies in the application to experimental data. Since adequate field
data is difficult to obtain, a small-scale laser experiment is set up in which ultrasonic exper-
iments can be performed in order to acquire seismic data. For that purpose, special spec-
imens are constructed and excited with ultrasonic transducers in order to release seismic
waves. A laser interferometer is integrated which is capable of measuring displacements in
the nanometer range over time at different locations of the specimens, providing the data
for inversion. The idea of this procedure is to scale down the dimensions of field models in
accordance with operating wavelengths, obtaining data that is in a certain sense comparable
to field measurements. This is also the idea in the work of Bretaudeau et al. (2011), where a
similar setup is used. The usage of experimental data bears several challenges, which will be
addressed in the course of the work. Some of them are directly related to the measurement
itself, for instance it needs to be investigated how the signal quality may be maximized and
how a measurement on porous surfaces becomes realizable with the sensitive laser interfer-
ometer. Others are related to the representation of the experiment with a numerical model.
In this context, the greatest challenges lie in the characterization of material properties and
in the estimation of the transducer source function. The application of the FWI approaches
to the experimental seismic data finally shows if the methods are robust against remaining
modeling and measurement errors. The fulfillment of the main and side goals is expected to
reveal if and how the parameter reduction methods can be deployed for exploration during
mechanized tunneling.

The work is structured as follows: in Chapter 2, fundamentals of seismic wave propagation
are introduced, characterizing the forward problem and methods to find out its (numerical)
solution. Chapter 3 focuses on the inverse problem by explaining the FWI methods in detail.
The small-scale laser experiment is described in Chapter 4, including essential investigations
on repeatability, signal-to-noise ratio and the characteristics of noise. A first validation of
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UKF-PaLS with synthetic data is performed in Chapter 5, where an improved version of the
method is validated with synthetic 2D examples before it is extended to 3D. The next three
chapters include validations with experimental scenarios. The first experimental validation
of the methods is conducted in Chapter 6, where both UHSA and UKF-PaLS invert seis-
mic data acquired on an aluminum block with the aim to image a drilling. The results of
both methods are compared to the results of an adjoint approach inverting the same data.
Furthermore, UHSA is compared to particle swarm optimization. The difficulty of the ex-
perimental FWI is increased in Chapter 7, where various concrete plates with anomalies are
manufactured and investigated, bringing a more rock-like behavior. UHSA is tested on three
different inversion scenarios and compared to a genetic algorithm for one scenario. Chap-
ter 8 is the final phase of experimental investigation in this work. Here, an experimental
model, also consisting of concrete but having more similarities to a tunneling field model, is
designed. The experiment is designed in such a way that simulations may be conducted in
2D for the benefit of a shorter calculation time, allowing to make investigations on different
source-receiver configurations as well as to validate both UHSA and UKF-PaLS. Chapter 9
presents a three-stage concept, where UHSA is coupled with two different methods, namely
with an approach based on supervised machine learning and the adjoint method. The dis-
cussion part in Chapter 10 analyzes the applied methods, shows similarities between the
conducted experiments and large-scale cases, and reveals potential challenges during mech-
anized tunneling, also regarding sources and receivers and their placement. Furthermore,
the chapter presents an approach for creating a substitute metamodel for simulation mod-
els based on supervised machine learning. In the last chapter of this work, the results are
summarized and concluded.



9

2. Fundamentals of seismic wave propagation

2.1. Elastic wave equations

A wave equation is a second-order partial differential equation that describes the propagation
of waves. In the case of seismic exploration during mechanized tunneling, where a rather
small amount of energy is released by seismic sources, the soil behavior may be assumed
to be elastic – meaning that the induced strains are in the range of elastic material behavior,
for which elastic wave equations can be applied. Counter-examples are for instance large
earthquakes, where material behavior can be plastic. The aim of a forward seismic wave
propagation problem is to calculate the response of a model to a seismic signal triggered by
a seismic source. The displacement field u(x, t) (or its time derivative, the velocity field) is
the unknown to be estimated for a formulation in time-domain. Vector x specifies a location
inside the model. A synthetic seismogram is obtained by specifying a location x inside the
model and evolving the displacement during time t. With the displacement field, the strain
field ϵ(x, t) may be derived; and the strain field determines the stress field σ(x, t). The
equations that connect the external forces with stresses, strains, and displacements are the
balance of momentum in continua, Hooke’s law, and a strain-displacement relation. Detailed
information is for instance provided by Udias & Buforn (2017). The balance of momentum
for continua may be written as follows:

ρü = ∇ · σ + f , (2.1)

where ρ(x) is the density and f(x, t) are the seismic sources characterized by volumetric
forces (Igel, 2017). ∇ is the nabla operator containing the partial derivative operators in
all spatial directions. Note that seismic sources may also be characterized by a seismic
moment tensor. The stress field is calculated with Hooke’s law. In the case of linear elastic
and isotropic media, the relation

σ = λ tr (ϵ)I + 2µϵ (2.2)

applies, where λ(x) and µ(x) are the Lamé constants and where I is the identity tensor. The
strain tensor for small strains is derived by

ϵ =
1

2

[
∇u+ (∇u)T

]
. (2.3)

The three equations above make up the elastic wave equation in the displacement form
for linear elastic isotropic media. For homogeneous media with constant λ and µ, these
equations may be merged into one equation (Udias & Buforn, 2017):

(λ+ µ)∇(∇ · u) + µ∇2u+ f = ρü. (2.4)

Note that ∇2 is also referred to as the Laplace operator. A special form, the acoustic wave
equation, can be derived assuming a vanishing shear modulus. This equation describes the
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propagation of compressional waves only and may be used for the full description of wave
propagation in media like fluids and gases, but not for elastic media. For the implementation
of anisotropy, the general form of Hooke’s law

σ = C : ϵ (2.5)

needs to be considered, where the double dot denotes the Frobenius inner product and C is a
fourth-order tensor with 81 elastic constants in the 3D case. These constants can be reduced
to 21 independent elements due to symmetry conditions and thermodynamical arguments
(Igel, 2017). With symmetries of materials, the number of constants can be further reduced,
with 9 constants for an orthorhombic crystal, with 5 for a hexagonal structure, and 3 for
cubic symmetry (Mouhat & Coudert, 2014), where the most commonly used system for
seismic wave propagation if considering anisotropy is hexagonal symmetry (Igel, 2017). For
isotropic media, one obtains only two independent constants µ and λ as shown in Eq. 2.3. In
this work, no anisotropy is considered as the investigated materials (aluminum and concrete)
can be sufficiently described considering the assumption of isotropic material properties.

2.2. Boundaries

The solution of the elastic wave equations depends on the boundaries of the model. Bound-
aries may be classified into free boundaries, internal boundaries, and absorbing boundaries.
The implementation of the free and internal boundaries leads to the realization of reflec-
tion, refraction, diffraction, conversion, and scattering – phenomena, which would not occur
within an infinite homogeneous space. At a free surface, the free surface boundary condi-
tion applies, meaning that the tractions in normal directions are zero. This condition leads
to the formation of surface waves (see Section 2.3.2). At internal boundaries, the mate-
rial properties change, but the displacements and tractions remain continuous. However,
the continuity does not have to be explicitly implemented into numerical solvers, except if
fluid-structure implementations are utilized (Igel, 2017). The last category of boundaries,
the absorbing boundary conditions, are implemented in order to decrease the size of the
computational model. Instead of designing a large model in a way that no reflections arrive
at seismic receivers from free boundaries, which limit the computational model, absorbing
boundaries may be implemented. The aim of the implementation is that no reflections arise
from these boundaries. The implementation of efficient absorbing boundaries has been in-
tensively researched and a large number of methods have been developed (Igel, 2017). Very

free absorbing internal

Figure 2.1.: Schematic illustration of free, internal, and absorbing boundaries in a 2D shal-
low tunnel environment including a boulder. For deep tunnels, the top boundary
would obtain absorbing boundary conditions.
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widely used are perfectly matched layers (PMLs), originally implemented by Berenger et al.
(1994). This method features a high effectivity, meaning that the absorption is high while
reflections are low; however, a drawback is an increase of computation time. For the ex-
amples in this work (where absorbing boundaries are only used for the synthetic examples),
Stacey absorbing boundary conditions (Stacey, 1988) are utilized, which are less effective
than PMLs (meaning that slight reflections occur) but require smaller computational capac-
ities. The boundaries can be selected in the forward wave propagation codes that will be
used in this work (see Section 2.5.1). Figure 2.1 illustrates the boundaries in a typical tun-
neling simulation model in 2D with a rectangular-shaped boulder. The same rules apply to
3D structures. Free surfaces are implemented at the air-soil interfaces and consequently at
the Earth’s surface as well as at the tunnel walls. Absorbing boundaries are assigned to all
other outer boundaries since in those directions, seismic waves spread further. Their im-
plementation induces the assumption that no reflections arrive at the receivers from outside
of the boundaries in the corresponding real model, which is to be considered by the user.
The illustration applies to shallow tunnels, where the top boundary is the Earth’s surface.
Considering deep tunnels, the top boundary would obtain absorbing boundary conditions.

2.3. Types of seismic waves

The solutions of the wave equations are superpositions of different types of waves. Basically,
seismic waves may be categorized into body waves, which travel through the interior of the
earth, and surface waves, which travel along the surface of the earth. The following two
subsections cover the fundamentals of body waves and surface waves, respectively. Once
more it is noted that detailed information is for instance provided by Udias & Buforn (2017).

2.3.1. Body waves

The solution of a wave propagation problem in infinite homogeneous elastic media consists
of two types of seismic waves – compressional or primary waves (P-waves) and shear or
secondary waves (S-waves). P-waves are the fastest occurring waves, vibrating longitudinal
in direction of wave propagation with velocity

vp =

√
λ+ 2µ

ρ
. (2.6)

S-waves are transverse waves, vibrating perpendicular to the direction of wave propagation
with velocity

vs =

√
µ

ρ
. (2.7)

They may be partitioned into horizontally polarized (SH-waves) and vertically polarized
(SV-waves) components. In classical mechanics, often, the Young’s modulus E and the
Poisson’s ratio ν are utilized to describe linear elastic isotropic materials. These parameters
may be derived from the Lamé parameters as follows:

E =
µ(3λ+ 2µ)

λ+ µ
, ν =

λ

2(λ+ µ)
. (2.8)
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The Poisson’s ratio can be derived from the body wave velocities as follows

ν =
v2p − 2v2s
2(v2p − v2s )

. (2.9)

A widely-specified range of the Poisson’s ratio is 0 < ν < 0.5, although there exist very few
materials with a negative Poisson’s ratio. A common range for rock materials lies between
0.2 and 0.3, and nearly all kinds of rocks are covered within a range of 0.05 < ν < 0.45
(Gercek, 2007). The Poisson’s ratio will later be used in order to check if pairs of wave
velocities are reasonable and in order to set limitations during the inversion.

2.3.2. Surface waves

A different type of seismic waves are surface waves. If body waves arrive at a free surface,
a part of the energy is transformed into surface waves. With propagating distance x, the
energy of body waves decays with 1/x2 due to geometrical spreading, where the energy of
surface waves decays only with 1/x. This is the reason for the property that surface waves
are typically most destructive during an earthquake. The most important types of surface
waves are Rayleigh- and Love-waves. Rayleigh waves travel a little slower than shear waves
with elliptical but significantly higher particle motion, causing distinctly higher amplitudes
on the surface in vertical direction than body waves. The Rayleigh wave velocity may be
estimated as follows (Freund, 1998):

vr = vs ·
0.862 + 1.14ν

1 + ν
. (2.10)

Thus, for a variation of ν between 0 and 0.5, the Rayleigh wave velocity varies between
0.862 vs and 0.955 vs. Moving particles excited by Love waves vibrate perpendicular to the
direction of wave propagation with horizontal polarization. Love waves only exist in layered
media (Igel, 2017, p. 30) (and consequently, they do not exist in a homogeneous half space)
with a velocity lower than P- and S-waves but higher than Rayleigh-type surface waves.

2.4. Phase velocity, group velocity and dispersion

There are two types of velocities to be distinguished – the phase velocity and the group
velocity. The phase velocity is the velocity, with which the phase of a single frequency
component of the wave travels. The phase velocity is given as

vphase =
λ

T
= λf, (2.11)

where λ is the wavelength, T is the time period and f the frequency component. If the phase
velocity is a function of frequency, the medium is said to be dispersive. This is for example
the case in attenuating media. Furthermore, surface waves are dispersive in layered media;
in a homogeneous half space they are non-dispersive (Igel, 2017, p. 30). As a consequence
of dispersion, the different frequency components of the wave travel with different veloci-
ties. The group velocity is the velocity, with which the overall shape of the amplitudes of
the waves (the envelope) propagate through the domain. Despite physical dispersion, there
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exists numerical dispersion. Numerical dispersion is an unwanted effect that occurs if the
model is discretized with an insufficient number of grid points per wavelength (Fichtner,
2010). This effect should be avoided with an adequate meshing, which is described in the
next section.

2.5. Numerical solution

In order to compute forward seismic wave propagation, an adequate scheme needs to be
selected. Analytical solutions only exist for special cases, for example for a homogeneous
full- or half-space. Besides analytical methods, there are seismic methods that are based on
certain assumptions, where a prominent example is ray theory. The drawback of this method
is that it only works for smooth media and in the case that inhomogeneities are consider-
ably larger than the operating wavelengths (Fichtner, 2010). In the context of full waveform
inversion, the full waveform for complex media is required, where a solution for the set of
partial differential equations Eq. 2.1-Eq. 2.3 can only be provided with the aid of numerical
methods. There are numerous numerical methods that have advantages and disadvantages;
this section focuses on a description of the fundamentals of the spectral element method
and the method from which it originates, the finite element method. Other methods which
were intensively used were the finite difference method, which was the first method that was
widely applied, the pseudospectral method, and the discontinuous Galerkin method. The
first two methods lost their popularity since they suffer from certain disadvantages, where
for instance the finite difference method requires a high number of grid points while the
pseudospectral method shows problems facing parallelization. However, the most signif-
icant disadvantage of both methods is the restriction to comparatively smooth geometries
(Fichtner, 2010; Igel, 2017). Although the pseudospectral method is rarely used nowadays,
a basic idea of this method was implemented in the spectral element method, which is the
idea of using a specific set of collocation points for interpolation inside the elements (Igel,
2017), which will be referred to below. The discontinuous Galerkin method is, same as the
spectral element method, still widely used and will also be shortly introduced in the course
of the following text.

The finite element method (FEM) overcomes the main weakness of the finite difference
method and the pseudospectral method with the ability to describe complex structures. Since
it is able to deal with various boundary conditions, it is a widely used method, especially for
engineering applications, where probably the largest fields are structural and solid mechan-
ics for stress and strain calculations. Other related fields are fluid mechanics, heat transfer,
electromagnetics, geomechanics, and numerous more. As previously explained, the un-
knowns of interest (so-called field variables) are governed by partial differential equations.
These equations, together with the boundary conditions, are referred to as the strong form.
It is noted that, considering the wave equations Eq. 2.1-Eq. 2.3, the assumption that the
displacement is not dependent on time directly leads to the governing equations of static
elasticity. The starting point of FEM is the formulation of an integral form of the wave
equation multiplied with so-called test functions. This form is referred to as the weak form.
The spatial model is discretized with non-overlapping elements connected at nodes. The
gain of this discretization is that the partial differential equations do not have to be defined
continuously but only over a finite number of discrete elements. Inside the elements, the
displacement field is computed with a linear combination of basis functions with the same
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shape as the test functions, where this procedure is called the Galerkin method. Substituting
this formulation of the displacement field into the weak form of the differential equation, the
latter becomes a matrix equation for each element. These matrix equations are assembled
into one large matrix equation, which is then solved with linear algebra methods respective
to the induced boundary conditions. The matrix to be inverted is either a stiffness matrix or
a mass matrix, where in the case of static elasticity the stiffness matrix needs to be inverted.
Usually, for time-dependent problems, a finite difference scheme is implemented for the
second time derivative of the displacement field, which then enables to propagate the equa-
tions with time in order to compute time-dependent wave propagation. In this case, the mass
matrix needs to be inverted, which typically is sparse and banded in FEM, but not diagonal.
Detailed information regarding FEM is for instance provided by Zienkiewicz et al. (2005).
In its classical formulation, FEM is rarely used for waveform modeling. The reasons for
that lie in a large numerical dispersion resulting from low-order polynomial approximations
inside the elements as well as in large computational expensiveness (Fichtner, 2010) com-
pared to the method described in the following, which reduces the computational effort with
a formulation that leads to a diagonal mass matrix.

2.5.1. The spectral element method

The spectral element method (SEM), which is sometimes also referred to as the spectral
finite element method, is a formulation of the FEM with ideas used in the pseudospectral
method. Same as in FEM, the wave equation is solved in its weak form and the displace-
ment field is computed with a linear combination of basis functions inside the elements.
The fundamental difference lies in the shape of the basis functions, where high-order poly-
nomials are used inside the elements. Often (and also in the codes that are utilized in this
work), Lagrange polynomials are used as basis functions. These polynomials are collocated
at the so-called Gauss-Lobatto-Legendre (GLL) points and a method called Gauss-Lobatto-
Legendre quadrature is utilized in order to approximate the integrals of the weak form of
the differential equation. The great advantage of this procedure is that the mass matrix that
needs to be inverted in the forward problem becomes diagonal for quadrilateral (2D) and
hexahedral (3D) meshes. The spectral element method is not restricted to quadrilateral or
hexahedral elements per se, but for geometries that may not be meshed with these kinds of
elements but with tetrahedrons, discontinuous Galerkin methods are more commonly used.
These methods are also formulations of the FEM based on the Galerkin principle, where
certain discontinuities at the element boundaries are allowed by the implementation of nu-
merical fluxes (Fichtner, 2010). Back to SEM, the advantage of a diagonal mass matrix for
quadrilateral or hexahedral elements lies in its trivial inversion and thus in a reduction of
computational demand. Since all spatial models in this work can be meshed with quadri-
laterals or hexahedrons, 2D simulations are performed with SPECFEM2D (Tromp et al.,
2008) and 3D simulations with SPECFEM3D (Komatitsch et al., 2012). Both codes are
open-source. The meshing of the 2D spatial models is conducted with the open-source pro-
gram Gmsh 2.10.1 (Geuzaine & Remacle, 2007), while the meshing of 3D spatial models
is performed with Trelis 15.2 (American Fork, 2015). In order to ensure that all frequen-
cies of interest are contained in the numerical solution and that the time stepping is stable,
an adequate meshing and the selection of an appropriate time step is necessary. According
to Komatitsch & Vilotte (1998), who are among others the founders of SPECFEM2D and
SPECFEM3D, a grid sampling of about 5 points per minimum wavelength is found very ac-
curate for SEM. Since the predefined number of GLL points on an element edge in the two
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codes is NGLL,edge = 5, the basis for the mesh generation in this work is

∆hmax <
vmin

fmax

(2.12)

since in this case, at least 5 points per minimum wavelength are used. ∆hmax is the largest
occurring element edge length in the mesh (specified by the smallest occurring wavelength)
and vmin is the smallest occurring wave velocity in the model. fmax is the highest significant
frequency defining the upper bound of the frequency range of interest, meaning that if the
mesh size is chosen so that Eq. 2.12 is fulfilled, all frequencies are incorporated adequately
by the mesh with at least 5 points per minimum wavelength. Komatitsch & Vilotte (1998)
propose to set fmax at least to the frequency at which the spectral amplitude falls to 5% of
the maximum spectral amplitude of the source function, which, for the Ricker wavelet, is
the case at about fmax = 2.5f0. For the Ricker wavelet, more than 99% of the energy of the
Ricker source function is contained within the frequency range of 0 and fmax = 2.5f0. Both
SPECFEM2D and SPECFEM3D output the maximum resolved frequency, which is used as
a control value in order to check if the meshing is performed accurately. The condition for
the time step is the Courant-Friedrichs-Lewy criterion

∆t < C · ∆xmin

vmax

, (2.13)

where ∆t is the time step for the numerical simulation, C is the Courant (or CFL) number,
vmax is the maximum occurring wave velocity in the model and ∆xmin is the smallest oc-
curring grid interval in terms of the collocation points. The SPECFEM-codes try to evaluate
the optimal value of ∆t for empirically chosen Courant numbers C ≈ 0.3 as described in
the SPECFEM3D user manual (Computational Infrastructure for Geodynamics, 2020, p.30).
When generating the databases, a maximum time step is suggested. A slightly lower value
is used as the basis for the implementation of the time steps in this work.

2.6. Attenuation

In nature, propagating seismic waves continuously lose energy, for instance due to friction,
converting the energy of motion into heat. This so-called intrinsic attenuation is measured
with the dimensionless quality factor Q, which is defined as the ratio of the energy of the
seismic wave per cycle to the energy loss per cycle as follows (Igel, 2017):

Q = −2πE

∆E
, (2.14)

where E is the peak strain energy and ∆E the energy loss per cycle. Hence, attenuation
increases with decreasing values of Q. Typical values range from 10 to several 1000 in the
Earth’s crust and mantle. Knopoff (1964) gives examples for possible values of sandstone
(Q ≈ 21), limestone (Q ≈ 110) or aluminum (Q > 10000); however, general values for Q
cannot be given as the values differ strongly due to microcracks, pressure, dry or saturated
state, weathering and numerous other aspects (Barton, 2006). The quality factor typically
increases with increasing velocity – therefore, most often two Q-factors are given, which
correspond to the attenuation of P-waves (Qp) and to the attenuation of S-waves (Qs) and
which are usually considered independent of frequency. In SPECFEM2D and SPECFEM3D,
the quality factors are specified with bulk (Qκ) and shear (Qµ) attenuation. Thereby, Qµ
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is equal to Qs and Qκ can be transformed to Qp as described by Dahlen & Tromp (1998,
p. 350). The decay in amplitude for a monochromatic plane wave is given as follows (Igel,
2017, p. 23)

A(x) = A0e
−
fx

2vQ , (2.15)

where A0 is the initial amplitude, f the frequency of the plane wave, v the propagation
velocity and x the propagation distance. The formula shows that amplitudes with high
frequencies are more damped than amplitudes with lower frequencies, consequently altering
the shape of the waveform. As a possible example for tunneling scenarios, Figure 2.2 shows
the decay of the amplitude in terms of a relative amplitude in dependency of the propagated
distance of the wave with an exemplary wave velocity of v = 3000 m

s
and a frequency

f = 200Hz for a variation of quality factors between 20 and 1000. The idea for the figure
is inspired by Igel (2017, p. 23). The curves and the formula show that the amplitude decay
caused by attenuation is strongly dependent on the intrinsic attenuation of the investigated
material, the frequencies applied and the propagated distance of the seismic wave, which is
proportional to the time the wave propagates. Applying no attenuation could be conceivable
for scenarios in e.g. hard rock with small intrinsic attenuation, smaller frequencies, and short
periods of investigation. Otherwise, Q-factors will have to be determined experimentally.
For the examples in this work, the observed time periods will be rather short, most notably
due to the high computational effort of simulations. For this reason, no attenuation needs to
be applied. For the example of the concrete block in Chapter 8, a variation of Q-factors will
be tested and it will be found that the numerical simulation fits better to the measurements
if no attenuation is applied.
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Figure 2.2.: Amplitude decay due to attenuation for variations of Q =
{20, 50, 100, 200, 500, 1000} (from the bottom curve to the top curve) for
a scenario with plane wave velocity v = 3000 m

s
and frequency f = 200Hz.

The idea for the figure is inspired by Igel (2017, p. 23)
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3. Methodologies – Full waveform inversion with Bayesian
methods

Given a reliable description of a physical system, measurements can be predicted with a
model. This is the task of the so-called forward problem, in which the causes are known
and the effects are calculated. As previously mentioned, a forward simulation in the applied
context is the numerical simulation of the propagating waves for a certain numerical model.
In an inverse problem, effects are recorded in order to calculate their causes. Measurements
are inverted with the aim to find the parameters that characterize the physical system. In
the case of FWI, seismic waveform measurements are given as a basis for the determina-
tion of the inner structure of the soil. The aim is to find a numerical model that describes
the anomalies inside the observed domain sufficiently well. For that purpose, typically a
large number of forward simulations needs to be performed. The inversion process may be
subdivided into the following three steps (Tarantola, 2005):

1. Parametrization of the model: choose parameters that are able to sufficiently describe
the system

2. Forward modeling: set up a numerical model in order to be able to calculate the
synthetic waveforms for a given set of parameters

3. Inverse modeling: change the set of parameters in a way that differences between
measurements and synthetic waveforms, expressed by the misfit functional, are mini-
mized

The part of the numerical model, whose material properties remain unchanged during inver-
sion and hence maintain initial material properties, is referred to as the background domain
in the following. The other part is referred to as the disturbance domain. The two re-
gions in sum constitute the model domain. In a first step, a parametrization of the model
m ∈ Rn (where n is the number of model parameters) is selected, which shall be able to
sufficiently describe the anomalies inside the model domain. As explained in Section 1.4,
the parametrization of the disturbance is, for the examples in this work, dependent on the
method used as well as on available prior knowledge. Once a parametrization of the distur-
bance is selected, a forward model is constructed. Forward modeling consists, for instance,
of the assignment of material properties, the implementation of boundaries, the meshing,
and their implementation in the numerical solver. For the experimental case, e.g. also ge-
ometries, material properties and the source function are to be determined and implemented.
The parametrization and the forward modeling are dependent on the specific inversion prob-
lems and therefore are discussed in the chapters treating the application scenarios. The task
of the inversion algorithm is to find a set of parameters, which describes the disturbance
domain sufficiently well, or which, in other words, minimizes the misfit functional. A spec-
ified set of parameters will also be referred to as a parameter configuration or as a sample in
the following.
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FWI problems are ill-posed problems (Virieux & Operto, 2009) since their solution can be
non-unique – there may be different distributions of material properties that give the same
or a similar prediction of the measurement at a seismic receiver. The strategy which is
applied in this work in order to deal with the non-uniqueness is the previously described
dimensionality reduction (see Section 1.4), which is the main difference to classical adjoint
FWI methods and which may also be referred to as regularization through parametrization.
In order to find a parameter configuration close to the global minimum, the application of
a multi-scale approach may be necessary, referring to a method which implements a low-
pass filter with a stepwise increasing cutoff frequency (see Section 3.5). By resolving larger
structures in early iterations and smaller structures in later iterations, chances increase that
the inversion converges to a solution close to the global minimum. The term which expresses
how well the reference model generally can be reconstructed out of the seismic data is
referred to as the resolution, which is mainly affected by data coverage, data quality, and
applied frequencies (Fichtner, 2010). In order to achieve a high resolution, it is important
that the region of interest is well covered with seismic sources and receivers (or, in other
words, that sources and receivers are rather close to the region of interest) and that output
traces are of high quality. If these criteria are fulfilled, FWI can generally bring a resolution
of about half a wavelength of the operating waves (Virieux & Operto, 2009). Whether
the computed representation is realistic or not then depends to a large part on the chosen
description of the physics of the model and on the chosen parametrization in the frame of
the dimensionality reduction.

The working principles of UHSA and UKF-PaLS are already explained in Section 1.4. The
current chapter focuses on the detailed mathematical formulation of the methodologies. Sec-
tion 3.1 focuses on the Bayesian formulation of the inverse problem, including the formu-
lation of the misfit functional. As the UKF is a relevant ingredient for both FWI methods,
the UKF is discussed in Section 3.2 before the two FWI methods are explained. Section 3.3
discusses the first FWI method, UHSA and Section 3.4 deals with the second FWI method,
which is UKF-PaLS. Subsequently, the multi-scale approach is addressed (Section 3.5) be-
fore it is explained how the input parameters of the two methods may be tuned (Section 3.6).

3.1. The statistical inverse problem

Instead of using a gradient-based formulation, the inverse problem may be formulated with
the help of Bayesian inference, sometimes referred to as the statistical inversion approach
(Kaipio & Somersalo, 2006). Bayesian inference is the key concept of Kalman filters. The
approach tries to tackle the problem of the non-uniqueness of inverse problems, outputting
a complete statistical description of the parameter values via the posterior probability dis-
tribution, considering uncertainties in the data, in the model, and in prior estimates (Martin
et al., 2012). The Bayesian approach is based on updating a prior probability distribution of
the model parameters with new information in order to produce a posterior model estimate.
This posterior probability density function expresses the degree of confidence in m for rep-
resenting a model close to the real model with output dobs (which is, in the context of FWI,
waveform data measured at seismic receivers) and is given as (Gebraad et al., 2020):

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
. (3.1)
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p(m) is the prior probability density function of the model parameters which represents the
confidence in prior information on the model parameters independent of the observations
(Martin et al., 2012). The term p(dobs|m) is called the likelihood and is the probability
that the observed data dobs can be reproduced with the model m. The denominator is a
normalization factor referred to as the evidence, where p(dobs) =

∫∞
−∞ p(dobs|m)p(m)dm.

This term secures that the posterior probability density function is a true probability density
function integrating to one (Hunziker et al., 2019). Since only relative probabilities are
relevant for our case and since the term is difficult to compute, Eq. 3.1 can be rewritten as
follows:

p(m|dobs) ∝ p(dobs|m)p(m), (3.2)

where ∝ denotes proportionality. The likelihood can be written as an exponential of a misfit
functional S(m) (Eq. 3.6) as

p(dobs|m) ∝ e−S(m). (3.3)

Kalman filters maximize the posterior probability density function for multivariate normal
distributions. According to Eq. 3.2 and Eq. 3.3, the maximization of the posterior is equiv-
alent to a minimization of the misfit function. In this work, the misfit functional sj ∈ R
between a measured and synthetic seismogram at a receiver location xj with j ∈ {1, 2, .., r}
is defined as

sj(m) =
1

2

∫ T

0

(h(m,xj, t)− dobs(xj, t))
2dt, (3.4)

where h(m,xj, t) stores the model outputs for a given parameter configuration m during
the time window t ∈ [0, T ] and where dobs(xj, t) is the corresponding measurement. r is the
number of receivers, also including measurements from varying sources. The misfit vector
includes the misfit functionals at all seismic receivers as follows:

s(m) = {s1, s2, · · · , sr}. (3.5)

A total value of the misfit functional can be obtained by summing up the vector components
according to:

S =
r∑

j=1

sj. (3.6)

In the next section, the unscented Kalman filter is introduced, which is, as already stated, a
recursive Bayesian filter for multivariate normal distributions.

3.2. The unscented Kalman filter (UKF)

The UKF (Julier & Uhlmann, 1997) is a state estimator for parameters of nonlinear dynamic
state-space models. A large field of application is the state estimation of time-dependent
systems; however, by reformulation of the state-space representation, it can also be used
for parameter estimation of stationary systems. Furthermore, the UKF can be used for the
estimation of system parameters that may not be directly measured. This also applies to
the scenarios in this work, where the observed waveforms are an indirect measure for the
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inner structure of the subsoil. The reformulation of the estimation problem is performed in
such a way that the state vector is composed of the parameters describing the disturbance
zone, where those parameters are affecting the value of the misfit functional. The UKF shall
be applied in order to find the optimal state, that is the set of parameters m for which the
components of the misfit vector s are minimized. The UKF is an extension of the Kalman
filter (Kalman, 1960), which is named after Rudolf E. Kálmán. The original Kalman filter
is limited to linear systems. The most commonly used extensions of the Kalman filter for
the estimation of nonlinear systems are the extended Kalman filter (EKF) and the UKF.
EKFs essentially linearize the function to be estimated around the current mean, resulting
in a poor approximation for highly nonlinear systems. UKFs operate differently – instead
of calculating Jacobians, UKFs approximate a probability distribution with the so-called
unscented transform. Simon (2006) gives a detailed description of various algorithms of the
Kalman filter family. The procedure of the UKF may be abstracted in a simplified way:

1. select certain parameter configurations (so-called sigma points)

2. propagate sigma points through the nonlinear function (compute misfit functionals)

3. calculate mean and covariance of the sigma points and of the propagated sigma points
and their cross covariance

4. update mean and compute covariance of the new guess

Related to the FWI problem in this work, the method can be explained as follows: Starting
from the current state or mean, which is the current parameter configuration describing the
disturbance domain in the numerical model (and which is to be optimized), a set of sigma
point vectors is defined. The current state is the first sigma point vector, the other sigma point
vectors are parameter vectors distributed around the mean. The distribution is dependent on
the covariance of the mean value, which is either calculated in the previous UKF run or,
prior to the first run, initialized. Thereupon, each of the sigma points is propagated through
the numerical simulation so that for each of the sigma points, a misfit vector is obtained,
containing the misfit functionals at each seismic receiver. With the help of these vectors,
a mean and covariance of the misfit vectors is computed. On the basis of the mean and
covariance of the sigma points, the mean and the covariance of the misfit vectors, and the
cross-covariance of sigma points and misfit vectors, a new mean and covariance is calculated
– seeking to minimize the misfit at each receiver. This new mean and covariance are utilized
for the next Kalman filter run. In order to use the UKF for parameter estimation, a pseudo-
dynamic state-space representation is formulated as follows (Attarian et al., 2013):

mk = mk−1 +wk−1, (3.7)
sk = s (mk) + vk, (3.8)

where mk ∈ Rn is the searched state which is assumed to be a stationary process with
process noise wk−1 ∈ Rn and where the calculation of s(mk) ∈ Rr follows the definition
in Eq. 3.5. vk ∈ Rr includes the summed modeling and measurement uncertainty. Both
vk ∈ Rr and wk−1 ∈ Rn are assumed to be drawn from a zero-mean multivariate normal
distribution p(wk) ∼ N (0,Q) and p(vk) ∼ N (0,R). The process noise covariance ma-
trix Q and the modeling and measurement covariance matrix R are fixed during Kalman
filtering. R can be understood as a summation of a measurement uncertainty Rmeas and a
modeling uncertainty Rmodel according to R = Rmeas + Rmodel (Tarantola, 2005). With
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this quantity, prior knowledge about these uncertainties may be implemented. Matrix Q is
set in order to add an amount of Gaussian noise to the covariance of the parameters and
therefore has an impact on the spread of the sigma points during the UKF process. Tuning
this matrix, the user can prevent the distances between the sigma points from becoming too
small during the inversion process. The tuning of the matrices Q and R and the various
other parameters is described in Section 3.6. The UKF operates as follows. A set of 2n+ 1
sigma-point vectors m̃i (parameter configurations) is computed:

m̃0 = m̂, (3.9)

m̃i = m̂+
(√

(n+ κ)Pm
)
i
, for i = 1 : n, (3.10)

m̃n+i = m̂−
(√

(n+ κ)Pm
)
i
, for i = 1 : n, (3.11)

where m̂ is the current state with n model parameters and covariance Pm. (·)i is the i-
column of the matrix. Cholesky factorization is used to calculate the square root of Pm.
For the first cycle, the quantities are initialized to m̂ = m0, and Pm = Pm

0 in the form
of a Gaussian distribution p0(m) ∼ N (m0,P

m
0 ). The parameter κ is a scaling factor that

has an impact on the spread of the sigma points and can be used to fine tune the higher
order moments of the mean and covariance approximation in order to reduce the overall
prediction error (Simon, 2006; Julier & Uhlmann, 2004). Its values can be defined by the
user where both positive and negative values are explicitly allowed. However, Julier et al.
(2000, Appendix I) suggest to tune it to κ = 3−n since in this case, the differences between
the moments of a normal distribution and the sigma points are minimized up to the fourth
moment. Note that if this relation is applied, the respective term n+κ in Eq. 3.9 and Eq. 3.13
amounts to 3. Misfit vectors s̃i are calculated by evaluation of Eq. 3.4 at each sigma-point:

s̃i = s (m̃i) , for i = 0 : 2n, (3.12)

so that for each sigma-point, a misfit vector s̃i ∈ Rr containing the misfit values at each
seismic receiver r is obtained. Each sigma-point is associated with a weight Wi so that the
sum of the weights is one:

W0 =
κ

n+ κ
,Wi = Wi+n =

1

2(n+ κ)
, for i = 1 : n. (3.13)

The mean of the misfit is approximated by weighted summation of the misfit vectors:

ŝ =
2n∑
i=0

Wis̃i. (3.14)

The covariance of the parameters Pm, the covariance of the misfit P s and the cross-covariance
Pms between the two covariances is updated as follows:

Pm =
2n∑
i=0

Wi (m̃i − m̂) (m̃i − m̂)t +Q, (3.15)

P s =
2n∑
i=0

Wi (s̃i − ŝ) (s̃i − ŝ)t +R, (3.16)

Pms =
2n∑
i=0

Wi (m̃i − m̂) (s̃i − ŝ)t . (3.17)



22 3. Methodologies – Full waveform inversion with Bayesian methods

The posterior mean m̂+ and its covariance Pm
+ are calculated as follows:

m̂+ = m̂+K (smin − ŝ) , (3.18)
Pm

+ = Pm −KP sKt, (3.19)

with the Kalman gain

K = Pms (P s)−1 . (3.20)

smin − ŝ is the innovation term and smin is the expected minimum misfit which can be set
to zero or tuned as described in Section 3.6. For both of the upcoming methods, the UKF
is usually run multiple times with number Nk in each cycle to increase the accuracy of the
state estimation.

3.3. Method 1: Unscented hybrid simulated annealing (UHSA)

This section deals with UHSA, which is one of the main FWI methods used in this work.
UHSA is introduced and applied to synthetic data by Nguyen & Nestorović (2016). Appli-
cations to experimental data follow in Trapp et al. (2019), Trapp & Nestorović (2020), and
Trapp & Nestorović (2021). UHSA is a global optimization technique, which combines the
metaheuristic search algorithm simulated annealing (SA) with the UKF. SA operates as the
global search algorithm, while the previously explained UKF serves for local minimization.
Kirkpatrick et al. (1983) introduce SA into statistical mechanics, whereas the underlying
procedure, the Metropolis algorithm, was founded early by Metropolis et al. (1953). The al-
gorithm is based on calculating an energy change to decide if the sampled point is accepted
or not – or, related to the FWI problem, on calculating a misfit difference in order to decide
if the parameter configuration is accepted or not. SA is explained in the context of UHSA
directly in order to achieve a better understanding for the overall method. A simplified il-
lustration of the principle of UHSA is shown in Figure 3.1. Firstly, a parametrization of the
disturbance domain m is to be implemented in the numerical model. For instance, if prior
knowledge allows the assumption of an occurring boulder with cuboid shape somewhere in
the model domain, its parametrization could consist of location coordinates, spatial dimen-
sions, and material properties. A specific parameter configuration then defines the distur-
bance, for which a numerical model is set up. After performing the corresponding numerical
simulation, the output waveforms are used to compute a misfit functional. UHSA seeks to
find a parameter configuration which corresponds to the global minimum of the misfit func-
tional (Eq. 3.6). For the inversion examples of this work, the model is remeshed for every
new sample. Prior to inversion, the user may either select an initial parameter configuration
or set random values. For this configuration, the misfit functional is calculated, expressed
by point (1) in Figure 3.1. Thereupon, the UKF is run for a predefined number of cycles in
order to reach a parameter configuration with a lower misfit functional (1'). In a next step,
SA proposes the next parameter configuration, for which the misfit functional is calculated
(2). The further the progress of UHSA, the closer the proposed parameter configuration sta-
tistically is to the current parameter configuration (1'), which is the parameter configuration
with the minimum misfit found up to that point. The new sample (2) is accepted although
the misfit functional is less favorable than the current result. This is one of the key concepts
of SA (and therefore also of UHSA), leading to a more intense exploration of the misfit
landscape. The probability of acceptance of a worse solution decreases with the progress of
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Figure 3.1.: Concept of UHSA illustrated on the example of three cycles. The curve visu-
alizes a misfit functional over possible parameter configurations. The accepted
sample and therefore also the initial sample of the UKF is illustrated with the
empty green dot, the determined sample after UKF minimization is illustrated
with the filled green dot. The red dot visualizes a rejected UHSA cycle.

UHSA as well as with an increasing misfit functional compared to previous average misfit
functionals. After local minimization (2'), a next random sample (3) is proposed. In this
case, the sample is rejected since the probability of acceptance is lower due to the further
progress of UHSA and because the misfit functional is high compared to previous average
misfit functionals. The next proposed parameter configuration (4) lies in the global mini-
mum region and due to its comparatively low misfit functional, it is accepted. After UKF
minimization, a parameter configuration close to the global minimum is found. Note that in
a real UHSA inversion, the number of UHSA cycles is selected much higher. The higher the
number of UHSA cycles, the higher the probability a parameter configuration close to the
global minimum is found.

The algorithm is constructed as described below, following the description of Nguyen &
Nestorović (2016) to large parts. The progress of the inversion is expressed by the so-called
annealing temperature. This quantity plays a key role in proposing a parameter configuration
as well as in determining a probability of acceptance. In this work, the cooling schedule is
selected to be linear as proposed by Blum & Roli (2003):

Tc = ζTc−1, (3.21)

where Tc is the annealing temperature in cycle c and where the cooling parameter ζ ∈
(0, 1) is free to tune. However, for the purpose of an intuitive selection of ζ , the annealing
temperature in the first cycle T0 and the annealing temperature in the last cycle Te are tuned
by setting the probability of acceptance for a slightly worse solution in the beginning of
UHSA and the probability of acceptance for a slightly worse solution in the end before
calculating ζ:

Te = − 1

ln(pe)
(3.22)

T0 = − 1

ln(p0)
, (3.23)

ζ = (Te/T0)
1/(Nc−1.0)). (3.24)
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Nc is the number of UHSA cycles set. As previously mentioned, prior to the first cycle,
the user can either set a random sample or select a parameter configuration incorporating
prior assumptions. Based on this sample, the UKF conducts a local search for a predefined
number of cycles. The following cycles start with a parameter configuration proposal

mci = mmini + yi (Ui − Li) , (3.25)

where mmin is the parameter configuration with the lowest misfit functional (Eq. 3.6) up to
the current UHSA cycle. Ui and Li contain the upper and lower boundaries for the parameter
configuration mci with i = 1, .., n, where n is the number of parameters. yi ∈ [−1, 1] is the
parameter determining how close the proposed parameter configuration is to the current
parameter configuration. Based on a proposal by Ingber (1993), it is set to

yi = sgn
(
ui −

1

2

)
Tc

[(
1 +

1

Tc

)|2ui−1|
− 1

]
, (3.26)

where ui ∈ [0, 1] is the uniform distribution variable. As the current annealing temperature
decreases with the progress of UHSA, yi decreases as well, meaning that (as already referred
to above) proposed parameter configurations are statistically closer to the current parameter
configuration with increasing progress of UHSA. Eq. 3.25 is repeated until all components
of mc are in between the allowed bounds of U and L. If the misfit of the proposed parameter
configuration Sc is smaller than the lowest misfit computed up to that point Smin, the sample
is accepted for local minimization with the UKF. Otherwise, a probability of acceptance is
calculated similarly to the proposal by Balling (1991)

P = exp
(
− ∆S

∆S Tc

)
, (3.27)

where ∆S = Sc−Smin is the misfit difference between the proposed move and the parameter
configuration with the lowest misfit value up to that point. ∆S is the average of all ∆S

Algorithm 1: UHSA
// Initialization
General settings for UHSA: m0, U , L, Nc, p0, pe
Settings for the UKF: Nk, Pm

0 , R, Q, smin,
// run Nc cycles of SA
for j = 1..Nc do

Select random configuration mc according to Eq. 3.25
Calculate acceptance probability P according to Eq. 3.27
Compute uniform distribution variable ui ∈ [0, 1]:
if ui < P or Sc < Smin then

// Run the UKF for Nk iterations
Set initial estimate for the UKF m̂0 = mc

for k = 1..Nk do
m̂k,Pk = UKF (m̂k−1,Pk−1,R,Q)

end
end
In the case of an improvement, store new mmin

Lowering temperature Tc: Eq. 3.21
end



3.4. Method 2: UKF-controlled parametric level-set method (UKF-PaLS) 25

computed by then. With the help of the probability of acceptance, it is decided (computing
a random variable) if the current parameter configuration is accepted for local minimization
with the UKF. If it is accepted, UKF is run for Nk cycles. If not, the next UHSA cycle is
started. At the end of every UHSA cycle, the annealing temperature is lowered according to
Eq. 3.21. The algorithm is summarized in Algorithm 1. The quantities to be tuned for UHSA
are m0, U , L, Nc, p0, pe, Nk, Pm

0 , Q, R, smin where the last five parameters correspond to
the UKF.

3.4. Method 2: UKF-controlled parametric level-set method (UKF-PaLS)

The second main method to be applied in this work is UKF-PaLS, in which the UKF (see
Section 3.2) is combined with the parametric level-set method proposed by Aghasi et al.
(2011). UKF-PaLS is introduced by Nguyen & Nestorović (2018) with 2D applications to
synthetic data and applied to experimental data in Trapp & Nestorović (2021). As already
explained in the introduction, the parametric level-set method serves for the parametrization
of the disturbance, while the UKF minimizes the misfit function. The parametrization of the
disturbance is achieved by the distortion of so-called bumps, which are able to flexibly de-
fine the geometry of irregularly shaped objects. The concept of UKF-PaLS is illustrated in
Figure 3.2 on a 2D example. The measurements are generated synthetically with the model
referred to as the true model. The disturbance is, in this case, a quadratic boulder. The mea-
surements are seismic waveforms resulting from some source-receiver configuration, where
an exemplary waveform is illustrated. The user defines the forward model and the centers
of the bumps, which are fixed during the inversion (note that, however, a loosening could
be a subject of future studies for a gain described in Section 10.4). The centers are illus-
trated with black dots in the top image referred to as the parametrized model. By defining
the placement of the bumps, the user determines the region of investigation as well as the
resolution. It is noted that the current method can only work properly, if there is at least one
bump placed inside the actual disturbance. Furthermore, the method works better if bumps
are not located at the border of the actual disturbance only. Therefore, the distance of the
bumps is approximately equivalent to the resolution of the method but should be selected
slightly smaller than the desired resolution in order not to miss potential disturbances. The
selected number of bumps is proportional to the computational demand. Each bump is dis-
torted by two parameters – αi and βi, which are to be initialized prior to inversion. βi is the
decisive factor in controlling the radial size/diameter of the current bump – the higher the
value, the larger the radial size. Factor αi controls the magnitude or direction of the bumps
and may be in some sense interpreted as a magnet attracting or repelling the neighboring
bumps seen from bump i. The initial model, which is defined by a set of parameters m0, is
shown in the bottom left. In this work, the initial level-set parameters are tuned so that small
pieces of material are visible. Due to this procedure, a prediction about material properties
becomes possible already in the first cycle as well as a prognosis if an appearance of no
material, few material or a larger amount of material is probable at a bump. Note that in all
of the illustrations of the initial model in this work, the bumps seem to be aligned irregularly
with different sizes since the mesh is not discretized in accordance with the locations of
the bumps. For UKF inversion, a set of sigma points is computed based on the initial co-
variance Pm

0 . The sigma points are samples distributed around the initial set of parameters
m0. After the computation of the misfit vectors (Eq. 3.5) for the 2n + 1 sigma points of
an iteration, corresponding covariances are computed and an updated mean value (which is
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the new guess) and a covariance is determined by the UKF. Starting from that, a new set of
sigma points is computed. After a predefined number of iterations, the UKF is stopped. The
bottom part of the figure shows the mean estimates after 2, 5 and 23 iterations.

UKF model update

Parametrized model:

True model:

-

Initial model:

2n+ 1
sigma points

Mean and
covariance

Figure 3.2.: Working principle of UKF-PaLS. Concept at the top, exemplary course of the
estimates at the bottom. The UKF updates the model based on the mean and
covariance of the sigma points and the corresponding misfits in order to compute
a new optimal mean and covariance.

More specifically, UKF-PaLS operates as described below, where the definition to large
parts follows the formulation of Nguyen & Nestorović (2018). The user defines the centers

xrbf = {x1,x2, ...,xNb
} (3.28)

of a set of Nb bumps, which in the mathematical sense are centers of radial basis functions
(RBFs). Vector xi in i ∈ 1, 2, .., Nb contains the coordinates of the center of the respective
RBF. Since each RBF is controlled by the two parameters αi and βi, the parameters to be
determined by the UKF-PaLS inversion are

m = {α1, α2, · · · , αNb
, β1, β2, · · · , βNb

,Xd}, (3.29)

where Xd contains the material properties of the disturbance. Prior to inversion, the param-
eter vector is initialized. In order to determine if an element obtains background material
properties or disturbance material properties, a level-set function ϕ : Ω 7→ R is introduced.
The function is defined on x ∈ Ω, which is the spatial domain of the model, and follows the
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definitions of Aghasi et al. (2011). The function is written as

ϕ(x) =

Nb∑
i=1

αiψ

(
1

β2
i

∥x− xi∥
)
, (3.30)

where xi are the centers of the RBFs and ψ(·) is the RBF, which is chosen to be the Wend-
land’s function following Wendland (1995):

ψ(r) =

{
(1− r)4(4r + 1), if 0 ≤ r ≤ 1
0, if r > 1.

(3.31)

With the help of the previous definitions, a value ϕ(x) for each spectral element center is
determined. The criterion to decide whether the element has background material properties
or disturbance material properties is

ϕ(x) > c, ∀ x ∈ D,
ϕ(x) = c, ∀ x ∈ ∂D,
ϕ(x) < c, ∀ x ∈ Ω\D,

(3.32)

meaning that if the value of the radial basis function for the current element is larger than c,
the element belongs to the disturbance domain D, otherwise it obtains background material
properties. Parameter c is free to tune but can be set to zero also. In this work, it is tuned
so that the level-set parameters of the initial model become slightly greater than zero. The
material definition X (x) for the whole spatial domain Ω is assigned with the help of the
Heaviside function H(·) = 0.5 (1 + sign(·))

X (x) = Xd(x)H
(
ϕ(x)− c

)
+ Xb(x)

(
1−H

(
ϕ(x)− c

))
, (3.33)

where Xb are the material properties for the background domain. The minimization occurs
during a predefined number of UKF cycles Nk. The quantities to be tuned for UKF-PaLS
are m0, Nk, Pm

0 , Q, smin and R.

Algorithm 2: UKF-PaLS
// Initialization
Settings for the UKF: m0, Nk, Pm

0 , Q, smin, R
Set the centers of the RBFs (bumps) according to Eq. 3.28
Initialize vector m0 Eq. 3.29
// run Nk cycles of UKF
for k = 1..Nk do

For each sigma point, apply Eq. 3.32 and assign material properties
m̂k,Pk = UKF (m̂k−1,Pk−1,R,Q)

end
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3.5. The multi-scale approach

In order to prevent the inversion from moving into one of the local minima of the mis-
fit functional, a multi-scale approach is commonly implemented into adjoint FWI methods
(Fichtner, 2010; Virieux & Operto, 2009). This approach takes advantage of the circum-
stance that the complexity of the misfit functional decreases with increasing wavelengths.
Incrementally increasing working frequencies during the inversion increase the resolution,
where in the first cycles, a rough picture is evolved and in later cycles, further details are
imaged. To achieve this, a low-pass filter with a step-wise increasing cutoff frequency is
applied to the output data in this work. The method is implemented for UKF-PaLS only
since UHSA is a global optimization strategy already, meaning that the optimum will be
found anyways for a high number of cycles. Nonetheless, an implementation could also be
tested for UHSA since it may decrease the number of necessary forward simulations. The
principle of the multi-scale approach is illustrated in Figure 3.3 on the example of three
stages, where the idea for the figure is inspired by Fichtner (2010, p. 135).
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m2^

m3
^ m

UKF
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Figure 3.3.: Illustration of the multi-scale approach. The complexity of the misfit functional
increases with an increasing cutoff frequency. During each stage, the cutoff
frequency is maintained and an optimization is performed with the UKF. The
final model is used as the initial model for the next stage. The idea for the figure
is inspired by Fichtner (2010, p. 135).

The top part of the figure shows the misfit functional for low resolutions. Since the data
are filtered with a low-pass filter with a small cutoff frequency, less and broader local min-
ima are contained in the functional. Starting from the initial model m̂0, the UKF seeks to



3.6. Parameter tuning 29

minimize the misfit functional within a predefined number of cycles and finds a parameter
configuration m̂1. In the next step, the cutoff frequency is increased, leading to narrower
and more frequent local minima. Since the parameter configuration from the first stage is
used as the initial model for the second stage, the parameter configuration is already on
the incline towards the optimum. After UKF minimization, parameter configuration m̂2 is
found. Again, the cutoff frequency is increased (or instead, no low-pass filter is applied),
leading to various other narrow local minima in the third stage. However, since the pa-
rameter configuration is already corresponding to a misfit functional in the global minimum
region, the optimization succeeds.

3.6. Parameter tuning

The parameters to be tuned for the UKF are m0, Nk, Pm
0 , Q, smin and R. These parameters

are to be tuned for both UHSA and UKF-PaLS as both methods include the UKF. Nk is set
according to the desired grade of local exploration. It is suggested to increase Nk with the
number of inversion parameters since with this number, also the complexity of the inversion
problem increases. In UHSA, the UKF is the local minimization scheme only and therefore
Nk is usually set lower here than for UKF-PaLS. Commonly used values in this work are
for instance Nk = 4 for UHSA and Nk = 25 for UKF-PaLS. Parameter Pm

0 determines
the initial spread of the sigma points. This parameter can be set rather intuitively since this
covariance is adapted by the UKF throughout the inversion. Anyways, it should be set so
that the sigma points differ significantly, but not overmuch. A higher distance between the
sigma points leads to larger jumps during a UKF cycle. A visualization of the spread of
the sigma points will be shown in Figure 6.7, where the sigma points are composed of two
location coordinates only.

For the adjustment of the best expected result smin and the measurement covariance matrix
R in a rather intuitive way, a strategy is developed for the examples in this work. With a
precise knowledge of R, inversion results could be improved. For the small-scale experi-
ments, a general suitable estimation of the measurement covariance is not possible since the
quality of measurement is to the largest extent dependent on the reflection behavior of the
laser beam at a specific point. However, the following strategy considers this issue of local
changes in quality, where the strategy could also be used in field scenarios. A numerical
simulation corresponding to an undisturbed specimen (a specimen without a disturbance,
obtaining only background material parameters) is conducted. Afterwards, a vector su is
determined, containing the misfit values between the experimental data (of the real model)
and the simulation data of the undisturbed specimen at each receiver. It is trivial that the
misfit functional after inversion should be significantly lower than the sum of the elements
of vector su as the model corresponding to su does not incorporate any disturbance. Thus,
two optional parameters a, b ∈ [0, 1] are used to set smin = asu and R = bsu · Ir, where
Ir ∈ Rr×r is an identity matrix of dimension equal to the number of receivers. With the help
of this method, the quality of the measurement at each receiver point is considered, avoiding
that too much emphasis is put on low-quality receiver points with a high misfit functional
(for instance due to a measurement on a grain). Furthermore, an intuitive tuning is enabled.
In order to further adjust the parameters a and b, an option is implemented into the code.
The user may select if the code stops in the end of the first UKF cycle in order to enter the
two parameters. Depending on the entered values, the code outputs the resulting first sigma
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point, to which the algorithm would jump in the next UKF run. The user can then either
confirm the entered values or disapprove and enter new values until a reasonable size of the
jump is reached. Note that parameter a can also be set to zero, leading to a zero vector
for su, in which case only the measurement covariance matrix R is tuned. This method is
used in the later progress of the research since a tuning is faster. Note that with the method
explained above, a careful fine-tuning is not needed. The methods are tested with many
different parameter configurations leading to only slightly changing inversion results. The
covariance matrix in the UKF, which is automatically updated, usually manages a conver-
gence to a meaningful minimum. The last parameter to be tuned for the UKF is the process
noise covariance matrix Q. With this matrix, the user can prevent the distances between
the sigma points from becoming too small when the misfit functional becomes smaller and
thus also prevents the algorithm from converging too slowly. For the examples in this work,
the matrix is varied between 0.1Pm

0 ≤ Q ≤ 0.5Pm
0 with a success for all of the applied

examples.

The additional parameters to be tuned for UHSA are Nc, p0 and pe. Nc should be adjusted
depending on the number of inversion parameters and the desired precision. Furthermore, it
depends on the difference between the upper and lower borders of the inversion parameters
U and L (which need to be set inversion-specific and are based on prior knowledge). If the
allowed range of the inversion parameters is rather small, a misfit functional close to the
global minimum is likely to be found early – allowing for a smaller value for Nc. Values in
this work vary between 15 ≤ Nc ≤ 200. With the parameters p0 and pe, the user can tune
how intense the inversion parameter space is explored. For instance, a configuration of p0 =
0.8 and pe = 0.01 implies a relatively strict annealing scheme, meaning that many parameter
configurations are rejected during the course of UHSA. Such a scheme is convenient in the
case of a rather small number of inversion parameters or if the allowed range of the inversion
parameters is set rather small due to prior knowledge. A rather intense exploration of the
parameter space is for example implied by a setting p0 = 0.9 and pe = 0.1, which should be
applied if the complexity of the inversion is higher. The initial configuration m0 for UHSA
can be either set to fixed starting values or to a random configuration. For the reasons
already explained, m0 for UKF-PaLS is set so that small pieces of material are visible as
shown in Figure 3.2. The tuning of the level-set parameters is dependent on parameter c,
which however can be set arbitrarily. In this work, it is tuned so that the level-set parameters
of the initial model become slightly greater than zero. The examples in this work can be
used as reference values for all of the parameters for upcoming scenarios.
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4. Small-scale laser experiment

For the purpose of validating the previously explained FWI methods with real data, a small-
scale laser experiment is constructed. A validation with experimental laboratory data brings
a significant gain compared to a validation with synthetic data since sources of noise as
well as measurement errors are naturally included. Furthermore, also modeling errors come
into play when building the model. All of these error types also occur in an application
in mechanized tunneling, but not in synthetic tests. Self-evidently, the number one way
to validate the methods would be an application to in-situ (field) data; however, rich field
data is difficult to get since a close cooperation with a tunneling company would have to be
required. Creating specimens and generating data in a laboratory is comparatively simple
and cheap and enables the possibility to perform inversion scenarios with a broad variety in
order to prepare the methods in the best possible way for a later in-situ application.

The laser laboratory enables the realization of ultrasonic experiments, where a laser interfer-
ometer enables the contact-free acquisition of waveform displacement data which is utilized
for FWI. In order to preserve a similarity to real field scenarios, the idea is to introduce a
scaling factor k that reduces the dimension of a field model df to a small-scale model ds in
the form of ds = k−1df . A reduction of the dimension requires a reduction of the operating
wavelengths as well according to λs = k−1λf in order to maintain the relations, which im-
plies an increase of operating frequencies fs = kff . The scaling factor is thought to have
values between about 100 and 500, but is strongly dependent on the selected inversion sce-
nario. An example for the scaling factor is given in Section 8.1, which treats the scenario
closest to a field scenario in this work.

4.1. Setup

Computer with
data acquisiton card

Function
generator

Power
amplifier

Specimen coupled with
ultrasonic transducer

Optical
fiber head

Positioning
system

Laser
interferometer

Figure 4.1.: Measurement chain of the small-scale experiment
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The flow of a measurement scenario is sketched in Figure 4.1. The starting point of the
investigation is a computer, where the source input signal is specified. The input signal is
sent to the function generator that transforms the discrete function into an electrical signal.
This signal is sent to a power amplifier before it arrives at the ultrasonic transducer where
it is transformed into a mechanical waveform. Thereby, the transducer applies a force on
the specimen and seismic waves are released that propagate inside the specimen and inter-
act with potential anomalies and boundaries. The laser interferometer records the seismic
responses contactless at predefined locations within the desired time window, where a posi-
tioning system enables to move the optical fiber head of the interferometer along predefined
lines or areas. Measurements are recorded sequentially, meaning that for every record of
a seismic response, a new signal is excited. The interferometer signal is forwarded to the
computer for the purpose of data acquisition. The whole setup is placed on an optical table
in order to decouple the experiment from vibrational influences from the environment. A
picture of the experiment with a labeling of the single components is shown in Figure 4.2.

Positioning

system

Laser 

interferometer

Ultrasonic

transducer

Optical table

Power amplifierFunction generatorComputer

Optical fiber

head

Figure 4.2.: Picture of the setup with its components

The technical components of the system are

• Laser interferometer: BNT-QUARTET-500 linear by Bossa Nova Technologies, fre-
quency range 50 kHz - 50 MHz, measurements of displacements in the sub-nanometer
range

• Ultrasonic transducers: Various transducers in a frequency range of 50 kHz - 2 MHz
manufactured by Karl Deutsch, General Electrics and Olympus.

• Optical table: Newport M-RS2000-46-8
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• Power amplifier: Electronics & Innovation 1040L

• Function generator: Keysight 33500

• Acquisition hardware: National instruments PCI-5922

• user interface built with MATLAB (MATLAB, 2019)

4.2. Ultrasonic transducers

In the following, the two ultrasonic senders which are utilized during the progress of this
work are presented. The first one is transducer B 0.1NN manufactured by GE Measure-
ment & Control Solutions (Figure 4.3a, left). This transducer is tapered at its end and
therefore transmits the applied force almost pointwise. The nominal frequency is indicated
with 100 kHz. The second transducer is transducer S 24 HB 0.2-0.6 manufactured by Karl
Deutsch (Figure 4.3b, left). This sender shows a circular contact face of about 28mm di-
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(a) B 0.1NN (GE Measurement & Control Solutions)
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(b) S 24 HB 0.2-0.6 (Karl Deutsch)

Figure 4.3.: Power spectral densities (PSD) of the ideal Ricker signals and the measured
signal responses of the ultrasonic transducers. The PSDs are normalized with
their maximum value.
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ameter with a nominal frequency range of 200 - 600 kHz. For the upcoming experiments, a
characterization of the oscillation behavior in dependency of frequencies is crucial in order
to choose a source function. In seismics, Ricker signals are frequently used since these sig-
nals excite a broad frequency range. Therefore, the transducers’ signal responses to Ricker
signals are to be recorded and investigated in the following. For the first transducer, a Ricker
with 100 kHz central frequency is utilized, while for the second transducer, a 300 kHz Ricker
is used. The laser is positioned so that it points at the contact face of the corresponding trans-
ducer. Accordingly, for the first transducer, the laser beam is pointed directly at the vertex of
the cone (peak). For the second transducer, the beam is directed at the contact face, where
15 measurements are acquired along a line distributed over the diameter of the face. At ev-
ery point of measurement, 100 single responses to the source input signal are recorded and
stacked in order to increase the signal-to-noise ratio. For the resulting signals as well as for
the respective ideal Ricker signals, the power spectral densities (PSD) are computed, where
the ones acquired at the flat transducer are averaged. The PSDs are normalized with their
maxima in order to achieve an illustrative comparison (Figure 4.3a, right and Figure 4.3b,
right). It is observed that the tapered transducer has a highly narrow frequency range with
a peak at around 90 kHz, which shows that a Ricker signal may not be the optimum input
signal for this sender since the output function differs distinctly from the input function.
Therefore, a signal with a more narrow frequency range – a tone burst signal – will be ap-
plied when using this transducer. The narrow frequency range may be seen as a disadvantage
of the transducer since it increases the difficulty of the FWI due to less occurring working
frequencies. An advantage of the transducer is the tapered end, which makes the numerical
modeling more trivial. The second transducer shows a more broad frequency range, cover-
ing nearly all of the frequencies of the input function. In the lower frequency region below
50 kHz some unwanted frequencies occur, which can be eliminated with a high-pass filter.
The broad frequency range is the advantage of this transducer. The disadvantage is the flat
contact face increasing the modeling complexity. For both transducers, it is observed that
the shapes of the PSDs differ distinctly from the ideal Ricker PSD shapes, which illustrates
the importance of an adequate source function estimation if the transducer is coupled to a
structure.

4.3. Laser signal response

A key factor for the evaluation of the small-scale experiment is the repeatability of the
seismic measurements. Repeatability is the degree of the agreement of successively taken
measurements acquired under identical conditions. A measure for the similarity of two
seismic signals is the normalized correlation coefficient, for instance described by Ohm &
Lüke (2015, p. 205) as follows:

r1,2 =

∞∫
−∞

d1(t)d2(t) dt√
Ed1Ed2

, (4.1)

where d1(t) and d2(t) are two seismic signals with energies Ed1 and Ed2 according to

Edi =

∞∫
−∞

d2i (t) dt, i ∈ {1, 2}. (4.2)



4.3. Laser signal response 35

The coefficient expresses the similarity between d1(t) and d2(t) by a value smaller than 1. A
value of 1 results in the case of perfect agreement d1(t) = d2(t) or, due to the normalization
with the energies, if the two signals differ in a factor k according to d1(t) = k · d2(t), k ∈
R>0. In the case of negative correlation d1(t) = −k ·d2(t), k ∈ R>0, the coefficient becomes
−1. The value becomes 0 if the numerator in Eq. 4.1 becomes 0, which is the case if the
two signals are orthogonal. For orthogonal signals, there is no linear dependence, resulting
in the largest possible dissimilarity.

An important measure for the quality of a measurement is the signal-to-noise ratio (SNR),
which describes the ratio between the signal power Psignal and the background noise power
Pnoise according to:

SNR =
Psignal

Pnoise

, (4.3)

or, in logarithmic decibel scale:

SNRdB = 10 log10

(
Psignal

Pnoise

)
. (4.4)

There are two main actions taken in this work in order to secure a high grade of repeatability
– firstly, the stacking of measurements at receiver points and secondly, the application of a
reflector. The stacking of measurements is necessary due to a high amount of random noise
in single measurements. This is illustrated in Figure 4.4a, where two successively acquired
measurements are compared, which are acquired with the laser interferometer pointing di-
rectly at a concrete surface within a setup which will be described in the next section. Fig-
ure 4.4b shows two measurement sets with nstack = 500 stacked single measurements each.
It is observed that the single measurements contain a noticeable level of noise in terms of
both low- and high-frequency noise. The waveforms until 1.5 · 10−4 s, which are clearly
visible in Figure 4.4b, cannot be observed in Figure 4.4a as they fully disappear in noise.
The stacking of the measurements naturally removes most of the noise contained in the
seismic records and makes these waveforms visible. As a consequence, the two signals in
Figure 4.4b show a high degree of accordance.
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(b) 500 stacked measurements

Figure 4.4.: Comparison of two successively taken measurement sets acquired on a concrete
surface

In order to further improve the repeatability, a reflector is applied if measuring on porous,
sandy or uneven surfaces, where the reflection of the laser beam is weak. Its attachment



36 4. Small-scale laser experiment

reduces the number of necessary stacked measurements until a satisfying measurement is
reached since the reflection of the laser beam is substantially improved. In the experiment
conducted in Chapter 7, leaf gold is applied to the surfaces of the concrete plates. This is
done by grinding the surface and subsequently applying a water-based gilding size in order
to secure the adhesion of the gold at the surface before the leaf gold itself is applied. In
the further progress of research, aluminum tape is found to be more practicable and is thus
used for the experiment conducted in Chapter 8. The advantages in applying aluminum tape
instead of leaf gold are a faster attachment and a better performance if e.g. measuring on
sand grains, where the first method may provide erroneous records. Furthermore, the SNR
becomes substantially larger, which is to be shown in the next sections. In Section 4.3.1, the
usage of the reflectors applied to concrete is validated. In Section 4.3.2, the repeatability and
the SNR of all of the three reflection cases are analyzed for a specific experimental setup.

4.3.1. Validation of reflectors

Before making use of a reflector, it is necessary to investigate if the additional layer may
alter the seismic records. The thickness of the leaf gold is 0.1 µm; however, there is a dried
gilding size below with unknown and varying thickness. The thickness of the aluminum
tape, which also has an adhesive at its bottom, is 50 µm. Since the wavelengths in the small-
scale experiments conducted in this work all lie in the millimeter to centimeter range, the
impacts of the additional layers are already expected to be low as they are distinctly smaller.
In order to test this issue in the form of a comparison of each of the three cases (direct, leaf
gold, aluminum tape), an experiment is constructed, which is shown in Figure 4.5. Note that
descriptions concerning transducer holdings and bearings are to be given later on.

(a) Experimental setup

(b) Reflectors from left to right: no reflector (direct); leaf gold, aluminum tape

Figure 4.5.: Experiment for the investigation of the impact of the reflectors

The investigated specimen is a concrete block. The ultrasonic transducer B 0.1NN (see
Section 4.2) is placed in the middle of one of the smaller surfaces of the specimen and
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triggers a signal induced by a source function in the form of a 3.5-cycle Hanning windowed
tone burst signal with a central frequency of 100 kHz. The laser measures at one location at
the top surface of the specimen as shown in Figure 4.5a with the three different reflectors as
shown in Figure 4.5b. In the first case, the measurement is acquired directly at the specimen.
In the second case, leaf gold is applied to the same location and in the third case, aluminum
tape is attached. For each of the three cases, two measurement sets are acquired with nstack =
500 stacked measurements each for a duration of 5 · 10−4 s. With these sets, it is tested if
the attachment of a reflector is valid. Figure 4.6 shows a measurement set for each type of
reflector.
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Figure 4.6.: Comparison of the waveforms resulting from 500 stacked single measurements
for the three different reflector cases. The measurements are normalized with
their maxima.

As the measurement sets differ slightly in amplitudes due to the different grades of reflec-
tion, the amplitudes are normalized with their maxima. A first observation of the figure
shows a high degree of accordance between the waveforms. Slight differences may be ob-
served in amplitude relations only. For an evidence of this observation, normalized corre-
lation coefficients are computed according to Eq. 4.1 between the direct measurement sets
and between the direct and leaf gold/aluminum measurement sets, respectively. The average
correlation coefficients are shown in Table 4.1.

average correlation coefficient
nstack direct/direct gold/direct aluminum/direct

500 0.9961 0.9976 0.9982

Table 4.1.: Correlation coefficients for pairs of measurement sets with 500 stacked measure-
ments

The results show a high correlation coefficient for each of the three cases. The decisive factor
for judging the attachment of a reflector to be valid is that the correlation coefficients for
gold/direct and for aluminum/direct are in the same region as the coefficient for direct/direct.
In this case, these coefficients are even higher, showing that the measurement sets with
reflectors correlate even more with the direct measurement sets than the direct measurement
sets correlate with other direct measurement sets. This is due to the lower level of noise
induced by a better reflection. Even after the stacking of 500 single measurements, the noise
is still prominent in the direct measurement. Based on the investigations of this section, the
attachment of both reflectors is judged to be valid.
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4.3.2. Repeatability and signal-to-noise ratio

Based on the prior findings, the question arises how many stacked measurements are needed
in order to obtain a satisfying signal for each of the three reflection cases. The repeata-
bility of measurements can be quantified with the correlation coefficient of successively
taken measurement sets, while the quality of the measurement may be judged with the SNR.
It is noted that the following investigations are exemplary, meaning that for every exper-
imental setup, the number of necessary measurements needs to be judged again since the
signal quality is strongly dependent on the utilized transducer, applied frequencies and the
material and size of the specimen. A judgment may be performed by acquiring sets of mea-
surements at various points at the specimen and investigating after which number of stacked
measurements the waveform does not change severely anymore. A high number of stacked
measurements is always desirable; however, a compromise between time of measurement
and signal quality needs to be found. For an exemplary investigation of correlation coeffi-
cients and SNRs, the experiment of Section 4.3.1 is repeated acquiring ntotal = 5000 single
measurements for each reflector with a duration of 2ms. The source signal is excited after
1ms, so that the period until about 1ms contains noise only which will be relevant for the
computation of the SNR.

In the first step, average correlation coefficients between successively acquired measure-
ment sets are to be determined (according to Eq. 4.1) with relation to the number of stacked
measurements nstack. Therefore, for 1 ≤ nstack ≤ 1000, measurements are separated
into the maximum possible number of groups of nstack single measurements ngroups =
⌊ntotal/nstack⌋ = ⌊5000/nstack⌋, where ⌊ξ⌋ denotes the floor of ξ. For instance, 2500 groups
with 2 single waveforms each are set up for nstack = 2, while 5 groups with 1000 waveforms
each are set up for nstack = 1000. In each of the groups, the measurements are stacked so
that one waveform is obtained. Finally, correlation coefficients between the waveforms of
the groups are computed and averaged. For their computation, only the second half of the
waveform is utilized (since the first half includes, as stated above, only noise). Figure 4.7
shows the curves of the resulting average correlation coefficients for 1 ≤ nstack ≤ 200
as well as the measurement time (defined as the time from the first signal release on the
computer until final signal saving), which is linearly increasing and lasts about 98 s for 200
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Figure 4.7.: Average correlation coefficients dependent on the number of stacked measure-
ments nstack for each of the three reflectors. The red curve shows the measure-
ment time, which is linearly increasing.



4.3. Laser signal response 39

acquired single measurements. It is observed that the values of the average correlation co-
efficients for each of the three reflectors converge quickly towards 1, whereas, however, the
curve corresponding to aluminum converges much faster than the curve for gold, and the
curve for gold converges faster than the curve corresponding to the direct measurement.
The average correlation coefficients for various values of nstack are given in Table 4.2. It is
observed that the correlation coefficient for one single measurement acquired on aluminum
tape is higher than after multiple measurements acquired on gold or concrete.

corr SNR (-) SNR (dB)
nstack direct gold alu direct gold alu direct gold alu

1 0.70 0.7681 0.9159 11.3 10.9 68 10.6 10.4 18.3

2 0.7863 0.8654 0.9549 15 18 108 11.8 12.6 20.3

5 0.8905 0.9393 0.9812 26 40 223 14.2 16.0 23.5

10 0.9381 0.9680 0.9903 46 76 407 16.6 18.8 26.1

20 0.9668 0.9834 0.9954 81 148 781 19.1 21.7 28.9

50 0.9869 0.9937 0.9979 194 370 1805 22.9 25.7 32.6

100 0.9930 0.9968 0.9989 373 716 4322 25.7 28.6 36.4

150 0.9940 0.998 0.9994 571 981 5700 27.6 29.9 37.6

200 0.9967 0.9985 0.9995 752 1397 8170 28.8 31.5 39.1

1000 0.9991 0.9994 0.9998 3724 6582 25903 35.7 38.2 44.1

Table 4.2.: Average correlation coefficients and signal-to-noise ratios for various values of
the number of stacked measurements nstack.

A similar procedure as explained above is conducted in order to determine the SNR depen-
dent on the number of stacked measurements. For 1 ≤ nstack ≤ 1000, measurements are
again separated into the maximum possible number of groups ngroups = ⌊5000/nstack⌋. In
each of the groups, the waveforms are stacked and corresponding SNRs are computed ac-
cording to Eq. 4.3 and Eq. 4.4, respectively. For the determination of Pnoise, the first half of
the signal is used while for the determination of Psignal, the second half of the signal is used.
Finally, the SNRs of all groups corresponding to a value of nstack are averaged. Figure 4.8
shows the SNRs for each of the three reflectors. The top illustration shows the dimension-
less SNR, the bottom illustration shows the SNR converted into decibel. Based on the data
points which are visible in the right figures, fitting curves are computed. For the dimen-
sionless illustration, a polynomial of degree two is used to fit the data and for the decibel
illustration, a two-term power series of shape anb

stack + c is utilized. The right sides of the
figure show the SNRs for 1 ≤ nstack ≤ 1000 with the data points and the fitting curves,
the left sides show zoom-ins to 1 ≤ nstack ≤ 200 with the fitting curves only. Values for
the SNRs for various values of nstack are given in Table 4.2. Note that the SNR of a single
direct measurement (nstack = 1) is slightly higher than the SNR of the single measurement
on gold. This is probably due to few outliers in the gold measurement set. The results show
that the usage of gold as a reflector can almost double the SNR compared to the SNR of the
direct measurement. The usage of aluminum tape can almost increase the SNR tenfold.

The results of this section show that the usage of aluminum tape is desirable if measuring
on concrete since it increases both the repeatability and the SNR drastically. However, it is
shown that also the layer of gold is advantageous compared to a direct measurement. In this
work, around nstack = 100 measurements will be acquired for both reflectors since with this
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Figure 4.8.: Signal-to-noise ratios of the three reflector cases with single data points and
fitting curves. The bottom illustration is in decibel.

value, a good compromise between signal quality and time of measurement is achieved. For
the example in this section, nstack = 100 brings a correlation coefficient of 0.9968 for gold
and a value of 0.9989 for aluminum and a SNR of 716 (28.6 db) for gold and 4322 (36.4 db)
for aluminum (see Table 4.2), which can be evaluated to be satisfyingly high. The time of
measurement for one receiver point with nstack = 100 amounts to 49 s, where however the
acquired signal is comparatively long.

4.3.3. Noise

The optical table is incorporated into the system in order to reduce seismic noise. It de-
couples the experiment from vibrational influences of the environment, for instance induced
by human activities and machines or electronics inside the room and building. However,
there are still numerous sources of noise that may be contained in the seismic signal, for
example induced by the electronics on the table, vibrations caused by air, or polluted air
worsening the reflection of the laser beam. The characteristics of the seismic noise included
in the system is to be analyzed with the noise measurement data acquired in the previous
section. Since the investigations in Section 4.3 induce a suggestion of about 100 stacked
single measurements if measuring on concrete, also this value is used for the investigation
of the seismic noise. Thus, one waveform composed of nstack = 100 single measurements
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of noise is created for each reflector. For each of the waveforms, the PSD (dB) is computed,
which is shown in Figure 4.9a. Here, it is directly observed that the reflectors can reduce
noise. Between 40 kHz and 800 kHz, a relatively flat spectrum of the spectral amplitude is
observed, with the tendency to increase slightly moving to lower frequencies. Below about
40 kHz, there is a sudden increase for all of the three reflectors. The source of this is un-
known; anyways it may not be expected to contaminate the signals to a high amount since
the SNR was shown to become satisfyingly high making use of a reflector and multiple
single measurements in Section 4.3. However, the noises will be further reduced by the
application of bandpass filters. Figure 4.9b shows the statistical distribution of the ampli-
tude in the form of a probability density (integral sums to 1). The shape of the probability
densities show similarities to centered Gaussians, which indicates that the distribution of
the noise approximately is of Gaussian random nature with zero mean. The shapes nicely
show that the reflectors, especially the aluminum tape, decrease the noise massively since
the histogram becomes more narrow.
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Figure 4.9.: Characteristics of the seismic noise for the three reflection cases computed with
a signal containing 100 stacked single measurements.
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5. Synthetic inversion scenarios in 2D and 3D

In this chapter, UKF-PaLS is applied to synthetic 2D and 3D examples. The reference model
for each of the scenarios is created with an exact definition of the borders of the disturbance
and not with the PaLS parametrization. This is necessary in order to avoid inverse crime,
which would occur if the synthetic reference data were generated with a model comprising
the same conditions as the forward model used for inversion (Colton et al., 1998). Inverse
crime is to be avoided in order to provide a validation of the methods. Note that as a conse-
quence of the exact definition of borders, a zero misfit will not be possible since a different
mesh is utilized during inversion. Preliminary investigations show that the implementa-
tion of the multi-scale approach brings remarkable improvements concerning the ability of
UKF-PaLS to converge to a physically meaningful minimum of the misfit functional. Other
essential novelties include the parameter tuning and the parallelization of the simulations
during one iteration. After considering 2D examples, the algorithm is extended to 3D and
applied to 3D synthetic examples.

5.1. UKF-PaLS in 2D

5.1.1. Generation of seismic measurements

100

36

366

6

15

15

source
receiver

Dimensions in m

Figure 5.1.: Model dimensions and source-receiver configurations for the 2D synthetic tests.
Top: Configuration 1. Bottom: Configuration 2.
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Two different source-receiver configurations are utilized for the application of the synthetic
2D examples (see Figure 5.1). The first configuration consists of 2 sources and 16 receivers,
where 9 of the seismic receivers are placed at the Earth’s surface, 4 are placed at the tunnel
walls and 3 are placed at the tunnel front. The second source-receiver configuration contains
only the receivers inside the tunnel but is apart from that equal to the first configuration. The
source function for all of the seismic sources is a Ricker wavelet with a central frequency of
fc = 300Hz. The lower source transmits a force in excavation direction, the upper source
points in top direction in order to increase the shear wave content in excavation direction.
The overall model has a length of 100m and a height of 36m with a tunnel of 6m height,
20m length and 15m overburden. The model boundaries are set as explained in Section 2.2
considering shallow tunnels. The background velocities are set to vp,b = 4000 m

s
, vs,b =

2400 m
s

and ρb = 2500 kg
m3 , where the Poisson’s ratio amounts to νb = 0.21875 according

to Eq. 2.9. The material is considered to be elastic with no attenuation in order to save
computational power. For the generation of the measurements, 5 different models are set up,
which can be observed in Figure 5.2. Note that in this example, the density is considered to
be constant all over the model domain. In a real tunneling surrounding, the density of the
disturbance may be an additional material property to be determined. However, if the density
values can be expected to be close to each other, the influence of varying densities can
probably be neglected, which will also be done for the experimental examples in Chapter 7
and Chapter 8.
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Figure 5.2.: True models for scenarios 1 to 5 (left to right, top to bottom). Ticks are in
distances of 10m.



5.1. UKF-PaLS in 2D 45

Scenarios 1 to 3 (left to right, top to bottom) are designed in order to test the ability of
UKF-PaLS to determine single and multiple objects with varying sizes, shapes, distances to
each other, distances to the tunnel face, and material properties. Scenarios 4 and 5 are test
scenarios for cases in which the chosen parametrization of UKF-PaLS is not fully able to
determine the structure. The disturbances in scenario 4 have the same structure as the dis-
turbances in scenario 3, but however, the two anomalies have different material properties.
Since UKF-PaLS will only invert for one material, the scenario serves to examine if the two
objects may still be resolved. The anomaly in scenario 5 is a layer change. In this case, the
distribution of the bumps will not cover the whole model (which will be shown in the fol-
lowing) so that a fully correct inversion remains difficult. Note that for all of the examples,
the disturbance material properties are chosen stiffer than the background material proper-
ties since doing so, the same mesh and initial model can be selected for all of the scenarios
with no need of remeshing during inversion. This procedure has only practical and illus-
trative reasons and does not decrease the difficulty of inversion; an experimental example
for UKF-PaLS where the disturbance wave velocities have smaller values than the back-
ground wave velocities will be investigated in Section 8.3.3. The simulation time window
in SPECFEM2D is set to 1.3 s. For each of the scenarios, measurements for both source-
receiver configurations (Figure 5.1) are generated. Accordingly, the scenarios are referred
to as scenarios 1.1, 1.2, ..., 5.1, 5.2.

5.1.2. Full waveform inversion

The numerical model for the inversion scenario is discretized according to Eq. 2.12 so that
the largest element in the mesh is able to consider frequencies up to fmax = 2.5fc = 750Hz
(where fc = 300Hz is the central frequency of the Ricker), resulting in 3675 quadrilateral
4-node elements. Nb = 28 bumps are centered on a regular grid of 36×18m with distances
of 6m to each other. Consequently, also the resolutions amount to about 6m, where the
maximum size of the disturbances in the true models was 7m. Instead of determining a
shear wave velocity of the disturbance vs,d directly during inversion, a Poisson’s ratio νd is
determined. The advantages are that the shear wave velocity can be controlled better during
optimization since it is coupled to the compressional wave velocity and that boundaries
of the Poisson’s ratio may be set in order to keep the ratio between reasonable values for
rock material. Note that, however, in the following, the shear wave velocity is used in
illustrations for the purpose of a more trivial imaging. According to Eq. 3.29, the dimension

double 
standard 
deviation

vp (m
s ) vs (m

s )

4000 4100 2400 2460±160

Figure 5.3.: Initial model for all scenarios. The double standard deviations of the initial
parameters are illustrated by the medium dark grey tone (see marking). Ticks
are in distances of 10m.
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of the inversion problem amounts (with its Nb = 28 bumps and two disturbance material
properties) to n = 58 (with 28 dimensions for α, 28 dimensions for β, 1 for vp,d and 1
for νd). Thus, there are 2n + 1 = 117 sigma points to compute in each iteration. The
initial model is defined by setting a vector m0 ∈ Rn, where the parameters may be found
in Table 5.1. The initial compressional wave velocity is set to 4100 m

s
, where already a

tendency to material with higher wave velocities is implemented in order to achieve faster
convergence. During field measurements, travel time observations could probably deliver
a prediction of whether the disturbance material has higher or lower wave velocities than
the background material. Otherwise, the first cycle should be performed with both higher
and lower initial wave velocities in order to determine for which case the misfit functional
decreases more. The general settings of the UKF in terms of Pm

0 , smin,R and Q are tuned as
explained in Section 3.6. The parameter settings stay the same for the 10 scenarios, which
shows that the method is not dependent on a fine parameter tuning. A more illustrative
representation of the initial parameters is shown in Figure 5.3, where the initial model is
plotted. The medium dark grey area (see marking in the figure) visualizes the positive
double standard deviation of Pm

0 , which is the 95% confidence interval, and is thought
of as a measure of uncertainties during inversion. Note that the double standard deviation
could also be plotted in negative direction, which would mean a potential material loss
at the reconstructed anomaly. However, the positive direction is more meaningful for an
application in mechanized tunneling since it is more important to know where additional
disturbances could be located than to know where they could possibly not be located. The
interval of the standard deviation of the compressional wave velocity is also plotted, denoted
by ±160. Prior to inversion, the uncertainty measure determines the spread of the sigma
points and does not long for any physical interpretation since the covariance is adapted by
the UKF during optimization. For each of the scenarios, UKF-PaLS is run for 25 iterations.
The multi-scale approach is implemented in the form of a low-pass filter with a step-wise
increasing cutoff frequency ranging from 200Hz to 750Hz with an increase every 3 cycles
up to iteration 21, after which no filtering is applied anymore.

Parameter Configuration

Nb 28
m0 {α0,β0, (vp,d)0, (νd)0}
α0 0.2JNb,1

β0 3JNb,1

(vp,d)0 4100 m
s

(νd)0 0.21875
c 0.1
Nk 25

Pm
0 diag(P α

0 ,P
β
0 , P

vp,d
0 , P νd

0 )
P α

0 0.32JNb,1

P β
0 0.32JNb,1

P
vp,d
0 802

P νd
0 0.0012

smin 0 · su
R 0.05su · Ir
Q 0.3Pm

0

Table 5.1.: Initial model parameters and input parameter configuration for UKF-PaLS. JNb,1

is a vector of ones of the size of the number of bumps RNb×1
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Figure 5.4.: Best estimate during inversion for scenarios 1.1, 1.2, ..., 5.2 (left to right, top to
bottom). The double standard deviations are plotted in medium dark grey. Ticks
are in distances of 10m. Sources are illustrated in red, receivers in green.
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The best estimates of UKF-PaLS during the 25 iterations for scenarios 1.1− 5.1 are shown
in Figure 5.4. The borders of the true disturbances are illustrated by black dashed lines.
Again, the double standard deviations are plotted in medium dark grey. A first analysis of
the results is performed for scenarios 1.1−3.2, which are the scenarios where the UKF-PaLS
parametrization may be able to invert the measurements to a high grade. For all of these sce-
narios, the inversion performs greatly accurate. Front borders and rear borders (seen from
direction of seismic sources) are well resolved, although – due to the meshing of the true
models with an exact definition of the borders – the inversion model cannot fit the model
entirely. Furthermore, in scenarios 2.1 and 2.2 both objects are clearly resolved without
melting together. The scenarios with source-receiver configuration 1 perform slightly better
than the scenarios with source-receiver configuration 2. However, the differences remain
small – only the top and bottom borders of the anomalies are determined slightly worse
since no information of transmitted waves arrives at the seismic receivers. This emphasizes
the advantage of the parameter reduction since the resolving of rear boundaries of anomalies
based only on reflected waves is a difficult FWI problem. Besides the good reconstruction
of geometries, also the determined material properties are close to the true values. The un-
certainties in terms of the double standard deviations show where potential objects could be
missed by the inversion. These uncertainties lie, for all of the examples, in the 'shadow' of
the reconstructed objects. At these locations, the reconstruction can be considered the most
unreliable since the occurrence of a disturbance would only bring a slight change in the
misfit functional here. The uncertainties could presumably be eliminated by incorporating a
seismic source at the Earth’s surface with a horizontal distance equal or larger than the hor-
izontal distance of the 'shadows' to the tunnel. Incorporating the double standard deviation
for the compressional wave velocity, most of the resulting intervals include the true value –
if not, it is only slightly apart.

Observing the results for scenarios 4.1 and 4.2 in Figure 5.4, it is found that the reconstruc-
tion of the shapes of both anomalies is accurate, although the correct inversion in terms
of material properties is not possible since UKF-PaLS is defined so that it only determines
one set of material properties. The only aggravation compared to the scenarios 3.1 and 3.2
occurs at the top disturbance in scenario 4.2, where some additional material appears. The
determined compressional wave velocity of the disturbance lies with 5313 m

s
relatively cen-

tered between the true values of 5000 m
s

and 6000 m
s

. It is noted that a reconstruction of the
disturbances with only one set of material properties is only expected to be successful if the
disturbances have both lower or both higher wave velocities, which is the case in the current
scenario. The inversion results of scenarios 5.1 and 5.2 show a good reconstruction of the
front border of the layer change. For scenario 5.2, this only applies in excavation direction.
The back part of the layer change is not reconstructed since the bumps do not spread all over
the model. In both scenarios, some small areas of material appear at locations where the true
model has background material properties only. The reason for this is not apparent, but it is
assumed that the areas compensate for a mismatch at the seismic receivers above the tunnel
originating from reflected waves from the back end of the disturbance in the determined
model. A better result can be expected if the bumps are located all over the model domain,
where an example for this case will be given in Section 8.3.3 in the context of an application
to experimental data. However, the results show that the inversion may also be satisfactory
if the region of investigation is selected to be small. Each of the inversion scenarios is solved
in less than 6 hours on a 26-core computer with 2.4 GHz each and 96 GB RAM, consuming
25(2n+ 1) = 2925 forward simulations per source.
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Figure 5.5.: Relative misfit functionals of the corresponding unfiltered data. The plotted
value is the UKF estimate of the respective iteration. The misfit functionals are
normalized with the misfit value of the respective initial model.

The corresponding courses of the misfit functionals are shown in Figure 5.5, where for illus-
tration purposes, the misfit functional of the unfiltered data is computed and utilized. Due
to the step-wise increasing cutoff frequency of the multi-scale approach, the misfit func-
tional is continuously increasing since higher frequencies come into play, which makes a
plot of the unfiltered functional more trivial. For scenarios 1.1 − 3.2, the misfit functionals
are distinctly decreased, with values up to more than 90%. However, for the scenarios cor-
responding to source-receiver configuration 2, the misfit functional is lowered less intense
due to the increased complexity of the inverse problem caused by the incorporation of fewer
receivers. Still, it is lowered for more than 60% for all of the three scenarios. Scenarios
4.1 − 5.2 show a much smaller decrease, especially in scenarios 5.1 and 5.2, since the re-
stricted parametrization of the disturbance domain hinders UKF-PaLS to decrease the misfit
functional to a higher amount. Observing the course of the misfit functionals, it is noticeable
that a low level is already reached after a few cycles. Accordingly, also the illustrations of
the best estimates after 5, 10, 15 and 20 iterations are observed and attached in Appendix A,
where it becomes visible that most of the disturbances are already reconstructed after 5 itera-
tions. However, at this stage, some additional areas of material are visible, and the observed
uncertainties are comparatively large. After 10 iterations only, most of the images provide a
reliable estimation of the disturbance domain. This shows that, if computational resources
are limited, also fewer iterations could be conducted for a prediction. Another opportunity is
to observe the results of the iterations during inversion already, where results become more
reliable if a convergence of the misfit functional can be noticed. After 15 and 20 iterations,
the uncertainties become smaller, which is a consequence of the incorporation of higher fre-
quencies since in the case of smaller occurring wavelengths, small appearances of material
in the model have a more significant impact on the misfit functional.
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5.2. UKF-PaLS in 3D

5.2.1. Generation of synthetic measurements

In the following, a model including a boulder is set up that is again tested on two source-
receiver configurations. The investigations are restricted to these two scenarios since the
computational effort is much larger for the 3D inversion than it is for the 2D inversion. The
first configuration is illustrated at the left of Figure 5.6 and includes 3 seismic sources and 88
seismic receivers. Two of the seismic sources are placed at the tunnel front, the bottom one
pointing in x-direction and the top one pointing in z-direction. The other source is placed
on the Earth’s surface pointing in z-direction. 39 of the seismic receivers are placed inside
the tunnel and 49 are placed at the Earth’s surface. The second configuration, illustrated
at the right of Figure 5.6, includes only the receivers inside the tunnel and is apart from
that equal to configuration 1. Accordingly, it consists of 2 seismic sources and 39 receivers.
The source functions of the seismic sources are Ricker wavelets with central frequencies of
fc = 300Hz. The ground model has a dimension of 100m in x-direction and 20m both in
y- and z- direction. A cylindrical tunnel with a diameter of 8.5m, 15.75m overburden and
25m excavation length in x-direction is included into the model. In a distance of 24m to
the front face of the tunnel, the front face of the boulder is located. Basis of the boulder is
a brick with a dimension of 15m in x-, 17m in y- and 17m in z-direction with its center
located at (6.5, 0, 1.5)m, where the dimensions are chosen comparatively large for the first
test. At the top right corner of the boulder seen from the tunnel face, material in the form of a
brick with dimensions of 7m in y- and 3m in z-direction is removed all over the x-direction
in order to test the ability of the algorithm to reconstruct small structural changes. Material
properties are considered to be homogeneous elastic with background material properties
vp,b = 4000 m

s
, vs,b = 2400 m

s
and ρb = 2000 kg

m3 and disturbance material properties of
vp,d = 6000 m

s
, vs,d = 3600 m

s
and ρd = 2000 kg

m3 , where same as in the previous section the
density is considered to be constant all over the model. According to the defined material
properties, the Poisson’s ratio for both materials amounts to νb = νd = 0.21875 (Eq. 2.9).
The boundaries are defined as explained in Section 2.2 for shallow tunnels. Corresponding
to the two source-receiver configurations, two sets of measurement are generated with a
signal duration of 0.1 s, referred to as scenarios 1 and 2 in the following.

vp (m
s ) vs (m

s )
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-

Figure 5.6.: True models for scenarios 1 and 2, where the only difference lies in the source-
receiver configuration. Dimensions are in m.
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5.2.2. Full waveform inversion

The numerical model for the inversion scenario is discretized according to Eq. 2.12 so that
the largest element in the mesh is able to consider frequencies up to fmax = 2.5fc = 750Hz,
resulting in 52520 hexahedral 8-node elements. 80 bumps are aligned on a regular grid
within a domain of 30 × 20 × 20m with distances of 7.5m to each other. In order to
save computation time, only the compressional wave velocity is determined; the shear wave
velocity is computed based on the Poisson’s ratio νd = νb = 0.21875. Therefore, the dimen-
sion of the inversion scenario amounts to n = 161 (with 80 dimensions for α, 80 dimensions
for β and 1 for vp,d) resulting in 2n+1 = 323 sigma points to compute in each iteration. The
initial model and the general settings of the UKF are, for both inversion scenarios, tuned
according to Table 5.2. The corresponding initial distribution of the disturbance domain is
shown in Figure 5.7. In the 3D case, no uncertainty measure is plotted. The reason for this
is that the region of investigation is, compared to the size of the boulder, relatively small
in this scenario. Therefore, uncertainties can only appear in the region directly around the
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Figure 5.7.: Initial model of UKF-PaLS with borders of the true disturbance in light grey.

Parameter Configuration

Nb 80
m0 {α0,β0, (vp,d)0}
α0 0.2 · JNb,1

β0 4 · JNb,1

(vp,d)0 4100 m
s

c 0.1
Nk 25

Pm
0 diag(P α

0 ,P
β
0 , P

vp,d
0 )

P α
0 0.22 · JNb,1

P β
0 0.22 · JNb,1

P
vp,d
0 402

smin 0 · su
R 0.01 · su · Ir
Q 0.4 · Pm

0

Table 5.2.: Initial model parameters and input parameter configuration for UKF-PaLS. JNb,1

is a vector of ones of the size of the number of bumps RNb×1.
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Figure 5.8.: Inversion result for scenario 1 from two points of view: Model corresponding
to parameter configuration with minimum misfit compared to the borders of the
true disturbance in light grey.
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Figure 5.9.: Inversion result for scenario 2 from two points of view: Model corresponding to
parameter configuration with minimum misfit compared to borders of the true
disturbance in light grey.

boulder, which does not allow for very valuable uncertainty quantification. Furthermore, the
3D illustration would look less clear. Nonetheless, an estimation should be performed for
future cases where the computational resources allow for larger regions of investigations.
For both inversion scenarios, UKF-PaLS is run for 25 iterations. Same as in the previous
section, cutoff frequencies are increased step-wise from 200Hz to 750Hz with an increase
every 3 cycles up to iteration 21, after which no filter is applied anymore. The model corre-
sponding to the parameter configuration with the lowest misfit functional during the overall
course of UKF-PaLS for scenario 1 is found during iteration 24 and is visualized in Fig-
ure 5.8. The borders of the true disturbance are illustrated in light grey. It is found that the
core of the boulder as well as its top border are reconstructed well and that at the location
of the boulder, where material is removed, the structure vanishes. Also the front boundary
of the boulder and the rear boundary seen from tunnel face direction are precisely deter-
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mined. However, most notably at the bottom and the right side of the boulder, the shape is
less well reconstructed. Furthermore, below the bottom of the disturbance, some areas of
disturbance material occur. This is most probably due to the occurrence of seismic sources
and receivers at the top surface, meaning that the top of the boulder is screened with trans-
mitted waves. The bottom is not affected by transmitted waves which later arrive at seismic
receivers, which increases the rate of failure at these locations. An approach that could
eliminate these occurrences of material is proposed at the end of the chapter. Altogether,
the boulder is determined precisely. With the inversion result, the location of the boulder
can be exactly determined and the shape may be estimated. It is expected that with a higher
number of seismic sources, the shape could be reconstructed even more precisely. Also the
determined compressional wave velocity vp,d = 5865 m

s
is close to the true value. The com-

putation takes about 13 days on a computer cluster if occupying 600 cores with 2.4 GHz
each and about 700 GB RAM, where 25 · 2(n + 1) = 8075 forward simulations per source
are computed.

The model corresponding to the parameter configuration of the disturbance with the lowest
misfit functional during inversion scenario 2 is found during iteration 17 and visualized in
Figure 5.9. It is observed that the boulder is reconstructed similarly detailed as in scenario
1. The bottom side is even reconstructed better, while the top surface is determined slightly
worse. The reason for this is that the surface receivers and the surface source are missing,
leading to a less good reconstruction at the top but to a higher focus on reflected waves,
incorporating also the bottom part to a higher grade. Same as in the previous scenario, some
material occurs at locations where the model is not well covered by reflected waves, where
also here, the approach proposed at the end of the chapter could provide a remedy. The
compressional wave velocity is precisely determined with a value of vp,d = 6022 m

s
. The

computation of this scenario takes about 9 days on the computer cluster described above,
where also here 25 · 2(n + 1) = 8075 forward simulations per source are computed. Fig-
ure 5.10 shows the course of the relative misfit functional over the number of iterations of
UKF-PaLS, where same as in the previous section the misfit functional of the unfiltered
data is computed and utilized. The plotted value refers to the lowest misfit functional of the
respective iteration. During scenario 1, the misfit functional is lowered for more than 70%,
while during scenario 2, the misfit functional is decreased for more than 40%.
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Figure 5.10.: Relative misfit functionals of the corresponding unfiltered data. The plotted
value refers to the lowest misfit functional of the respective iteration. The
misfit functionals are normalized with the misfit value of the respective initial
model.
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Same as for the 2D examples, it is observed that a low level of the misfit functional is already
reached within the first 5 cycles. Therefore, also here, the illustrations of the best estimates
after 5, 10, 15 and 20 iterations are observed and attached in Appendix B. The observations
agree to the greatest extent with the observations made in the previous section: The core of
the boulder becomes visible already after 5 iterations, where however additional pieces of
disturbance material appear. During the further course of inversion, most of this material
vanishes. This shows once more that a first prediction can be performed already after a few
iterations, where also less iterations with lower working frequencies could be performed.

5.3. Short summary and discussion

The investigations of this chapter show that UKF-PaLS can provide precise inversion results
both in 2D and 3D. The multi-scale approach brings a fast convergence and precise results.
The gain of the approach becomes visible if the results of scenario 2 are compared to the
results of Nguyen & Nestorović (2018), where a separation of two objects with a compar-
atively small distance to each other was not possible although twice as many sources and
more than three times as many receivers (placed even in boreholes) were used. For all of
the scenarios in this chapter, accurate results are already achieved after much less than the
conducted 25 cycles, which shows that either a first prediction can be performed early or
that less iterations with lower working frequencies could be performed if computational re-
sources are limited. It is found that even if the level-set parametrization is not chosen fully
optimal in the sense that it is not able to fully describe the disturbance domain, inversion
results can still be satisfactory. The covariance of the computed mean value can be used
to perform uncertainty quantification in order to analyze where anomalies could potentially
be missed by the inversion. Regarding source-receiver configurations it is found that an ex-
clusive placement of sources and receivers inside the tunnel already brings accurate results,
where the differences to scenarios in which additional receivers are distributed at the Earth’s
surface remain small. Due to the increased computation time, only two inversion scenarios
are tested in 3D. Scenarios with different types of disturbances with varying distances to
the tunnel face, larger regions of investigation and varying source-receiver configurations
are to be tested in future works. An approach that could further improve the results by re-
moving additional occurrences of disturbance material (which are especially visible for the
3D cases) is Tikhonov regularization (Tikhonov & Arsenin, 1963), where Fichtner (2010)
provides a short and comprehensive overview. The approach is based on the assumption
that the subsoil model is most probably simplistic, with rather small deviations from the
background model. Therefore, a quadratic term is added to the misfit functional that in-
creases if the current model departs from a reference model, which may be for instance the
initial model. It is probable that the additional areas of disturbance material, which appear
in the discussed 3D examples, vanish if Tikhonov regularization is applied. However, the
approach requires tests where probably also an investigation of a tuning of parameters is
to be performed, which is too costly for the 3D case regarding the available computational
resources.
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6. Imaging of a hole in an aluminum block

This chapter deals with the localization of a drilling hole in an aluminum block with both
UHSA and UKF-PaLS, where the scenarios serve as a first validation of the two methods
with experimental data. The advantage in choosing aluminum is a more straightforward
modeling compared to specimens composed of rock material as the isotropic and elastic as-
sumption is more valid for aluminum, leading to a smaller mismatch between measured and
synthetic waveforms. Therefore, strategies may be more easily developed, especially con-
cerning the forward modeling in terms of material property finding and the source function
estimation. After the acquisition of measurement data and the creation of the forward model,
both FWI methods are applied to the data and investigated on two source-receiver configu-
rations. UHSA is tested against particle swarm optimization and the results of UHSA and
UKF-PaLS are compared to the results of an adjoint approach, where the latter are achieved
by Lamert (2019). The contents up to the results of UHSA are similar to the contents pub-
lished in Trapp et al. (2019); however, the work is rewritten and the pictures and figures are
changed or edited substantially. Furthermore, additional content is added and the inversion
scenarios for UHSA are recomputed. The part corresponding to the supervised machine
learning approach is left out since these contents are written by the co-authors Can Boguclu
and Dirk Roos. However, the value of using supervised machine learning for the creation of
metamodels will be emphasized in Section 10.6.

6.1. The experiment

In order to create the ultrasonic data needed for the forward modeling as well as for the in-
version scenario, two cuboid aluminum specimens with dimensions 200.4× 103× 100mm
are utilized. Into one of the blocks, a hole is drilled, while the other one remains undis-

(a) Photo of measurement setup 1 (b) Photo of measurement setup 2

Figure 6.1.: Measurement setup for the undisturbed and the disturbed specimen.
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Figure 6.2.: Undisturbed specimen with measurement configuration. The red cylinder il-
lustrates the ultrasonic transducer. The green dot marks a single-point laser
measurement.

z

x

y > 45°

(a) Measurement setup 1

z

x

y

(b) Measurement setup 2

Figure 6.3.: Disturbed specimen with measurement configurations. The red cylinder illus-
trates the ultrasonic transducer. The green dots mark the points of laser mea-
surements.

turbed. Corresponding coordinate systems are placed in the respective center of mass of the
ideal block (without a drilling). The undisturbed specimen, which is shown in Figure 6.1a
and illustrated in Figure 6.2, serves for investigations concerning material properties and
the source signature. Into the second specimen, which is shown in Figure 6.1b and illus-
trated in Figure 6.3, a hole of 16mm diameter is drilled with its center aimed at position
(−10, y, 20) mm all over the y-direction. Wave excitation is conducted with transducer S 24
HB 0.2-0.6 (see Section 4.2). The flat contact area is for both specimens aimed to be placed
at (100.2, 0, 0) mm, where the source is illustrated with the red cylinder. The source input
signal is a Ricker function with fc = 300 kHz central frequency. When acquiring mea-
surements with the laser, it is observed that the signal strength becomes weaker measuring
close to the transducer (or, in other words, for higher values of x). The reason for this is
that signal directivities of ultrasonic transducers are usually not constant, where a study of
Bretaudeau et al. (2011) investigates this issue. Based on preliminary investigations, the
angle between the x-axis and the line connecting the middle of the transducer with the last
upcoming receiver in x-direction is chosen to be larger than 45 degrees (see Figure 6.3a).
The corresponding measurement setups are illustrated in Figure 6.2 and Figure 6.3. On the
undisturbed specimen, a single-shot measurement is acquired at (−100.2, 0, 0) mm, where
the location of the laser measurement is illustrated with the green dot. The measurement
is achieved with a mirror redirecting the laser beam (see Figure 6.1a). On the disturbed
specimen, measurement data for two receiver sets are acquired, where the source location
remains unchanged. For measurement setup 1, the data is acquired on the top surface at
z = 50mm (xy-plane) along line y = 0, that is the line in the middle of the surface parallel
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to the x-axis. 30 points of measurement are acquired along a 145mm long line in distances
of 5mm. For measurement setup 2, four additional line measurements are conducted which
are parallel to the one acquired above with distances of −15, 15, −30 and 30mm in y-
direction. The resulting measurement setup consists of 5 parallel line measurements with
5 · 30 = 150 points of laser measurements. The number of stacked single measurements
is with nstack = 200 comparatively large, which is possible in this case since the number
of receivers is rather low. During measurement acquisition, the specimens are placed on
threaded bars, which are sharpened in order to accomplish a minimum contact face. In or-
der to achieve a good transducer-structure coupling, a holder is built, where the transducer
is fixed in a PVC structure which is pressed into the direction of the specimen with the help
of two springs. To apply a contact pressure, two counterbalances are built and placed at the
opposite side of the specimen. The counterbalances are made up of circular cutouts of PVC
plates, attached eccentrically on threaded bars. The contact pressure is tuned by spinning the
counterbalances. For a different view on the bearing in a different setup, readers are referred
to Figure 7.2. Preliminary investigations show that the impact of the contact pressure on the
output signal is low if the coupling with the structure is secured. Therefore, it is sufficient
if the springs of the holder are compressed for a small amount only. During the creation of
the setup, the impact of the bearing as interfering objects is aimed to be minimized. The
threaded bars, on which the plates are placed, are close to having a point contact only, while
the circular cutout almost induce a line contact only. Thus, the impacts can be considered
rather low. The largest impact is expected to be caused by the transducer itself due to the
comparatively large contact face. However, since a modeling of the transducer would be
complex and since the inner structure would have to be known, it is left out of this study.
The offsets of the acquired traces are removed by subtracting the average amplitude before
waveform arrival. Bandpass filters are applied with cutoff frequencies of 50 and 800 kHz.

6.2. The forward model

The first stage of forward modeling is made up of a careful measurement of the dimensions
of the aluminum blocks and the implementation of the 3D geometrical model into Trelis,
where all of the surfaces are defined as free boundaries. In a second step, material properties
are to be determined. The material is chosen to be elastic as on the one hand, the attenuation
in aluminum may be expected to be rather small and as on the other hand, also the time win-
dow of observation is selected to be rather short so that the amplitudes do not decay greatly
anyways. As a consequence, the material properties are reduced to density ρ, compressional
wave velocity vp and shear wave velocity vs. The density is determined to 2775 kg

m3 and im-
plemented into the computational model. However, it could also obtain any arbitrary value
since the amplitudes of the simulation are scaled anyways. Since for homogeneous media,
a variation of the density only scales amplitudes in the elastic wave equation, the shape of
the waveform stays the same for different densities if only one material is considered. A
first estimation of the compressional wave velocity is obtained with the help of travel time
measurements. Subsequently, a first value of the shear wave velocity is obtained with this
compressional wave velocity and with an assumed value for the Poisson’s ratio ν = 0.34
(which is a common value for aluminum). The values for the wave velocities are then refined
with a sampling investigation. Therefore, forward simulations corresponding to the model
in Figure 6.2 are set up with a gridded variation of vp and vs in an interval of 10 m

s
around the

first estimation. The misfit functional (Eq. 3.6) for each pair of wave velocities is calculated
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incorporating the single-point measurement acquired in the previous section. Amplitudes
of the simulation data are aligned to the amplitudes of the experimental data by calculating
the factor leading to the minimum gap. Finally, the pair according to the minimum misfit
value is chosen, which is vp = 6340 m

s
and vs = 3110 m

s
. The creation of a gridded database

has the advantage of an offline evaluation, where observation times can be varied and where
waveform matches can be observed carefully. Since the finding of material properties turns
out to be not fully trivial for many cases (especially for different materials than aluminum),
this method is found to be useful. A comparison of the measurement (black) and synthetic
data (grey dotted) generated with the estimated wave velocities and the ideal Ricker signal is
illustrated in Figure 6.4. It is observed that the two waveforms already have a strong agree-
ment, particularly in terms of phases, which is seen as a hint that the material properties are
close to the real material properties. However, especially in terms of amplitudes, the match
may still be improved by an estimation of the source signature. Due to the coupling of the
source with the structure, the specific frequency of the ultrasonic transducer (Section 4.2)
and its inertia, the displacement function of the transducer’s contact face differs from the
source input. For this reason, a strategy is utilized in order to estimate this function, which
may be derived as follows. The synthetic signal response in frequency-domain Ssyn(ω) to
the ideal source function in frequency-domain Rsyn(ω) (in this case, the ideal Ricker signal)
may be derived with the help of a transfer function M(ω) according to

Ssyn(ω) =M(ω) ·Rsyn(ω). (6.1)

Assuming that the numerical model captures all properties of the experimental model, the
same relation is valid for the experimental data:

Sexp(ω) =M(ω) ·Rexp(ω), (6.2)

where Sexp(ω) is the measured waveform expressed in frequency-domain and Rexp(ω) is
the sought real source function in frequency-domain. Capturing all properties of the experi-
mental model is, of course, impossible. However, the assumption is considered sufficient in
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Figure 6.4.: Comparison of the measured waveform, a synthetic waveform generated with
an ideal Ricker source function, and a synthetic waveform generated with the
determined source signature Figure 6.5a. The wavelets are normalized with
their first minima.
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this case since the ideal signal and the experimental signal already have a good agreement.
Finally, from Eq. 6.1 and Eq. 6.2 it follows that

Rexp(ω) =
Sexp(ω)

Ssyn(ω)
·Rsyn(ω), (6.3)

which shows that with the help of the experimental signal response, the synthetic signal re-
sponse and the ideal source signal, one can derive an estimation of the real source signal in
frequency-domain. The source signal in time-domain is obtained by performing an inverse
Fourier transform on Rexp(ω). The result of the source signal estimation is shown in Fig-
ure 6.5a, where the derived source function (red) is compared to the ideal source function
(grey dotted). Again, the signals are normalized with their first minima. In Figure 6.5b, the
PSDs of these signals are illustrated. Note that the shape of the PSD of the source function
differs from the PSD determined in Section 4.2. Due to the coupling with the structure,
the spectrum is observed to be shifted to higher frequencies. The derived source function
in time-domain serves as the input signal for a new simulation with the previously derived
model. The red wavelet in Figure 6.4 shows the synthetic signal response. It is observed that
the agreement to the measured waveform is improved substantially compared to the wavelet
generated with the ideal Ricker signal. The success in achieving a good agreement is a sign
of well-fitting material properties and a well-estimated source signature. For the past and
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Figure 6.5.: Determined source signature and ideal source signal in time and frequency. The
time data is normalized with the first minimum of the wavelets. The PSDs are
normalized with their maxima.
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the upcoming numerical simulations, the mesh is generated so that Eq. 2.12 is fulfilled, with
a maximum frequency of fmax = fc · 2.5 = 750 kHz, where fc = 300 kHz is the central
frequency of the Ricker signal. In order to consider the effect of the flat transducer, 50 seis-
mic sources are regularly applied along the contact area of the transducer (see red dots in
Figure 6.11)

6.3. Full waveform inversion

6.3.1. UHSA

The main goal of this section is the application of UHSA to the experimentally gained data.
UHSA is applied to measurement setup 1 only (Figure 6.3a) in order not to go beyond the
scope of this work. An application to measurement setup 2 can be expected to bring a less
complex misfit functional due to more seismic receivers and therefore also a distinctly faster
convergence. The parametrization of the drilling hole is defined with two center coordinates
in the form of m = (x, z) according to the coordinate system shown in Figure 6.3, where
the drilling spreads entirely across the specimen in y-direction. The radius of the hole is not
determined as the occurrence of only two inversion parameters brings two advantages for
this section – on the one hand, the inversion time remains comparatively low and on the other
hand, a visualization of the corresponding misfit landscape is enabled. The working steps
of this section are segmented as follows: in the first step, an image of the misfit landscape
is generated on the basis of computed misfit functionals for sampled pairs of coordinates.
Secondly, UHSA is applied with two different input parameter settings. Thirdly, UHSA is
tested against particle swarm optimization (PSO). A single simulation takes 7−8 minutes on
average on a 26-core computer with 2.4 GHz each and 96 GB RAM. Since the model domain
is remeshed each time a parameter configuration is proposed, the number of elements varies,
with an approximate number of 58000 spectral elements. Same as in the previous section,
the amplitudes of the simulation are aligned to the amplitudes of the measured data with
the factor leading to a minimum gap. The investigated time window is set to 8.8 · 10−5 s as
Figure 6.4 shows a good fit of experimental and synthetic waveforms during that time.
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Figure 6.6.: Linear interpolation of the misfit landscape with 1024 parameter configurations
and visualization of the determined drilling hole coordinates of each applied
method.
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The misfit landscape shown in Figure 6.6 is determined by a linear interpolation of 1024
sampled points between bounds of x ∈ [−80, 80]mm and z ∈ [−40, 40]mm. The abscissa
corresponds to the x-axis in Figure 6.3 and the ordinate to the z-axis. The expected center
of the boring at position (x, z) = (−10, 20)mm is marked with the red dot. The inversion
outcomes of UHSA with two different settings and the inversion outcome of PSO (which
will be generated in the course of the section) are illustrated as well. It is observed that there
is a steep global minimum close to the expected center of the boring. Additionally, there
are several local minima with, however, distinctly higher misfit functionals. Before starting
the inversion, input parameter configurations are set up, where the tuning is explained in
Section 3.6. Two examples of UHSA are created with the parameter configurations shown
in Table 6.1.

Parameter UHSA I UHSA II

m (x, z) (x, z)
U [80, 40] [80, 40]
L [−80,−40] [−80,−40]
Nc 40 120
p0 0.9 0.7
pe 0.2 0.1
Nk 4 2
Pm

0 diag(42, 42) diag(22, 22)
Q 0.1Pm

0 0.1Pm
0

smin 0.8su 0.7su
R 0.2su · Ir 0.1su · Ir

Table 6.1.: Input parameter configurations for UHSA

Configuration 1, also referred to as UHSA I, is set with the aim to find the global minimum
during a small number of UHSA cycles. Therefore, both the grade of local exploration and
the spread of the sigma points are set relatively high. Furthermore, the general settings of
UHSA are set so that many cycles are accepted. Configuration 2, also referred to as UHSA
II, is set with a much higher number of UHSA cycles, but a lower grade of local exploration.
The UHSA settings in this example are set strict, meaning that many cycles will be rejected
during inversion. Thus, in order to find the global minimum, the proposed configuration has
to be close to the region of the global minimum as the strict annealing cycle would hinder
it from being accepted instead. However, as the number of UHSA cycles is quite high and
the minimum region around the global minimum is quite large as well, the global minimum
is expected to be found. Figure 6.7 shows the courses of the algorithms on the misfit land-
scapes for both parameter configurations of UHSA, where the working principle of UHSA
can be observed. In regions with a lower misfit functional, more samples are accepted for
a local minimization. For most of the accepted parameter configurations, it is observed that
the UKF succeeds in moving closer to the neighboring local minimum. This also applies for
accepted samples close to the global minimum as these samples move directly into the di-
rection of the hole coordinates. During the later stage of the inversions, the global minimum
is intensively explored as the annealing temperature becomes smaller, meaning that com-
puted parameter configurations are more likely close to the parameter configuration with the
lowest misfit functional. This effect is more visible for UHSA II as the annealing parameters
are set more strictly. Figure 6.8 shows the courses of the misfit functionals and the inversion
parameters over the number of UHSA cycles. With Figure 6.7a and Figure 6.8a, the course
of UHSA I is analyzed. Due to the applied settings in this example, the rate of acceptance
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Figure 6.7.: Course of UHSA in the parameter space, plotted onto the predicted misfit land-
scape

is quite high with 0.55. A parameter configuration close to the global minimum is already
found after 14 cycles. However, after 28 cycles, a parameter configuration with an even
lower misfit functional is found. During the entire inversion, 460 forward simulations are
consumed in about 55 hours of computation time on a 26-core computer with 2.4 GHz each
and 96 GB RAM. The course of UHSA II is analyzed with Figure 6.7b and Figure 6.8b. The
strict annealing schedule leads to a low acceptance rate of 0.12. After 33 cycles, a parameter
configuration close to the global minimum is found. During the further course of the inver-
sion, many parameter configurations with even lower misfit functionals are found. This is a
consequence of the strict annealing schedule as the annealing parameter Eq. 3.26 becomes
small during the inversion, which leads to many parameter configuration proposals close
to the current optimum. The parameter configuration with the lowest misfit functional is
found after 106 cycles. During the inversion, 305 forward simulations are consumed during
about 35 hours of computation time on the computer described above. The inversion results
for both configurations are summarized in Table 6.2. It is found that with both parameter
configurations, the global optimum is found with a high precision. The misfit functional is
slightly lower for configuration 2 and furthermore, the determined parameter configuration
is slightly closer to the expected true coordinates of (−10, 20)mm.
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Figure 6.8.: Courses of misfit functionals and inversion parameters over the number of
UHSA cycles for configuration 1 and 2. The dashed lines illustrate the respec-
tive estimated true values.

Strategy Coordinates (mm) Misfit No. of calculations

UHSA I (−8.68, 19.17) 296.66 460
UHSA II (−9.20, 19.84) 296.07 305
PSO (−8.79, 19.96) 296.91 600

Table 6.2.: Results of the optimizations

In a next step, UHSA is compared to PSO (Eberhart & Kennedy, 1995). PSO belongs
to the class of evolutionary algorithms and is inspired by biological swarm intelligence.
Same as UHSA, it is a metaheuristic global search approach. The algorithm is implemented
as proposed by Garrett (2014) with the same geometric bounds as used for UHSA. The
number of generations is set to 12 with a population size of 50. During the inversion, 600
forward simulations are consumed during about 70 hours calculation time on the computer
described above. The performances of UHSA and PSO are compared with the final results
given in Table 6.2 and with the course of the misfit functionals for all of the three inversion
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Figure 6.9.: Courses of the misfit functional of UHSA I, UHSA II and PSO over the number
of forward simulations.
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scenarios shown in Figure 6.9. It is found that the final misfit functional gained with PSO is
slightly higher than for both UHSA scenarios, although nearly 1.5 (UHSA I) and 2 (UHSA
II) times as many simulations are consumed. The course of the misfit functionals shows
better performances of UHSA as well. It is observed that UHSA I and UHSA II reach a
level below a misfit functional of 300 after 221 or 204 forward simulations, respectively.
PSO needs 424 forward simulations to reach a level slightly higher than 300. Hence, UHSA
is found to be more effective than PSO.

6.3.2. UKF-PaLS

This section deals with the application of UKF-PaLS to the acquired data. Thereby, three
tests are performed, where in the first scenario, UKF-PaLS is applied to measurement setup
1 (Figure 6.3a) and in the second scenario to measurement setup 2 (Figure 6.3b). In the third
scenario, the initial model is changed in terms of the positions of the bumps and UKF-PaLS
is applied to measurement setup 2 again. The model domain is discretized with 31250 hexa-
hedral 8-node elements, where the number of elements is much smaller than for UHSA due
to the regular meshing. A single simulation takes about 1.5 minutes on a 26-core computer
with 2.4 GHz each and 96 GB RAM. For scenarios 1 and 2, Nb = 150 bumps are aligned to
a regular grid with a dimension of 50× 80× 40mm with a distance of 10mm to each other
in x- and z-direction (where the diameter of the drilling to be detected was 16mm) and with
a distance of 20mm to each other in y-direction. Prior knowledge is implemented in the
form that the disturbance is implemented as a cavity, meaning that elements belonging to
the disturbance domain are deleted from the mesh. This secures a rather fast inversion with
a relatively coarse mesh as no material properties need to be determined. The dimension of
the inversion scenario amounts to n = 300 (150 parameters for α and 150 for β), resulting in
2n + 1 = 601 sigma points to compute during each iteration. The initial parameter config-
uration is defined by setting the vector m0 ∈ Rn, where the initial parameters and settings
of the UKF are given in Table 6.3. The resulting initial model is shown in Figure 6.10. In
this figure, it becomes visible that the placement of bumps is advantageous since certain
bumps almost lie in the perfect center of the drilling. Note again that the bumps seem to
be aligned irregularly since the mesh is not discretized in accordance with the bumps. The
upcoming results are produced without a multi-scale approach. An implementation is also

source

X

Z

Figure 6.10.: Initial model of UKF-PaLS with borders of the actual drilling hole.
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Parameter Configuration

Nb 150
m0 {α0,β0}
α0 1JNb,1

β0 2JNb,1

Nk 20

Pm
0 diag(P α

0 ,P
β
0 )

P α
0 12JNb,1

P β
0 0.32JNb,1

smin 0su
R 0.01su · Ir
Q 0.5Pm

0

Table 6.3.: Initial model parameters and input parameter configuration for UKF-PaLS. JNb,1

is a vector of ones of the size of the number of bumps RNb×1

tested; however, the results are less successful than the upcoming. The reason is that, com-
pared to previous examples, the disturbance is smaller (16mm in diameter) in relation to
the operating wavelengths (approximately 1 − 2 cm for the central frequency of the Ricker
and the P- and S-wave velocities), so that the higher frequencies are most important for the
optimization. Therefore, it is disadvantageous to filter these frequencies until later stages
of inversion. Also an uncertainty quantification is left out for the same reasons as in the
3D synthetic examples explained on page 51. In order to prevent double calculations, it is
checked prior to each simulation if the current model was already computed before, where
this applies to more than half of the computed samples. The current examples are the only
examples of this thesis for which this works, where the reason is that no material properties
are determined. UKF-PaLS is started for scenarios 1 and 2 with a preset number of iterations
Nk = 20.

The model corresponding to the parameter configuration with the minimum misfit for sce-
nario 1 is found during iteration 13 and compared to the actual shape of the drilling in light
grey in Figure 6.11. It is observed that the core of the drilling is well reconstructed around
y = 0, where the determined geometry has a similar diameter like the drilling. However,
moving towards positive or negative direction of y, the geometry is not well reconstructed.
Outside the actual drilling, most of the elements satisfactorily vanish; especially in positive
x-direction or in direction of the sources. In negative x-direction, there are more appear-
ances of disturbance material that are not correct. Still, the reconstruction of the middle part
of the cylinder is in accordance with the expectations since receivers are placed in plane
y = 0 only, lacking to bring unambiguous information about the model sides. During the
inversion, 4122 forward simulations are consumed, where the inversion takes about 5 days
on a 26-core computer with 2.4 GHz each and 96 GB RAM.

Figure 6.12 shows the model corresponding to the parameter configuration with the mini-
mum misfit for scenario 2, which is found during iteration 7 already. The results show a
good reconstruction of the drilling all over the dimension of y. Nearly all of the elements
outside the disturbance domain vanish, while the elements inside the region of the distur-
bance domain appear. Even the diameter of the cylinder is well reconstructed. During the
inversion, 4066 forward simulations are consumed during a similar computation time as
above. For scenario 3, the position of the bumps is changed to a disadvantageous position,
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Figure 6.11.: Scenario 1: model corresponding to the parameter configuration with the mini-
mum misfit from two points of view, compared to borders of the actual drilling
hole.
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Figure 6.12.: Scenario 2: model corresponding to the parameter configuration with the mini-
mum misfit from two points of view, compared to borders of the actual drilling
hole.

where all bumps are moved 5mm in positive x-direction and 5mm in positive z-direction.
Thereby, the centers of the bumps move to the edge of the drilling hole, which is shown in
Figure 6.13 and which has the effect that the corners of the elements are slightly outside of
the shape of the true drilling. The settings for the inversion scenario stay the same as in the
previous two scenarios. The parameter configuration with the minimum misfit is found after
16 iterations and is visualized in Figure 6.14. It is observed that due to the position of the
bumps at the edges of the true disturbance, the drilling is less accurately reconstructed than
in scenario 2. Furthermore, most of the material appears in positive y-direction, where the
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Figure 6.13.: Initial model for UKF-PaLS for scenario 3 with borders of the actual drilling
hole.
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Figure 6.14.: Scenario 3: model corresponding to the parameter configuration with the min-
imum misfit compared to borders of the actual drilling hole.

origin is unclear. With the determined disturbance domain, the location of the drilling can
only be approximately estimated, but is not completely misinterpreted. Therefore, the ex-
ample shows that a good placement of the bumps is advantageous for the inversion, but that
a disadvantageous placement may still bring satisfactory results. If the bumps are placed
at the edges of the disturbance only, the filling of the inner core is mathematically complex
with the level-set representation. For the current scenario, it is noted that the element size
is quite large in relation to the disturbance. In a tunneling setting, the element size is prob-
ably much smaller than the disturbance, so that in the case of a high chosen resolution, the
placement of the bumps would have a minor impact given that the actual disturbance lies
inside the region of investigation. During inversion scenario 3, 4044 forward simulations are
consumed. Figure 6.15 shows the courses of the relative misfit functionals over the number
of iterations, where the respective misfit functional corresponds to the lowest misfit func-
tional of the respective iteration. For all of the three scenarios, it is observed that the misfit
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Figure 6.15.: Course of the relative misfit functionals after each iteration of UKF-PaLS. The
misfit functionals are normalized with the misfit value of the respective initial
model. The plotted value refers to the lowest misfit functional of the iteration.
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Figure 6.16.: Selected waveforms of the measurement, the initial model, and the identified
model resulting from scenario 2. The receiver points are located at positions
(x = {−90,−80,−70,−60,−50}, y = 0, z = 50)mm

functional is decreasing quickly within the first 5 iterations and then does not change sig-
nificantly anymore. These observations are in accordance with the findings of the previous
chapter, where it turned out that a meaningful minimum is usually found early. Analysis
of the results after certain iterations (like in the previous chapter) is left out in this chapter
since the scenarios are not very similar to tunneling scenarios compared to the upcoming
scenarios. On the example of the model of scenario 2, a comparison of selected waveforms
of the initial model, the identified model and the measurement is provided in Figure 6.16.
It is observed that the mismatch of the synthetic waveforms and the measured waveforms is
substantially reduced in the identified model, although there is still a significant mismatch
due to measurement and modeling errors.



6.4. Comparison to results of adjoint full waveform inversion 69

6.4. Comparison to results of adjoint full waveform inversion

In this section, the results of UHSA and UKF-PaLS are compared to the results of an adjoint
approach. The results of the latter originate from Lamert (2019), where measurement setup 1
(Figure 6.3a) is used as the data set to be inverted. The utilized source function is the one
determined previously (red curve in Figure 6.5a); the initial model is a homogeneous model
with the dimensions of the aluminum block (Figure 6.2) and with the material properties
determined for the background model (see Section 6.2). The elastic wave equation is solved
with the nodal discontinuous Galerkin method with a mesh consisting of 285588 tetrahedral
elements. As tetrahedrons are utilized, the number of elements is distinctly higher than in
the previous examples (around 58000 for UHSA and 31250 for UKF-PaLS). The computa-
tion time for one single simulation on a machine with two Intel Xeon E5-2698 v4 processors
with 20 cores each and 256 GB RAM on 40 threads is approximately 1.35 hours, which is
distinctly larger than for the described methods in this work (around 7.5 minutes for a single
simulation in UHSA and around 1.5 minutes for a simulation in UKF-PaLS on a 26-core
computer with 2.4 GHz each and 96 GB RAM). Certainly, the computation times cannot be
directly compared as the simulations are run on different machines; however, the advantages
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Figure 6.17.: Inversion results with the adjoint method from two points of view, where the
true shape of the drilling is illustrated by black lines. The left column illus-
trates the determined compressional wave velocities and the right column the
shear wave velocities.
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of the spectral element method in combination with hexahedral elements (Section 2.5.1) lead
to the fast computation times of UHSA and UKF-PaLS. Contrary to the two methods ap-
plied in this work, no prior knowledge is implemented and no dimensionality reduction is
applied in the adjoint approach, so that material properties may vary all over the model do-
main. Figure 6.17 shows the inversion results of the adjoint approach, where the determined
compressional and shear wave velocities are illustrated from two points of view. The true
drilling is illustrated by black lines. Around the region of the true position of the drilling,
a decrease of the compressional wave velocity is observed. Furthermore, various additional
regions of altered wave velocities are visible, especially in the direction from sources to
the true position of the drilling. These alterations occur because travel time discrepancies
of simulated and experimental waveforms at receivers in source-drilling direction can also
be compensated with a reduction of wave velocities somewhere on the path from source to
drilling. In the shear wave velocity model, an increase is observed around the region of the
true drilling. Assumptions for why an increase rather than a decrease occurs are provided by
Lamert (2019). With the two wave velocity models, an inhomogeneity could be indicated,
lying in the region of the true drilling. Lamert (2019, p. 100) makes an estimate of the center
lying at (x, z) = (−15.5mm, 24.5mm) with a radius of 6.5mm, while the real center is lo-
cated at (x, z) = (−10mm, 20mm) with a radius of 8mm. The inversion results of UHSA
and UKF-PaLS for measurement setup 1 are summarized again in Figure 6.18 in order to
gain a better overview. The results for UHSA are those generated with UHSA II since the
misfit functional is slightly lower here. Same as for the adjoint illustration, the true shape of
the drilling is illustrated by black lines. The inversion results are shown in grey. For UHSA,
the reconstruction of the drilling is close to exact with only a very small error. Same as the
adjoint method, UKF-PaLS can only reconstruct the object close to y = 0 due to the place-
ment of receivers. Here, the location and the radius of the drilling may be estimated well
if the reconstructed cube directly below the line of measurement is considered. Also the
shape of the drilling is determined quite precisely, with limitations caused by the element
size. However, it is noted again that the placement of the bumps was advantageous for the
shown case. The number of consumed forward simulations is 485 for the adjoint approach,
305 for UHSA and 4066 for UKF-PaLS (where the optimum is found after 2643 iterations).

source
receiver

(a) UHSA (b) UKF-PaLS

Figure 6.18.: Inversion results of UHSA and UKF-PaLS for measurement setup 1. The true
shape of the drilling is illustrated by black lines. The inversion results are
illustrated in grey.

A comparison of the methods demonstrates the advantages as well as the limitations of
UHSA and UKF-PaLS compared to adjoint methods. The advantage of the two parameter
reduction methods is the increased accuracy, which is close to being exact for UHSA and
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high for UKF-PaLS. As shown in Figure 6.12, the accuracy for UKF-PaLS may be further
improved if more receivers are utilized. Unfortunately, this is not tested for the adjoint ap-
proach. The limitations of the non-gradient methods lie in the parameter reduction. For
UHSA, a parametrization of the disturbance needs to be derived that specifies the shape
of the drilling. Therefore, prior knowledge is necessary, which may not always be avail-
able. For UKF-PaLS, no prior knowledge about the shape of the disturbance is necessary.
However, prior knowledge is implemented in the form that the marked elements directly
implement a cavity (which would, of course, be different in a tunneling scenario). Further-
more, the bumps need to be positioned by the user, determining the region of investigation
and a resolution. The method seems quite restrictive and dependent on prior knowledge
when considering the current scenario, but is however less restrictive for real tunneling en-
vironments where the element size would be much smaller in relation to the disturbance.
There, the placement of the bumps would have a minor impact if the resolution would be se-
lected high enough and if the disturbance would lie inside the region of investigation (see the
examples of Chapter 5). Gains and restrictions of the methods, also in regard of further im-
provement, will be further discussed in Section 10.4. Both for UHSA and UKF-PaLS it can
be stated that with the conducted dimensionality reduction, the exactness of the inversion
is improved compared to the adjoint approach. However, a parameter reduction, especially
as applied for UHSA, might not always be applicable. Due to the utilization of the spectral
element method, UHSA and UKF-PaLS perform distinctly faster than the adjoint approach,
where however the number of forward simulations is distinctly higher for UKF-PaLS than
for the adjoint approach. For UHSA, it is slightly lower.

6.5. Short summary and discussion

This chapter deals with the first validation of UHSA and UKF-PaLS with experimental
data. The object of investigation is an aluminum block with a drilling to be determined.
Ultrasonic measurement data are acquired and an adequate forward model is constructed,
including a successful strategy in order to estimate the source signature. With the applied
parameter reduction in UHSA, a nearly exact determination of the drilling hole center co-
ordinates is achieved. Compared to a standard PSO, the computational effort remains low.
With the parameter reduction applied in UKF-PaLS, a good approximation of the drilling
is found as well, improving substantially if more receivers are utilized. A good placement
of bumps is shown to be advantageous, but a disadvantageous placement may still bring
satisfying results in terms of approximately locating the object. For both scenarios, low
minima in the misfit functional are found early, which shows once more that a prediction of
the subsoil properties may happen early as well. The comparison with the adjoint approach
shows that a parameter reduction may improve the inversion result if applicable. For a more
representative comparison, the methods should be compared based on tunnel environment
examples. A comparison of UKF-PaLS to the adjoint approach for 2D synthetic scenarios is
provided by Lamert et al. (2018), where however, the multi-scale approach was not included
in UKF-PaLS. Therefore, the inversions performed quite long and the results were not that
accurate.
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7. Imaging of anomalies in concrete plates

This chapter deals with the imaging of structural anomalies in concrete plates with UHSA.
This is one step further towards FWI in mechanized tunneling since firstly, concrete may be
seen as a rock-like material and secondly, not only the shapes, but also material properties
are determined. Three concrete plates are poured in order to validate the method with ex-
perimental data. The reasons for manufacturing concrete plates instead of larger specimens
are firstly a fast manufacturing process and secondly fast simulation times. Similar to the
procedure in the previous chapter, ultrasonic measurements are performed and an adequate
forward model is constructed before UHSA is applied to the data. In order to validate the
performance of UHSA again, the algorithm is compared to a genetic algorithm for one of
the specimens. The results are published in Trapp & Nestorović (2020); however, the work
is rewritten and the pictures and figures are changed or edited substantially. An investigation
with UKF-PaLS is left out of this study since the first implementation of this method was
conducted later (first in Chapter 8 for the 2D case and then in Chapter 5 and Chapter 6 for
the 2D and 3D cases), where the stage of validation of UKF-PaLS is already judged high.

7.1. The experiment

The basis of the investigations are three self-manufactured concrete plates with dimensions
0.5 × 0.5 × 0.024m. Into each concrete plate, a different anomaly is included. Figure 7.1
shows the concrete plates in a 2D view. The disturbance of the first specimen has the shape
of a cylindrical hole with no material inclusion. The second specimen includes two mate-
rials that are separated by a linear material change. The third specimen shows a material
inclusion of approximate rectangular shape. In preliminary tests, various concrete mixtures
are poured before their corresponding material properties are determined. Thereupon, two
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Figure 7.1.: Investigated concrete plates with measurement configurations illustrated by
green dotted and red dashed lines. The black measurement setup serves for
the determination of the background material properties.
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mixtures for the background and disturbance materials are selected, which are to differ dis-
tinctly in the determined wave velocities in order to induce a clear material contrast, but
also not overmuch since a large difference would lead to a large computational demand
during FWI. The selected background material is a concrete topping with a mixture ra-
tio cement/sand/gravel/water of about 0.5/1/1/0.25 with sand grains from 0 to 1mm and
gravel grains from 1.2mm to 8mm. The selected disturbance material is a combination of
a mortar for brickwork mixture (mixture ratio cement/limestone/dust/sand/water of about
0.12/0.07/1/0.42) and the above-mentioned concrete mixture in the ratio concrete/mortar
1/0.7. The compressional wave velocities of the two materials differ in about 750 m

s
, with a

slower velocity for the disturbance material which is a consequence of the higher amounts
of sand and water. The disturbance material is used to pour an additional but homogeneous
plate in order to be able to estimate the material properties as exact as possible for validation
purposes. Figure 7.2 shows two perspectives of the experiment.

(a) (b)

Figure 7.2.: Photos of the experiment from two perspectives

In order to increase the repeatability and the SNR, leaf gold is applied to the side surfaces
of the concrete plates as validated and investigated in Section 4.3. The reason for the choice
of gold is that the idea of using aluminum tape as a reflector occurred later. Same as in
Chapter 6, the concrete plates are placed on sharpened threaded bars and a holding with
springs serves for the application of a contact pressure, where counterbalances are placed at
the opposite side of the specimen. Similarly, also here, the impact of the bearing on the mea-
surements can be expected to be low (see page 57), where even the impact of the transducer
as an interfering object is expected to be low due to the point contact. On each concrete
plate, two measurement setups are acquired, consisting of 2 sources and 982 receiver loca-
tions in total. The measurement setups are illustrated in Figure 7.1. The sources are placed
in the middle of the side surfaces and represented by the green dotted (S1) and red (S2) ar-
rows. The laser measurements are acquired along two 0.49m long lines in 1mm distances,
illustrated by the green dotted and the red dashed lines. The laser focus is aimed to run along
the middle of the side surfaces with the height of the contact point of the ultrasonic trans-
ducer. The measurement is achieved with a mirror redirecting the laser beam. An additional
measurement setup is acquired on each plate in order to be able to determine the material
properties of the background material. These sets are illustrated in black (source SMP) and
consist of 41 measurements along 0.04m long lines. As one can observe in the figures,
the configurations are chosen so that direct waves are distant to the disturbance in order to
perform a suitable background material property determination. The source signal for each
measurement setup is a 3.5-cycle Hanning windowed tone burst signal with a central fre-
quency of 100 kHz excited with the ultrasonic transducer B 0.1NN by GE Measurement &
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Control Solutions, where the reasons for choosing this kind of signal are explained in Sec-
tion 4.2. Although the characteristic peak of the transducer was found to be slightly lower,
the 100 kHz tone burst is utilized in order to increase the amount of higher frequencies in the
signal. According to the findings of Section 4.3, measurements are repeated about 100 times
and stacked. However, there are still some poor measurements that arise due to the measure-
ment on porous surfaces. Moving over grains and pores, the focus of the laser varies, and
the reflection can be weak. Therefore, traces are carefully observed and deleted if they are
apparently poor. Note that this problem can be reduced applying aluminum tape instead of
leaf gold (which, as explained above, had not yet been established at the time of conducting
the experiment). The offsets of the traces are removed by subtracting the average amplitudes
before waveform arrival. Furthermore, bandpass filters are applied with cutoff frequencies
of 10 and 170 kHz.

7.2. The forward model

Same as in the previous chapter, the geometrical model is built and implemented into Trelis,
where all model boundaries obtain free boundary conditions. The determination of the
source signature is performed differently since an estimation as proposed in Section 6.2
is found to be difficult for the current scenarios. The reason is that the match between syn-
thetic and measured waveforms is not high enough. Thus, the source signature is estimated
experimentally by a transducer-on-source measurement. The peak of a second transducer,
which is also a B 0.1NN, is placed at the peak of the source transducer in order to measure
the source function directly. The advantage in using such a signal compared to a laser-on-
source measurement is that the transducer is coupled with a structure already. However,
a laser-on-source measurement incorporates the time delay or dead time of the measure-
ment system. For this reason, the obtained transducer-on-source measurement is aligned to
a laser-on-source measurement on the time axis. Implementing this aligned signal into the
simulation, the time delay of the system is incorporated into the simulation and no adaption
along the time axis needs to be performed. Figure 7.3 shows the experimentally determined
source signature compared to the ideal source signal in time and frequency. It is observed
that the frequency content of the estimated source signature is shifted slightly to lower fre-
quencies, which is expected to be mainly due to the lower frequency range of the transducer.
After the experimental estimation of the source signature, the background material proper-
ties are to be determined. The determination is conducted with the aid of the black mea-
surement setups in Figure 7.1. As explained before, the measurement setups were chosen to
be distant from the anomalies to minimize their influence on the data. Therefore, a model
of an undisturbed (homogeneous) model is set up for the material property determination.
Since the durations of the signals are set to a small time window in which amplitudes do
not decay much, the material is again chosen to be elastic, where the gain is a reduced com-
putational demand. Same as in Section 6.2, a database with a gridded variation of vp and
vs is created and the material property set with the minimum misfit functional is selected.
The determined compressional wave velocities of all the three concrete plates lie between
3550 m

s
and 3690 m

s
with shear wave velocities between 2330 m

s
and 2360 m

s
. A compari-

son of synthetic and experimental measurements for the measurement setup generated with
source SMP for specimen 1 is shown in Figure 7.4. It is observed that the overall agree-
ment of measured waveforms and synthetic waveforms is high despite numerous sources
of errors, which are explained in the upcoming section. For the past and the forthcoming
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Figure 7.3.: Experimentally determined source signature and ideal source signal in time and
frequency.

numerical simulations, the mesh is generated so that Eq. 2.12 is fulfilled with a maximum
frequency of fmax = 150 kHz, where fmax is chosen so that most of the energy of the signal
is contained within the frequency range between 0 and fmax (compare Figure 7.3b). The
observation time window is set to 3 · 10−4 s.

7.3. Full waveform inversion - UHSA

In the following, UHSA is applied to the previously gained data sets. For each of the sce-
narios, a parametrization of the disturbance is set up, which is expected to be able to ap-
proximately describe the disturbance. For the hole in specimen 1 those are two location
coordinates and the size of the hole in terms of the radius. For the definition of the linear
change in specimen 2, the parametrization is set to a location coordinate defining the center
of the linear change, the angle of the linear change with respect to a reference line and the
disturbance material properties. For the rectangular disturbance in specimen 3, it is set to
two location coordinates of the geometric center of the disturbance, two edge lengths and
the disturbance material properties. For the description of the latter, a simplification is made
which was also applied in Section 5.2.2. During inversion, only the compressional wave
velocity of the disturbance vp,d is determined where the shear wave velocity is computed
with an assumed value for the Poisson’s ratio of νd = 0.15. This value is chosen since it is
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Figure 7.4.: Comparison of experimental (black) and synthetic (red) waveforms for the mid-
dle 20 receivers of the measurement setup generated with source SMP for spec-
imen 1 according to Figure 7.2

a common value for concrete and since it is close to the Poisson’s ratio of the background
material. Thereby, the number of material properties to be determined is reduced to one,
also decreasing the computational demand. The compressional wave velocity of the ho-
mogeneous specimen with the disturbance material of specimens 2 and 3 (see Section 7.1)
is estimated with the same technique as described in the previous section and determined
to lie at vp,d = 2856 m

s
. This value is referred to as the expected true value of the distur-

bance material compressional wave velocity in the following. Besides the above-mentioned
simplification, a second one is made, where the density of the disturbance material is set
to the same value as the density of the background material, which again reduces compu-
tational demand. This is expected to be valid since the disturbance material consists of a
similar material. The two simplifications may cause some errors in the form of both ampli-
tude mismatches and smaller phase errors. However, these errors are expected to be rather
small. Depending on the inversion scenarios, both simplifications could also possibly be
made during an application in mechanized tunneling.

Prior to the inversion, the whole simulation data set is scaled with a factor in such a way that
the largest simulation amplitudes are similar to the amplitudes of measurements at measure-
ment points with a rather low displacement. This leads to lower amplitudes of simulations
compared to measurements for most of the waveforms, which can be observed in Figure 7.7.
The reason for this procedure is that if simulation amplitudes are scaled higher than the am-
plitudes of measurements, it is observed that the inversion may tend towards wrong results
with late waveform arrivals (where late waveform arrivals are for instance caused by large
anomalies with low wave velocities). This issue is explained with aid of Figure 7.5. The
black lines illustrate an exemplary waveform measurement at one receiver point, where
both subfigures show the same black curve. The red lines illustrate two exemplary simula-
tion waveforms, where their effect on the misfit shall be compared. The waveforms on the
left-hand side show a perfect normalized correlation, where the simulation is scaled with a
scaling factor of slightly larger than 2 respective to the measurement. The resulting misfit
functional (Eq. 3.6) amounts to S1 = 1, where the waveform difference is marked with grey
color for illustration purposes. The right-hand side shows a lately arriving simulation signal.
Although the normalized correlation between measurement and simulation is bad, the misfit
is, with an amount of S2 = 0.87, lower than for the left-hand case (where the grey area
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Figure 7.5.: Illustration of misfit values for two scenarios with the same exemplary measure-
ments. On the left, the misfit functional is higher despite a perfect normalized
correlation. Choosing a high scaling factor can hence bring the inversion to
false results with late waveform arrivals (like on the right-hand side).

is larger). Hence, if the scaling illustrated on the left-hand side would be applied, UHSA
would tend to results with lately arriving signals like shown on the right-hand side due to the
lower misfit functional. Note that this effect becomes stronger if the normalized correlation
is not perfect. Furthermore, since many receivers with varying amplitudes are used for the
UHSA inversion, a scaling to comparatively low simulation amplitudes is necessary.

In order to test the performance of UHSA in the case of a disadvantageous initial model,
the parameters of the initial model are set distant from the expected real parameters. Input
parameter configurations for all of the three scenarios are given in Table 7.1. For all of the
inversion scenarios, there are numerous sources of errors or inaccurate results, which are all
related to modeling and measurement errors. The primary sources of error are (List 7.1):

• imprecise approximations of the background material properties

• imprecise approximations of the source signature

• an inaccurate simulation model in terms of geometry and source/receiver locations

• inhomogeneities, anisotropies, attenuation and dispersion effects of the real model
which are not imaged by the simulation model

• errors related to the measurement (e.g. weak signal due to porous surfaces)

• noise contained in the measurements

• inaccurate approximations of the expected true parameters

• an insufficient parametrization: the parametrization of the disturbance may not be able
to capture all details of the experimental model

• small numerical errors

List 7.1.: Main sources of error during inversion
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specimen 1 specimen 2 specimen 3

m [yloc, zloc, r] [zloc,Φ, vp,d] [yloc, zloc, b, h, vp,d]
U [0.2, 0.2, 0.06] [0.15, 80, 4500] [0.15, 0.15, 0.25,

0.25, 4000]
L [−0.2,−0.2, 0.02] [−0.15,−80, 2000] [−0.15,−0.15, 0.03,

0.03, 2000]
Nc 200 200 200
p0 0.8 0.8 0.9
pe 0.01 0.01 0.1
Nk 3 3 4
Pm

0 diag(0.0052, 0.0052,
0.0022)

diag(0.00652, 3.52,
502)

diag(0.0062, 0.0062,
0.0062, 0.0062, 352)

Q 0.3Pm
0 0.3Pm

0 0.3Pm
0

smin 0.8su 0.8su 0.5su
R 0.2su · Ir 0.2su · Ir 0.1su · Ir

Table 7.1.: Input parameter configurations for UHSA

7.3.1. Hole localization

For the imaging of the hole in specimen 1, three inversion parameters are set to describe
the disturbance – two location parameters yloc, zloc and one size parameter, which is set to
be the radius r of the hole. The definition of the parameters is illustrated in Figure 7.6a.
With comparatively small values for p0 and pe, the UHSA cycles are set relatively strict,
meaning that many parameter configurations are rejected during the course of UHSA. Due
to the low number of inversion parameters, this is expected to be sufficient. For the same
reason, the grade of local exploration is set weak with only three UKF cycles. smin and R
are tuned so that the jumps between the UKF cycles remain small in order to obtain a high
precision. UHSA is run for 200 cycles. Table 7.2 shows the final values of the determined
parameters compared to the expected true value as well as the absolute error. The shape of
the reconstructed disturbance is illustrated in Figure 7.6a by the green dashed circle.

inv. parameter exp. true value inv. result |abs. error|

yloc (m) 0 0.0001 0.0001
zloc (m) 0.1 0.0976 0.0024
r (m) 0.03 0.0254 0.0046

Table 7.2.: Inversion results of specimen 1: inversion parameters, expected true values, in-
version results and absolute error

The resulting absolute errors as well as the shape of the determined disturbance show that
the parameters are determined precisely. However, the radius of the disturbance is slightly
underestimated. The reasons for that lie, on the one hand, in the numerous sources of error
explained in List 7.1, with its main reasons evolving from modeling errors. On the other
hand, the frequency spectrum of the ultrasonic transducer is quite limited around 90 kHz,
where a broad frequency range would make the inversion problem better posed. However,
the results are satisfactory. The course of the relative misfit functional as well as the pa-
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Figure 7.6.: Specimen 1 – geometry with parameters and inversion results

rameter configurations over the number of UHSA cycles are shown in Figure 7.6b. Here, it
is observed that a good value for the radius r is already found after 12 cycles, which then
diverges from the expected true result (red dashed line) in the next jump. This may seem
confusing, but as the misfit landscape is highly multimodal, certain values may improve and
then worsen throughout the inversion process because the other inversion parameters are not
well estimated. The decisive factor is always the combination of all inversion parameters
and the corresponding misfit functional. After 62 cycles or 812 forward simulations per
source, the final result is reached. During the 200 UHSA cycles, 1528 forward simulations
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Figure 7.7.: Ultrasonic (black) and simulated (red) waveforms for every 10th receiver of the
measurement setup acquired with source S1 on specimen 1 (see Figure 6.2). The
synthetic waveforms are computed with the optimum parameter configuration
found by UHSA.
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per source are required. The UHSA acceptance rate is 0.325, meaning that approximately
one-third of the parameter configuration proposals are accepted for local UKF minimiza-
tion. The computation time is 18 hours on a 26-core computer with 2.4 GHz each and 96
GB RAM. With the optimum parameter configuration, synthetic waveforms are computed
and compared to the measurements in Figure 7.7, exemplary for every 10th receiver of the
measurement setup acquired with source S1 on specimen 1. Despite the numerous sources
of error, it is observed that the experimental and synthetic waveforms show a high degree
of accordance in both phases and even amplitudes. Modeling errors in terms of geometry,
wave velocities and the estimated source signature are the main reasons for errors in phases.
Measurement errors are expected to have a high contribution to amplitude mismatches since
laser reflections may be poor if encountering uneven and porous locations, leading to correct
phases but inaccurate amplitudes. Observing the middle receiver points in Figure 7.7, the
impact of the hole is directly visible due to reduced amplitudes.

7.3.2. Detection of a linear material change

For the imaging of the linear material change in specimen 2, three inversion parameters are
set. The location of the disturbance is described with coordinate zloc according to the coor-
dinate system in Figure 7.8a, while parameter Φ describes its angle. The material properties
are, as previously explained, reduced to the compressional wave velocity vp,d. Since the
number of inversion parameters is again three, the general settings for UHSA as well as the
settings for the UKF of scenario 1 are maintained. Again, UHSA is run for 200 cycles. The
final values of the determined parameters, the expected true value as well as the absolute
error are shown in Table 7.3. The shape of the reconstructed disturbance is illustrated in
Figure 7.8a by the green dashed line.
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Figure 7.8.: Specimen 2 – geometry with parameters and inversion results

It is observed that the geometry of the disturbance is determined highly accurate. Moreover,
also vp is determined quite accurately, although it is slightly underestimated. The source of
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inv. parameter exp. true value inv. result |abs. error|

zloc (m) 0.08 0.0811 0.0011
Φ (◦) 25 23.8384 1.1616
vp,d (m/s) 2856 2744 112

Table 7.3.: Inversion results of specimen 2: inversion parameters, expected true values and
inversion result

this error is again a combination of the reasons listed in List 7.1, with a strong aspect being
also an inaccurate estimation of the expected true value. Figure 7.8b shows the course of the
relative misfit functional and the parameter configurations over the number of UHSA cycles
compared to the expected true values. Already in a very early stage of the UHSA inversion,
the angle Φ and the compressional wave velocity vp,d are estimated well. However, the lo-
cation of the disturbance is distant from the expected true value, leading to incorrect arrival
times and a high misfit functional. Thus, the algorithm jumps to a parameter configuration
with a lower misfit value and diverges from the expected true values for Φ and vp,d. After
28 UHSA cycles or 395 forward simulations per source only, a satisfying parameter config-
uration is obtained. The best result is found after 83 cycles or 1110 forward simulations per
source. At this stage, the compressional wave velocity diverges from the expected true re-
sult, which is most likely due to a wrong estimation of the latter as well as modeling errors.
During the 200 cycles, 1419 forward simulations per source are required with an acceptance
rate of 0.325. The computation time is 16 hours on a a 26-core computer with 2.4 GHz each
and 96 GB RAM.

UHSA is compared to PSO in Section 6.3.1,where UHSA turns out to be more effective
in the presence of two inversion parameters. In this subsection, it is compared to another
optimization algorithm – genetic algorithm (GA) – in the presence of the three inversion pa-
rameters describing the disturbance in specimen 2. Same as UHSA, GA is a metaheuristic
global search algorithm. A detailed description of GA as well as the historical context of the
algorithm is provided by Mitchell (1998). GA is widely studied on numerous applications
and there exist numerous comparisons to SA (Kerr & Mullen, 2019) (Ingber & Rosen, 1992),
which is included in UHSA. There are even hybrid GA-SA approaches for the application
to optimization problems (Goldberg et al., 1990). In this work, a standard GA is set up with
the same conditions as for UHSA. The investigations are performed on specimen 2 as this
scenario is seen to have a higher relevance than the scenario for specimen 1 since also mate-
rial properties are determined. For specimen 3, the comparison is not performed because of
expected long computation times due to the higher number of inversion parameters. GA is
conducted with a uniform crossover and a rather small Gaussian mutation within the borders
which are also used for UHSA. The population size is tuned to 200 with 50 mating parents.
12 generations are computed in total, resulting in 2000 forward simulations per source. The
courses of the relative misfit functionals over the number of forward simulations per source
for both GA and UHSA are illustrated in Figure 7.9. Figure 7.10 shows the course of the
relative misfit and parameter configurations of GA over the number of forward simulations
per source compared to the expected true values.

Note that also here it is observed that single parameters converge to the expected true value
and then diverge again until the convergence of all of the parameters is secured. In GA, this
effect becomes even more visible due to the uniform crossover and resulting large jumps. In
order to make a comparison of the courses of the inversion parameters of GA and UHSA,
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Figure 7.10.: Course of the parameter configurations over the number of forward simula-
tions per source for GA. The dashed lines illustrate the estimated true values.

readers are again referred to Figure 7.8b. The first 200 parameter configurations for GA are
selected randomly. Thus, by coincidence, the initial model of GA is slightly better than the
initial model of UHSA. However, this does not have an impact on the inversion result as GA
is based on random and global exploration. As described previously, a satisfying result of
UHSA is found after 395 forward simulations per source. In Figure 7.9 and Figure 7.10 it is
observed that GA requires nearly twice as many forward simulations per source to come to a
result close to the expected true values. However, at this stage, the misfit functional becomes
lower than the minimum misfit value reached by UHSA. After 1110 forward simulations per
source, the misfit of UHSA becomes lower again. GA cannot reach this value during the
overall inversion, although it comes close to it. The determined parameters of GA are zloc =
0.0872m, Φ = 24.3167◦, vp = 2704 m

s
and thus, the final result does not differ noteworthy

from the determined parameters of UHSA. Summarized, it is observed that UHSA can also
outperform GA for this example. UHSA brings a satisfying result during a lower number
of simulations and furthermore, a smaller minimum is found after 1419 forward simulations
per source, which cannot be reached after the 2000 forward simulations per source of GA.
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7.3.3. Detection of a rectangular disturbance

In order to image the rectangular disturbance in specimen 3, five inversion parameters are
set. The center of the rectangle is specified by two location coordinates yloc and zloc accord-
ing to the coordinate system in Figure 7.11, while parameters b and h specify the width and
height of the rectangle. The compressional wave velocity is, same as in the previous section,
specified with parameter vp,d. The general preferences of UHSA are set less strict than in
the previous scenarios, meaning that more cycles are accepted for UKF minimization. The
necessity for this lies in the higher number of inversion parameters in this scenario, which
makes the global minimum harder to find. Similarly, local exploration is set more intense.
Same as in the previous scenarios, UHSA is run for 200 UHSA cycles. The final values of
the determined parameters, the expected true value as well as the absolute error are shown
in Table 7.4. The shape of the reconstructed disturbance is illustrated in Figure 7.11 by the
green dashed rectangle.
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Figure 7.11.: Specimen 3 – geometry with parameters and inversion result: Geometry in
grey; determined shape of the disturbance illustrated by the green dashed rect-
angle.
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inv. parameter exp. true value inv. result |abs. error|

yloc [m] 0 −0.0033 0.0033
zloc [m] 0.08 0.0982 0.0182
b [m] 0.20 0.1933 0.0067
h [m] 0.14 0.1605 0.0205
vp,d [m/s] 2856 2725 131

Table 7.4.: Inversion results of specimen 3: inversion parameters, expected true values and
inversion result

Also in this scenario, all of the inversion parameters are determined with a satisfying preci-
sion, but absolute errors larger than in the previous two examples exist. The largest devia-
tions occur in the determination of parameters zloc and h with errors of about two centime-
ters each. Also in this example, reasons for this are the sources of error listed in List 7.1.
Furthermore, the borders of the disturbance in the experimental model are slightly curved,
meaning that the parametrization is not able to fully describe the disturbance. The reason
for this lies in the manufacturing process, where the background material is let into the mold
when the disturbance material is still wet. Another consequence of the merging is that re-
flections coming from the disturbance are suspected to be weak, which also may cause a
small error. Furthermore, due to the higher number of parameters, the inversion scenario
is more difficult, meaning that the actual global minimum may be more distant from the
estimated minimum than in the previous two examples. Figure 7.12 shows the course of
the relative misfit functional and the parameter configurations over the number of UHSA
cycles. It is observed that a good approximation of the position is achieved in a very early

10
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visible influence of the disturbance
on the arrival of P-waves 

-4x 10 -4x
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Figure 7.13.: Experimental (left) and simulated data (right) for the measurement setup gen-
erated with source S2 on specimen 3. Traces from left to right are acquired
along the red line in Figure 7.1c from top to bottom. The synthetic data is
gained with the final results of UHSA (Table 7.4).
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stage of the inversion; however, the error in the determined shape is large at this stage. After
98 annealing cycles (2899 forward simulations per source) the final result is found. In total,
4767 forward simulations per source are required with an acceptance rate of 0.605. The
computation time is 36 hours on a 26-core computer with 2.4 GHz each and 96 GB RAM.
Figure 7.13 shows the experimental ultrasonic data (left) compared to the synthetic data
(right) for the measurement setup generated with source S2. The traces from left to right
correspond to the measurements acquired along the red dashed line in Figure 7.1c from top
to bottom. In the ultrasonic data set, the previously described removal of noisy traces is
visible. The influence of the disturbance can be observed best in the arrival of the direct
(P-)waves. A high degree of accordance of the two data sets is observed especially for the
first periods. For later periods, it decreases since the sources of error List 7.1 have a higher
impact when also indirect waves come into play.

7.4. Short summary and discussion

In the second stage of experimental validation, UHSA it applied in order to image distur-
bances in concrete plates. Ultrasonic data is successfully acquired with techniques evaluated
in Section 4.3 and a forward model is constructed with similar methods as in Chapter 6,
where however the source function is measured directly. Positions, shapes, and material
properties of the disturbances are determined with a high precision and UHSA can out-
perform a standard GA algorithm in terms of computational effort as well as in terms of
converging to a lower minimum. Obviously, the conducted scenarios cannot be compared
to field models in terms of geometries and source-receiver configurations, but still, concrete
may be regarded as a rock-like structure, which is one step closer to field scenarios. Further-
more, for the latter two scenarios, the parametrization of the disturbance can be compared
to parametrizations which may come up in mechanized tunneling in the form of a boulder
or a layer change, respectively. Although simplifications are made concerning the density
of the disturbance and the shear wave velocity, the inversions succeed, which reveals a hint
that the simplifications might also be made during an application in mechanized tunneling.
Same as in the previous examples of this work, meaningful results are reached at an early
stage during inversion, showing that a first prediction could be performed early.
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The scenarios of the previous chapter served as a first validation of the developed methods
with rock-like materials, where however the shapes of the experimental models differed
significantly from actual tunneling setups. Therefore, an experimental model with more
similarities to tunneling models is to be constructed. A specimen is designed in such a way
that a 2D numerical model can be set up in order to approximate the measured waveforms.
The resulting decrease in computational effort allows to make investigations on source-
receiver configurations as well as to validate both UHSA and UKF-PaLS with different of
those source-receiver configurations. The chapter starts, same as in the previous chapters,
with the experiment and the forward modeling, before the inversion scenarios are performed.
After that, the comparability of the small-scale experiment to field models is analyzed. The
results of this chapter are already published in Trapp & Nestorović (2021); however, the
work is rewritten and the pictures and figures are changed or edited substantially.

8.1. The experiment

Figure 8.1.: Picture of the specimen

The manufactured specimen is a concrete block into which a linear material change is in-
corporated (see Figure 8.1). A 3D visualization is illustrated in Figure 8.2a and the 2D
cross-section at y = 0 is shown in Figure 8.2b. The cross-section incorporates a 2D layer
change with a material recess at the left side (x = 0), which is to illustrate an excavated
tunnel. For stability reasons during the construction, the tunnel representation is not ex-
tended throughout the whole y-dimension. The large dimension in y-direction enables a
simulation in 2D for a certain time window. The background material, denoted with M1 in
Figure 8.2a, consists of a concrete mixture. For the creation of the disturbance material M2,
mortar for brickwork is added to the concrete mixture in the ratio concrete/mortar 1/0.7.
The ingredients of the two construction materials are the ones described in Section 7.1. The
construction process is carried out as follows: in a first step, the mold is built. In a next step,
the disturbance material M2 is given into the mold, where a wooden plank secures the po-
sitioning. After a few hours of dry time, the wooden plank is removed and the background
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material is added. At this stage, the disturbance material has a non-dissolving structure but
is still slightly wet, which secures a good connection between the two materials. The dis-
advantage of this procedure is that the interface layer may be assumed to be not perfectly
clear since the two materials slightly merge. Therefore, the UHSA parametrization as well
as the expected true model considered for an evaluation of the results will not be completely
correct.
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(a) Visualization of the 3D specimen.
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Figure 8.2.: Experimental setup with measurement configurations. Dimensions are in m.
The red dots indicate the locations of the sources and the green lines indicate
the locations of laser measurements. The background material properties are
estimated to lie at vp,b = 4240 m
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, vs,b = 2640 m
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; the disturbance material

properties are estimated to lie at vp,d = 3900 m
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The specimen is placed on four small metallic blocks comparatively distant from the cross-
section at y = 0 (see Figure 8.1). Since the signal is cut when reflections arrive from the
model sides, the bearing is not expected to have any impact on the data. The ultrasonic
measurements are aimed to be acquired in the xz-plane at y = 0 according to Figure 8.2b.
Two source locations S1 and S2 are specified, illustrated with the red dots. The reason for
the positioning of S2 at the surface at x = 0 rather than choosing another position inside
the tunnel lies in the thickness of the transducer, which does not allow a significant ranging
inside the excavation. The ultrasonic sender is transducer B 0.1NN, where tone burst signals
are to be utilized as source functions, same as for the scenarios conducted in the previous
chapter and for the reasons explained in Section 4.2. However, in this case, two source
functions are utilized for each sender location – those are a 80 kHz and a 100 kHz 3.5-cycle
Hanning windowed tone burst signal – resulting in four measurement sets being referred to
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as S1(80 kHz), S1(100 kHz), S2(80 kHz) and S2(100 kHz) in the following. The idea is that
with additional measurements, the results are expected to improve since more information
is processed. Furthermore, the limited frequency range of the transducer can be more or less
fully covered, which is to be shown in the following.
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Figure 8.3.: Normalized power spectral densities (raw and dB scale) of the source responses
recorded directly with a second transducer. The dashed lines indicate the power
spectral densities of the ideal source signals.

Figure 8.3 shows the normalized PSDs (raw and in dB scale) of ideal source functions illus-
trated by solid lines and the corresponding measured source responses illustrated by dashed
lines, where the latter are recorded with a transducer-to-transducer measurement according
to the procedure explained on page 75. In order to investigate the frequency range of the
transducer again with a more or less constant amplitude spectrum, a sine sweep is triggered
during a time window of 2 ·10−4 s with a sweep from 30 kHz to 170 kHz, which are frequen-
cies around the determined frequency range of the transducer (see Section 4.2). Preliminary
investigations of various source functions show that the 80 kHz tone burst signal (red solid)
and the 100 kHz tone burst signal (green solid) cover the overall range of the sine sweep
well. This is observed in the red line and the green line, which in combination cover the
area of the black line well (better visible when observing the PSDs in db scale). There-
fore, these two functions are selected as signal inputs. The laser measurements are acquired
along the green line in Figure 8.2b in distances of 1mm. 341 measurements are acquired
at the top surface z = 0 and 191 receivers are acquired at the right surface x = 0.45m,
resulting in 532 receiver points in total for each source function. The reflection is improved
with aluminum tape, where the corresponding validation and evaluation is described in Sec-
tion 4.3. Accordingly, measurements are acquired about 100 times and stacked. Waveforms
are bandpass filtered with cutoff frequencies of 10 kHz and 150 kHz to reduce noise. Same
as in the previous chapter, traces are observed carefully and removed if they are apparently
noisy.

A topic that needs to be considered is that the conducted experiment is to be modeled in 2D,
where self-evidently the experiment can only be conducted in 3D. The transformation of 3D
data to 2D makes up an own research field, where methods are often being referred to as
2.5D approaches (Auer et al., 2013; Igel, 2017). A first issue to pay attention to is that the
2D simulation model can only describe the 3D experimental model approximately if the 3D
model is most widely represented with the 2D model out-of-plane extension. Thereby, it is
important that no or little reflections arrive from out-of-plane, which in the current case can
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be expected if the waveform signals are cut before reflections arrive from the model sides in
y-direction. The only irregularity that occurs in the experiment is the representative tunnel
excavation, which is not fully extended. However, the impact is tested beforehand by a com-
parison of the waveforms of two 3D simulation models (one with a fully extended tunnel
and one according to the excavation above) and evaluated negligible (see also Figure 8.4).
Larger errors are to be expected for other reasons: an extension of the 2D model into the
third dimension implies that a 2D point source becomes a line source. Furthermore, 2D
waveforms decay with 1/

√
x where 3D waveforms decay with 1/x due to the geometrical

spreading (Auer et al., 2013). In the experiment, the line source could be dissembled by a
superposition of measured waveforms corresponding to plenty of point sources distributed
in y-direction. However, measurement errors, inhomogeneities, and deviations of the spec-
imen from its ideal shape lead to the assumption that this procedure would rather have an
adverse effect. Furthermore, a huge expense would have to be paid in order to acquire the
numerous measurement sets. Many approaches exist which seek to compensate the trans-
formation mismatch, where a common and simple approach is to apply a

√
t-filter as for

example applied by Bretaudeau et al. (2013) and Mulder et al. (2010). This approach is
conducted in this work and approximately compensates for the amplitude mismatch by ap-
plying a multiplication of each trace with

√
t (Williamson & Pratt, 1995; Auer et al., 2013).

Figure 8.4 shows
√
t-filtered 3D simulation data generated with a model of the shape of

the experimental model (Figure 8.2a, including also the tunnel excavation) with homoge-
neous material properties M1 compared to corresponding 2D simulation data. The source
is placed at position S1 and induces a 80 kHz tone burst signal; receivers are placed at the
top surface z = 0 at positions x = {0.1, 0.2, 0.3}m and at the right surface x = 0.45m at
z = {0.05, 0.15}m. During the observation time induced by the limited y-direction, the two
synthetic sets show a comparatively small mismatch and hence, no further action is taken
concerning data transformation. Nonetheless, a part of upcoming inversion errors may be
ascribed to the 2D computation.
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Figure 8.4.: Transformed 3D simulation data of the spatial experimental model compared to
2D simulation data. Traces are normalized with the maxima of the third records
from left.
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8.2. The forward model

As explained above, the simulations corresponding to the described experimental setup may
be performed in 2D with the gain of a reduced computation time. The dimensions of the
specimen are carefully measured at y = 0 and the geometrical model is built and imple-
mented into Gmsh, where all model boundaries obtain free boundary conditions. Same as
for the scenarios of the previous two chapters, great challenges lie in the determination of
the background material properties and the source signature, where the strategies of the two
previous chapters are combined for the estimation of the latter. The first estimation of the
source signature is supplied by a transducer-on-source measurement which is aligned to a
laser-on-source measurement on the time axis, where the procedure was described in Sec-
tion 7.2 in more detail. With this source signal, the material properties are estimated. For
that purpose, a homogeneous simulation model is set up whose waveform data is to be com-
pared to the measurement data. For a comparison, only the first 60 receivers (that are the
receivers from x = 0.1m to x = 0.16m) of all of the 4 source-receiver sets are utilized
within a reduced time window since the impact of the disturbance on these data sets can be
expected to be small. In the case of the assumption of an isotropic and homogeneous mate-
rial, the background material can be fully described by two wave velocities vp and vs and the
two attenuation values Qκ and Qµ (see Section 2.6). Similar to the procedures in the previ-
ous chapters, a database with a gridded variation of the 4 material properties is created and
the misfit functionals are computed. It is observed that the functional becomes smaller for
higher values of Qκ and Qµ and thus, also in this scenario, the material is chosen to be elas-
tic. In the subsequent step, the pair of material properties with the lowest misfit functional
is selected for the background material M1, which is vp,b = 4240 m

s
and vs,b = 2640 m

s
.

According to Eq. 2.9, the corresponding Poisson’s ratio amounts to νb = 0.1834, which is
a realistic value for concrete. In the next step, the source function is to be further improved
where the procedure explained in Section 6.2 is utilized. Note that this method is only
applicable because the correlation between the synthetic waveforms and the experimental
waveforms is already high (contrary to the example in Section 7.2). The source functions
are determined both for the 80 kHz tone burst signal and the 100 kHz tone burst signal with
the measurement and simulation wavelets of the 10th receiver released by source S1. The
reference receiver is picked because the agreement between synthetic and measured data is
evaluated high here. Figure 8.5 shows the synthetic waveforms corresponding to a simula-
tion with an homogeneous model with the determined material properties and the estimated
source signature (red) compared to the ultrasonic data (black), exemplary for the first 20 re-
ceivers triggered with source S1(80 kHz). Since the match of the simulated and experimental
waveforms is evaluated to be high for the first receivers, it is assumed that the material prop-
erties and the source signature are estimated well and thus are utilized for inversion. The
observation time window is set so that no reflected waves arrive from the model boundaries
in maximum y-dimension ymax = 1.3m as follows:

t =
ymax

vp,b
+ tdelay ≈ 3.2 · 10−4 s, (8.1)

where vp,b = 4240 m
s

is the maximum estimated wave velocity of the specimen in terms
of material properties, which is the compressional wave velocity of the background mate-
rial since the disturbance material wave velocities are lower. tdelay is the time delay of the
measurement system (occurring e.g. due to the signal travel time in cables) which is esti-
mated to tdelay = 1.5 · 10−5 s. The discretization of the simulation mesh is set according to
Eq. 2.12 with fmax = 150 kHz, where this is also the value chosen in the previous chapter.
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Figure 8.5.: Ultrasonic (black) and synthetic (red) waveforms, exemplary for the first 20
receivers triggered with source S1(80 kHz). The simulation data is generated
with the estimated source function and the determined material properties. Am-
plitudes are normalized with the maximum displacement values at the 10th re-
ceiver.

The material properties of the disturbance material are estimated as well in order to obtain a
reference value, amounting to vp,d = 3900 m

s
and vs,d = 2380 m

s
and resulting in a Poisson’s

ratio of νd = 0.2033. Each forward run in the following requires the computation of the
signal responses both to the 80 kHz and the 100 kHz source signal for two source locations.
In order to perform only one simulation per source location, a simulation with a dirac delta
is performed. With its signal response, the waveforms corresponding to arbitrary source
functions can be computed without any significant computational effort.

8.3. Full waveform inversion

In the following, an investigation on source-receiver configurations and source functions
is performed, before UHSA and UKF-PaLS are applied to the acquired data. For the for-
mer, a database with simulation data is created containing variations in positions, angles
and material properties of the disturbance. After generating the database, the misfit func-
tionals can be computed comparatively fast. Based on the results, it is evaluated with which
source-receiver configurations and with which source functions an inversion seems possible.
Afterwards, UHSA and UKF-PaLS are applied based on these findings. Same as in the prior
chapter, the background material density is set to the same value as the disturbance material
density and furthermore, amplitudes in the simulation are scaled so that the amplitudes are
similar to the measurements at measurement points with a rather low displacement. The
justification and the effects of these procedures were treated on page 77.
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8.3.1. Source-receiver configurations and source functions

The aim of this section is to investigate the effects of different source-receiver configurations
and source functions on the inversion results. Therefore, a parametrization of the disturbance
is set up, which is illustrated in Figure 8.6.

rec. set 1 (all)

rec. set 2 (top)

rec. set 3 (right)

rec. set 4 (top)

S1

S2

xt

z

xb

xb,true

xt,true

vp,d,true

Figure 8.6.: Receiver configurations and parametrization for the database creation

The disturbance is parametrized with a connection of a coordinate at the top model border
xt with a coordinate at the bottom model border xb and a compressional wave velocity vp,d.
For the database creation, the shear wave velocity of the disturbance is computed with the
assumption νb = νd = 0.1834, which is necessary in order to keep the computation time
of the database within a realizable frame. xt is varied in the interval [0.1, 0.44]m with a
gridding of 0.005m and xb is varied in the interval [0.03, 0.44]m with a gridding of 0.01m.
The compressional wave velocity vp,d is varied in the interval [3500, 4400] m

s
with a gridding

in steps of 50 m
s

. The variations of xt and xb and its expected true locations xt,true and xb,true
are illustrated in Figure 8.6. The reason for the finer gridding of xt compared to xb is a
higher change in the misfit functional if xt is varied since most of the receivers are placed at
the top. Therefore, the precision of the result for the top parameter is expected to be higher,
but however can only be higher if the gridding is finer. For the creation of the database,
55062 simulations are conducted for each source location, leading to 110124 simulations
in total. As the simulations and the data processing are run in parallel, only 82 hours of
computation time are consumed on a 26-core computer with 2.4 GHz each and 96 GB RAM.
The number of elements during the database creation varies around 3500 to 4000 since
for every function evaluation, the model is remeshed. The misfit functionals are evaluated
throughout the database for different combinations of receiver sets, source locations and
source functions. The investigated receiver sets are illustrated in Figure 8.6. Receiver set 1
includes all seismic receivers locations, receiver set 2 contains those at the top surface only.
Receiver set 3 includes the receiver locations at the right side only and receiver set 4 contains
those at the top surface given z = 0 and x ≤ 0.3m, which are receivers placed on the
background material only with a distance of 0.03m to xt,true. Table 8.1 shows the parameter
configurations with the lowest misfit functional for receiver sets 1-4 in dependency of the
source locations and the source functions in the form xt, xb, vp,d. The source locations
are changed horizontally in the respective table with sender position S1, sender position S2,
and both positions combined in terms of summing up the misfit functionals. The source
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functions are changed vertically with the 80 kHz tone burst signal, the 100 kHz tone burst
signal and a combination of the two source functions. As described in the previous two
sections, the expected true values are xt,true = 0.33m, xb,true = 0.08m, vp,2,true = 3900 m

s
.

Receiver set 1 S1 S2 both
80 kHz 0.33, 0.06, 3850 0.34, 0.05, 3850 0.33, 0.06, 3850
100 kHz 0.195, 0.04, 4100 0.34, 0.05, 3850 0.33, 0.06, 3850

both 0.33, 0.06, 3850 0.34, 0.05, 3850 0.33, 0.06, 3850

Receiver set 2 S1 S2 both
80 kHz 0.33, 0.06, 3850 0.34, 0.05, 3850 0.33, 0.06, 3850

100 kHz 0.30, 0.06, 3850 0.22, 0.04, 3650 0.30, 0.06, 3850
both 0.30, 0.06, 3850 0.34, 0.05, 3850 0.33, 0.06, 3850

Receiver set 3 S1 S2 both
80 kHz 0.11, 0.19, 4050 0.42, 0.28, 3700 0.44, 0.17, 3800
100 kHz 0.44, 0.2, 3650 0.255, 0.04, 3550 0.44, 0.2, 3650

both 0.11, 0.19, 4050 0.255, 0.04, 3550 0.43, 0.2, 3700

Receiver set 4 S1 S2 both
80 kHz 0.29, 0.06, 3950 0.21, 0.1, 3600 0.29, 0.06, 3950
100 kHz 0.29, 0.06, 3950 0.295, 0.03, 4350 0.29, 0.06, 3950

both 0.29, 0.06, 3950 0.295, 0.03, 4350 0.29, 0.06, 3950

Table 8.1.: Parameter configurations with the lowest misfit functional for receiver sets 1 to
4 in dependency of the source locations (horizontally) and the source functions
(vertically). The parameters are given in the form xt, xb, vp,d, where the expected
true values are xt,true = 0.33m, xb,true = 0.08m, vp,2,true = 3900 m

s

For receiver set 1 it is observed that there is only one combination of source-receiver con-
figurations and source functions that is not able to satisfactorily determine a parameter con-
figuration close to the expected true configuration, namely S1(100 kHz). All of the other
parameters lie close to the expected true values. However, the bottom border position xb is
not determined as precisely as the other values, which was expected since seismic receivers
are placed at the top border and the right border only, where less information from the bot-
tom side is included in the misfit functional. The wrong approximation of S1(100 kHz) may
be partly explained with the consideration that synthetic travel times at receivers are simi-
lar to the true travel times if the disturbance occurs more left (related to the true shape in
Figure 8.6), but with wave velocities closer to vp,b. Therefore, results are more sensitive
to errors, where the reasons for a wrong approximation are thereby numerous and may be
explained with the sources of error described in the previous chapter already in List 7.1, but
also with the gridding and the material property simplification that no vs,d is computed. The
investigations clearly show that the utilization of either multiple source locations or multiple
source functions are preferable since the use of either eliminates the error.

For the results of receiver set 2, a similar situation applies – only one combination, namely
S2(100 kHz) is not able to determine a parameter configuration close to the true parameter
configuration. The reasons for this are again those explained above. Once more it is shown
that the utilization of multiple source functions or source locations can be highly profitable.
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It is noted that not only xt is determined well, but also xb, although the receivers are only
placed at the top surface.

The results shown in the third table reveal that with receiver set 3, a determination in terms
of position of the disturbance and material properties is not possible. However, the resulting
angle of the layer change is most often close to the real angle. For most of the cases, the
wrong configurations may be justified with a similar argumentation as above, where travel
times are similar to true travel times if the disturbance occurs more right, but with wave
velocities deviating significantly from vp,b . In this case, even multiple source locations
cannot improve the results as both sources have a similar 'point of view' to the receivers.
The combination with modeling and measurement errors leads to wrong results.

The results of receiver set 4 are surprisingly good in most entries regarding the small infor-
mation coming in by seismic receivers, although xt is underestimated. However, the results
need to be considered critically. In receiver set 4, receivers are placed until x = 0.3m on the
background material only. Thus, waveform agreement between experiment and simulation
may be expected to be high if xt ≳ 0.3m since in this case no direct waves are affected by
the disturbance. Still, xb and vp,d are determined well for the location of sender 1 and for the
combinations of both senders, which is probably because of reflections of the model sides
rather than because of reflections from the disturbance. Reflections from the disturbance
layer are suspected to be weak due to the manufacturing process described in Section 8.1,
leading to an interface layer that is not clear. Receiver set 4 is considered rather not suitable
for an inversion for the current case.

The investigations of this section show that receiver sets 1 and 2 are able to satisfactorily
reconstruct the disturbance with the given parametrization if either multiple source functions
or multiple source locations are utilized. Receiver sets 3 and 4 are not suitable. Since the
material property simplification and the gridding exacerbate the conditions for the inversion
in this section, it can already be suspected that UHSA can reconstruct the structure if a
similar parametrization of the disturbance is implemented. For UKF-PaLS, this needs to be
tested. In order to not go beyond the scope of this work, only data sets using both source
locations and both source functions are utilized for receiver sets 1 and 2, which are tested
with both UHSA and UKF-PaLS in the following.

8.3.2. UHSA

Based on the findings of the previous section, UHSA is applied to receiver sets 1 and 2
including both source locations and source functions. The parametrization of the model is
chosen similar to the parametrization chosen in the previous section, with the only differ-
ence that the full elastic material property set is determined. Consequently, the inversion
parameters are set to xt, xb, vp,d and νd, where again a Poisson’s ratio is chosen for the
reasons described on page 45. Accordingly, the dimension of the inverse problem amounts
to n = 4, resulting in 2 · n + 1 = 9 sigma points to compute during each UKF cycle.
The allowed boundaries of inversion parameters and the general settings of UHSA for both
upcoming scenarios are given in Table 8.2. The settings cause an intense exploration of
parameter configurations since many cycles are accepted during a high number of UHSA
cycles. The number of elements varies, same as in the previous section, around 3500 to 4000
as for every function evaluation, the model is remeshed. The courses of the misfit functional
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and the inversion parameters over the number of UHSA cycles compared to the expected
true values are shown in Figure 8.7. Table 8.3 shows the inversion results of UHSA for both
receiver sets compared to the expected true values.

Parameter Configuration

m (xt, xb, vp,d, νd)
U [0.44, 0.44, 4500, 0.25]
L [0.1, 0.02, 3400, 0.1]
Nc 200
p0 0.9
pe 0.1
Nk 4
Pm

0 diag(0.0082, 0.0082, 302, 0.0032)
Q 0.1Pm

0

smin 0 · su
R 0.2su · Ir

Table 8.2.: Input parameter configurations for both scenarios of UHSA
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Figure 8.7.: Courses of the relative misfit functionals and inversion parameters over the
number of UHSA cycles for receiver sets 1 and 2. The dashed lines illustrate
the respective estimated true values.

For receiver set 1, each of the inversion parameters is determined highly precise, meaning
that both the geometry and the material properties are determined with values close to the
expected true values. Observing Figure 8.7a, it is found that a result close to the expected
true values is already estimated early after 11 UHSA cycles. The final result is reached
after 118 cycles. In total, 3762 forward simulations per source are consumed in about 12
hours computation time on a 26-core computer with 2.4GHz each and 96 GM RAM. The
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parameter exp. true value UHSA (rec. set 1) UHSA (rec. set 2)

xt [m] 0.33 0.3256 0.3297
xb [m] 0.08 0.0770 0.0622
vp,d [m/s] 3900 3904 3903
νd 0.2033 0.2088 0.1951

Table 8.3.: inversion results of UHSA: expected true value and inversion results

inversion results for receiver set 2 are close to the expected true values as well; however, the
result is, as was to be expected, a little less precise for xb. The reason for this is that receivers
are only placed at the top surface, which decreases the resolution at the bottom border. A
parameter configuration close to the expected true configuration is already found after 50
iterations. The best result is reached after 105 cycles during 3933 forward simulations per
source. Also here, the inversion requires 12 hours of computation time. To be summarized,
the determined parameter configurations for both source-receiver configurations are close
to being exact, where for both cases meaningful optima are found during an early stage of
inversion.

10

P-wave arrival

-4x 10 -4x

S-wave arrival

P-wave side reflections

removed traces

Figure 8.8.: Ultrasonic measurements (left) and simulation data (right) for receiver set 1
generated with source S2(100 kHz). The synthetic data is generated with the
inversion result of UHSA (see Table 8.3).

Figure 8.8 shows the experimental data and the outcome of UHSA for receiver set 1 gen-
erated with source S2(100 kHz). The traces from left to right are acquired along the green
line in Figure 8.2b from left to right and then from top to bottom. The two data sets show
a high grade of similarity. In both the ultrasonic and the synthetic data set, the arrivals of
the compressional waves and shear waves are visible. For later waveforms, the grade of
similarity decreases since modeling errors have a larger impact. The removal of apparently
noisy traces, which is described in Section 8.1, is visible in the ultrasonic data set.



98 8. Imaging of a layer change in a concrete block

8.3.3. UKF-PaLS

In the following, UKF-PaLS is applied, where same as in the previous section, two inversion
scenarios are set up – one for receiver set 1 and one for receiver set 2, including both source
locations and both source functions. The model domain is meshed with 3025 elements. The
locations of Nb = 12 × 18 = 216 bumps with 0.02m distance to each other are defined
covering the whole model from x = 0.1m to x = 0.44m. This induces a high resolution
with a large region of investigation, meaning that no prior knowledge about the location or
the size of the disturbance is implemented. Same as in the previous section, the material
properties are defined in the form of vp,d and νd. Therefore, the dimension of the problem
amounts to n = 434 (with 216 dimensions for α, 216 dimensions for β, 1 for vp,d and 1 for
νd), resulting in 2 ·n+1 = 868 sigma points to compute in each iteration. The initial model
parameters and the input parameter configuration are given in Table 8.4. The parameters
are set with the aim to perform rather slow inversions in order to observe the changes of
the reconstruction and in order to maximize the precision of the result. The corresponding
initial model is shown in Figure 8.9.

double 
standard 
deviation

vp (m
s ) vs (m

s )

4240 4200 2640 2615±16

Figure 8.9.: Initial model for both scenarios. The double standard deviations of the initial
parameters are plotted in medium dark grey (see marking).

Same as in Chapter 5, the shear wave velocity is illustrated (although the Poisson’s ratio is
determined) for the purpose of a better overview. Similarly, also the double standard de-
viations in positive direction are plotted in a medium dark grey tone (see marking in the
figure). It is visible that the uncertainty regions occupy a large part of the model, which is
different compared to the initial model shown in Figure 5.3 since in the current case, the
field of bumps is much denser. Inside the field of the uncertainty region, there are some few
elements plotted in dark grey, which are in most cases elements lying on diagonals between
elements with disturbance material properties. The reason lies in the radial/circular influ-
ence of the radial basis functions, which do affect these darker grey elements least. For both
inversion scenarios, UKF-PaLS is run for 20 iterations. Due to the limited spectrum of the
transducer, the implementation of a multi-scale approach makes only a minor sense and is
therefore not included in the upcoming results. It is, however, also tested but does not bring
a significant change of the inversion results. Figure 8.10a shows the models corresponding
to the UKF estimates achieved with receiver sets 1 after 5, 8, 11 and 20 iterations compared
to the expected true position of the layer change illustrated by black dashed lines. Already
after iteration 5, it is visible that the bumps inside the actual disturbance domain increase in
size while the bumps inside the actual background domain vanish. At this stage, the effect
of vanishing bumps is most visible in direction from the sources to the top receivers. The
uncertainty measure is for most of the model domain still visible, although it also vanishes
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(a) Receiver set 1: Estimates after 5, 8, 11, 20 iterations (left to right, top to bottom)
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(b) Receiver set 2: Estimates after 4, 6, 11, 20 iterations (left to right, top to bottom)

Figure 8.10.: UKF estimates of the respective iterations with double standard deviations in
medium dark grey. The expected true geometry is illustrated by black dashed
lines. The red dots illustrate the seismic sources, the green lines illustrate the
locations of seismic receivers.
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Parameter Configuration

Nb 216
m0 {α0,β0, (vp,d)0, (νd)0}
α0 1 · JNb,1

β0 7 · JNb,1

(vp,d)0 4200 m
s

(νd)0 0.1834
c 0.9
Nk 20

Pm
0 diag(P α

0 ,P
β
0 , P

vp,d
0 , P νd

0 )
P α

0 0.152 · JNb,1

P β
0 0.22 · JNb,1

P
vp,d
0 82

P νd
0 0.00152

smin 0 · su
R 0.015su · Ir
Q 0.1Pm

0

Table 8.4.: Initial model parameters and input parameter configuration for UKF-PaLS. JNb,1

is a vector of ones of the size of the number of bumps RNb×1

at some locations inside the actual background domain. After iterations 8 and 11, the struc-
ture of the disturbance becomes clearly visible, while nearly all of the bumps lying in the
actual background domain vanish. Also the uncertainty measure in terms of the medium
grey areas shrinks in these regions, while it is present in the region where the disturbance is
located. However, the disturbance becomes most visible in its core; at the model boundaries
in the actual disturbance region, the bumps and uncertainties also vanish. That becomes
even more visible after iteration 20. The reasons are again for the main part a combination
of the sources of error listed in List 7.1. The uncertainties locally extend the region of the
disturbance, where they completely vanish in the region where the background domain is
located. Therefore, the uncertainty measure is found useful also for these cases since it ex-
tends the area of possible disturbances correctly. In the context of mechanized tunneling, the
inversion results would be satisfactory since the detection of the body of the disturbance is
more important than reconstructing its exact shape. Furthermore, in direction of the tunnel
axis, the reconstruction is most exact, which is most important. The determined material
properties lie close to the expected true values vp,d,true = 3900 and vs,d,true = 2380. The
double standard deviation of the compressional wave velocity changes only slightly during
the iterations, which is a consequence of the settings (inducing a slow inversion). During
FWI, 20(2n+1) = 17360 forward runs are computed during 12 hours on a 26-core computer
with 2.4 GHz each and 96 GB RAM with all UKF iterations parallelized. For receiver set 2,
the models corresponding to the UKF estimates after 4, 6, 11 and 20 iterations are shown in
Figure 8.10b. The disturbance is already visible after 6 iterations with a surprisingly good
coverage of the whole disturbance domain, although seismic receivers are placed at the top
surface only. Until iteration 20, the determined structure rather departs from the expected
true structure although the misfit functional decreases. Reasons for that are once more the
numerous sources of error from List 7.1. However, also here the location of the disturbance
is satisfactorily estimated in direction of the tunnel axis. The uncertainty measure again
increases the area of possible disturbances correctly and is therefore found useful. Further-
more, material properties are well estimated. Same as above, the computation takes 12 hours
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with all processes parallelized. An error that can be observed in both of the scenarios is that
during inversion, areas of disturbance material grow below the left-most surface receivers.
The expected reason is that the material properties were determined within a reduced time
window. When the core of the disturbance occurs during later iterations, reflected synthetic
waves from the internal boundaries arrive at these receivers, where the areas of material
probably correct for the occurring mismatch.
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Figure 8.11.: Courses of the relative misfit functionals over the number of iterations of UKF-
PaLS for receivers sets 1 and 2. The plotted value refers to the corresponding
UKF estimate.

The changes of the misfit functionals during the courses of UKF-PaLS for both receiver sets
are shown in Figure 8.11. In both cases, the largest change in the misfit functional occurs
approximately between iterations 5 and 15 as in these iterations, the bumps melt to a struc-
ture. After iteration 15, the magnitude of the slope decreases since the structure does not
change greatly anymore. Due to the UKF settings which are set slow, smoother curves occur
than in the other examples for UKF-PaLS in this work. A tendency to converge is observed.
For both scenarios, the computation of further iterations is tested, but does not significantly
change the appearance of the disturbance anymore. In order to save computational power, it
is expected that the reduction of bumps and a tuning of the UKF settings to a more fast in-
version would also bring a success (or even bring better results in the case of further reduced
dimensionality).

8.4. Comparability to large-scale models

The experimental small-scale model in this chapter is constructed with the aim to obtain a
surrogate model with properties that are similar to a real tunneling field model. Thereby,
concrete can already be seen as a rock-like structure. Furthermore, the cross-section of the
constructed specimen has similarities to a 2D representation of a subsoil segment including
a layer change and a tunnel excavated a few meters from a tunnel construction site. Re-
lated to the scaling factor, which was introduced in Section 4.1, a factor of 300 would scale
the conducted experiment to a shallow tunnel scenario with a tunnel diameter of 12m with
the same amount of overburden. Accordingly, the corresponding source function would
be centered at about 330Hz (for the 100 kHz tone burst), inducing wavelengths around 7-
13m for this frequency. A scenario like this is a reasonable field scenario and the synthetic
examples in Chapter 5 and Chapter 9 include scenarios in very similar dimensions. How-
ever, for the sake of constructional and technical restrictions, the small-scale model cannot
describe an absolutely realistic surrogate model. The main reasons for this are geometri-
cal restrictions of the small-scale model, which lead to reflections from the boundaries in
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the plane of measurement. On the one hand, these reflections simplify the inverse prob-
lem since the reflected seismic waves carry additional information about the disturbance.
On the other hand, modeling errors, especially from an inaccurately modeled geometry, in-
crease due to the reflections, making the inversion more prone to failure. Another aspect
that makes a comparison more difficult is that the background material and the disturbance
material are expected to be melted within a rather thick interface layer. Thus, reflections
from the disturbance are expected to be weak, which would probably be different in a real
tunneling scenario. An aspect that exacerbates the inversion scenarios in the small-scale
case is that small inhomogeneities and geometrical errors are expected to have a signifi-
cant adverse effect, while in the large-scale case, inhomogeneities and geometrical errors in
similar dimensions have a small effect because of operating wavelengths lying in the meter
scale. However, additional modeling challenges may come up in field scenarios, where a
homogeneous, isotropic and elastic model may not be sufficient anymore. The expected
challenges in mechanized tunneling will be discussed in Section 10.2. Another question is
if the consideration of a 3D tunneling scenario will have adverse effects on the performance
of the inversion. With the third dimension, also the wave propagation problem is different
since 3D waves are considered, also leading to 3D tunnel surface waves. However, their
simulation is a modeling issue and does not necessarily increase the difficulty of the inverse
problem but rather the computational demand. The numerical study in Section 5.2 reveals a
good 3D performance if no modeling and measurement errors are included; however, appli-
cations to real field scenarios are still to be tested. To be summarized, there are some aspects
that make a direct comparison difficult. However, since severe modeling and measurement
errors are naturally included in the small-scale surrogate scenarios and since furthermore
the geometry is partly comparable to a representative 2D field example, the scenarios of
this chapter are evaluated to be suitable for a validation of the FWI methods with relation
to mechanized tunneling. The findings regarding source-receiver configurations and source
functions are to be discussed in the next paragraph.

The applied sources and receivers show different properties to field sources and receivers
in terms of configurations, locations and functions. The FWI methods achieve good results
with receiver sets 1 and 2. To some extent, receiver set 1 may be compared to a set with
receivers placed at the Earth’s surface and in a borehole and receiver set 2 to a set with re-
ceivers placed at the Earth’s surface only. The usage of seismic receivers in boreholes is not
usual, but also not impossible and could be highly beneficial for FWI in mechanized tun-
neling since direct information of disturbances would be included in waveforms in the form
of transmitted waves. 'Tunnel' receivers, unfortunately, cannot be utilized in the small-scale
model due to the dimensions of the sender and its fixture, whereas in field scenarios these re-
ceivers are the most common. Depending on the field scenario, additional seismic receivers
placed at the Earth’s surface could also be used, especially in urban and flat areas. Since
the inversion results for the example of the concrete block are satisfying if the receivers are
only placed at the surface, this may also apply for a real field scenario. A combination with
seismic receivers inside the tunnel is expected to bring even better results as receivers are
placed in multiple directions then. In Chapter 5, various 2D and 3D scenarios are investi-
gated on different source-receiver configurations, where the reconstruction of objects was
successful also if receivers were placed inside the tunnel only. Probably, this might also
apply for real scenarios; however, this is to be tested. Regarding source functions it is found
that the utilization of multiple source functions is useful since more information is induced
without a significant increase in computation time (if an impulse function is used for the
forward run). In the case of mechanized tunneling, broadband signals probably replace the
need for the recording of measurements to multiple source functions. If the source func-
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tion is known, signal responses to arbitrary source functions can be computed and used for
FWI. Regarding source locations, it is found that the inclusion of a second source is advan-
tageous. This probably also applies for field cases, since multiple sources bring a different
'point of view'. However, the computational effort is proportional to the number of sources
and therefore, the number of sources needs to be limited. The results of Chapter 5 reveal
that with the parameter reduction methods, two sources could suffice in order to achieve a
high resolution of the disturbance domain, which should also apply for UHSA due to the
lower dimensionality. Issues concerning sources and receivers regarding their quantity, their
positioning, and the type of source with an application in mechanized tunneling will be
discussed in Section 10.3.

8.5. Short summary and discussion

In the third and last stage of experimental validation, both UHSA and the UKF-controlled
level-set method are tested on a model with certain similarities to a representative 2D field
model. Therefore, a concrete specimen including a layer change is constructed, ultrasonic
data are acquired and an adequate forward model is set up. Given the parametrization of
a linear change, UHSA determines the structure as well as the material properties with a
precision which is close to being exact. UKF-PaLS determines the structure with a satis-
fying precision and without the implementation of prior knowledge. Also for the exper-
imental example, an uncertainty quantification delivers additional value since it correctly
images where potential disturbances are missed by the inversion. Investigations concerning
source-receiver configurations and source functions are conducted, where it is found that the
usage of multiple source locations more or less distant to one another as well as multiple
source functions may be advantageous for a successful FWI and that receivers placed at the
(Earth’s) surface only can already represent a favorable measurement setup. Although the
findings cannot fully be related to a field scenario, the experiment is evaluated suitable for a
validation of UHSA and UKF-PaLS with relation to mechanized tunneling. In combination
with the numerical results of Chapter 5, which include more realistic tunnel settings, it is
found that the methods show an ability to reconstruct the disturbance domain precisely even
with a limited distribution of sources and receivers.
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9. A three-stage concept

In Riedel et al. (2022), a three-stage concept is presented, where a supervised machine
learning algorithm (SML), UHSA, and the adjoint method are combined in order to improve
the accuracy of the anomaly detection. Here, the concept as well as the results are shortly
summarized with a stronger focus on UHSA.

9.1. Reconstruction of a boulder
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Figure 9.1.: Workflow of the three-stage concept.

As previously explained, UHSA relies on prior knowledge implemented in the form of a
user-defined parametrization, where the knowledge can be gained from various sources (see
Section 1.4). In the current approach, it is gained from an SML approach. The three-stage
concept is illustrated in Figure 9.1. In a first step, the SML approach continuously analyzes
ground settlements and pore water pressures during TBM advancement in order to identify
a potential disturbance in front of the TBM. The collected data is represented in features,
which are defined as certain representations of the measurements explained in Riedel et al.
(2022). The measured data and the anomalies are classified into various scenarios such as
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a layer change, an interlayer or a boulder. The algorithm analyzes the features and makes a
prediction about the class (the type of disturbance). This prediction may optimally be used
for UHSA, since the type of disturbance can be implemented in the form of a corresponding
parametrization. Furthermore, the SML algorithm may deliver knowledge about the possible
location, the size or the material properties of the disturbance in the form of uncertainties
which accordingly can be implemented into UHSA as well. If a disturbance is predicted
with a sufficiently high probability, the TBM stops and a seismic survey is conducted in
order to acquire data to which UHSA is subsequently applied. The result of UHSA might
already be sufficient. However, it is probable that it cannot describe the real disturbance in
its entirety and in this case, adjoint FWI is utilized in order to gain a more detailed image.
In this case, the final model of UHSA is used as an initial model for adjoint FWI, which
considers the whole spatial distribution of the ground properties. In the three-stage concept,
a time-domain and a frequency-domain approach are presented.

According to the previously described workflow, a test scenario is set up. The investigated
scenario assumes a tunnel with a diameter of 8.5m with an equal value of overburden. The
anomaly is chosen to be a boulder, which is, before applying the SML procedure, located
69m in front of the tunnel face. The rest of the model is chosen to be homogeneous. For a
more detailed definition of the model and further information, readers are referred to Riedel
et al. (2022).

9.1.1. Supervised machine learning

In order to be able to apply SML, data needs to be available, from which a pattern may be
derived. This data is generated synthetically with a finite element software. For that purpose,
four different scenarios are observed, that are a fully homogeneous model, an interlayer, a
layer change and a boulder. For these scenarios, various models are set up with varying
ground and anomaly properties. For each of the models, excavation steps with 1.5m are
computed, recording pore water pressures and ground settlements. After generating the data
sets, 80% are randomly chosen as a training set and 20% are used for validation. Differ-
ent methods are tested; however, the best performance could be achieved with the K-Nearest
Neighbors method (Cover & Hart, 1967) combined with kriging of the input variables (Mah-
moudi & Hölter, 2021). With the data of the reference model described above, the correct
class could be identified out of the four stated classes above, which is the boulder class.
The boulder is specified to be 39m ahead of the TBM with a higher elasticity than the
background model. However, the exact size, shape, and material properties cannot be de-
termined since this would require more investigations with huge data sets. For the detailed
reconstruction of the boulder, FWI is to be applied.

9.1.2. Acquisition of seismic data

In the synthetic test scenario, the TBM is assumed to stop in order to make seismic mea-
surements. The real model is created with a spherical disturbance with a diameter of
dsphere = 14.888m. The center of the sphere is located 46m ahead of the tunnel face,
meaning that the closest location is 38.556m ahead. From the background model of the
SML approach, seismic velocities are derived with vp,b = 136.38 m

s
and vs,b = 83.52 m

s
and
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implemented as background material properties. Note that the elastic parameters are derived
from unconsolidated soil which was used for the SML approach. This leads to uncommonly
low wave velocities for the FWI stage, which are still used in order to keep the material
properties consistent within the case study. The disturbance obtains material properties of
vp,d = 418.33 m

s
, vs,d = 223.61 m

s
. The density is assumed to be constant with ρ = 2000 kg

m3 .
Two seismic sources are utilized, where one source is placed at the tunnel face and one is
placed at the Earth’s surface. The source functions are Ricker wavelets with central fre-
quencies of 8 kHz and the signals are induced in normal direction of the respective surface.
42 seismic receivers are placed at the tunnel walls, the tunnel face, and at the Earth’s sur-
face according to Figure 9.2. Free and absorbing boundaries are applied as explained in
Section 2.2.

source
receiver

Figure 9.2.: Model used for the creation of seismic data with its spherical disturbance and
source and receiver locations.

9.1.3. UHSA FWI

After generating the synthetic measurements, UHSA is prepared. Based on the prediction
of the pattern recognition, a parametrization of the disturbance is derived. Here, a difficulty
is included to test if the inversion still works: it is falsely assumed that the boulder has
the shape of a cube instead of a sphere. Accordingly, a parametrization is implemented,
specifying the distance of the cube to the tunnel front xloc, its edge length lcube and the
material properties in the form of the compressional wave velocity vp,d and the Poisson’s
ratio νd. The UHSA settings and input parameter configurations are given in Table 9.2.
Due to the good primary prediction, the boundaries can be set rather small. Therefore,

Model Shape xloc (m) lcube, dsphere (m) vp,d
(
m
s

)
νd vs,d

(
m
s

)
Real Sphere 46 14.888 418.33 0.3 223.61

UHSA Cube 45.7815 11.4772 412.358 0.325 209.9624

Table 9.1.: Inversion results of UHSA compared to parameters describing the disturbance of
the real model.
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also the number of UHSA cycles is set relatively small with 15 cycles. The number of
UKF cycles is set so that a precise local search in conducted. Table 9.1 shows the final
values of UHSA for xloc, lcube, vp and ν compared directly with the center of the sphere,
its diameter and its material properties. The shear wave velocity is computed with the help
of the compressional wave velocity and the Poisson’s ratio and also compared to the true
value. It is observed that xloc is determined without a significant mismatch to the center
of the sphere. Also the material properties differ only slightly. The edge length and the
sphere diameter, however, are difficult to compare since the shapes of the assumed and the
real disturbance differ significantly. Still, the volumes are in a similar region with Vsphere =
1728m3 and Vcube = 1512m3. Figure 9.3 shows the course of the relative misfit as well as

Parameter Configuration
m (xloc, lcube, vp,d, νd)
U [51, 16, 600, 0.35]
L [41, 10, 100, 0.15]
Nc 15
p0 0.9
pe 0.1
Nk 6
Pm

0 diag(0.32, 0.152, 102, 0.0152)
Q 0.1Pm

0

smin 0 · su
R 0.2su · Ir

Table 9.2.: Input parameter configurations for UHSA
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Figure 9.3.: Courses of the relative misfits and inversion parameters over the number of
UHSA cycles. The dashed lines illustrate the respective true values of the
parametrization of the sphere.
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the inversion parameters over the number of UHSA cycles. The dashed lines illustrate the
location of the sphere and its material properties as these values may be directly compared.
After three UHSA cycles only, the inversion achieves a satisfying result already. The result
for the Poisson’s ratio departs slightly from the true Poisson’s ratio after eight cycles, which
is most likely due to the incorrect parametrization of the boulder. During the inversion,
556 simulations per source are consumed during 39 hours of computation time on a 26-core
computer with 2.4GHz each and 96 GB RAM.

9.1.4. Adjoint FWI

In the third and last stage of the proposed concept, the resulting model of UHSA is utilized
as an initial model for adjoint FWI. Thereby, two approaches are tested: one in time-domain
and one in frequency-domain. For the time-domain approach, 193 iterations are conducted
with a multi-scale approach implemented in the form of a low-pass filter increasing stepwise
from 7Hz to 20Hz during the inversion. For the frequency-domain approach, 27 frequency
groups in the range from 1.27Hz to 17.51Hz are utilized with up to 10 iterations for each
group. Figure 9.4 shows the results of the three FWI approaches.

as

UHSA
adjoint approach 

(frequency-domain)
adjoint approach 
(time-domain)

91.38

136.38

181.38

18.52

83.52

148.52

v  (m/s)p  

v  (m/s)s  

x
y

z

Figure 9.4.: Results of UHSA (left) with results of the time-domain approach (middle) and
the frequency-domain approach (right). The upper row shows the determined
P-wave velocity, the bottom row shows the determined S-wave velocity. The
grey grid lines indicate the shape of the real boulder.

The determined compressional wave velocity is illustrated in the upper row and the deter-
mined shear wave velocity in the bottom row. In the left column, the results of UHSA are
visualized, which are, as previously explained, implemented as the initial model for the
adjoint approaches. The middle column shows the results of the time-domain approach,
where the results of the frequency-domain approach are illustrated on the right side. The
perspective is the same as in Figure 9.2. In the time-domain approach, both the compres-
sional wave velocity and the shear wave velocity increase (seen from the tunnel perspective
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in x-direction) in front of the front face and over the top face, indicating the shape of the
sphere. Similarly, both wave velocities decrease at the corners of the cube at these surfaces,
indicating that the cuboid representation is incorrect here. At the remaining surfaces, the
shape of the sphere does not appear since less information of reflected or refracted waves
is arriving at the seismic receivers from these locations. The shear wave representation is
distinctly sharper due to the smaller wavelength. For the frequency-domain approach, prac-
tically the same applies as for the time-domain approach: in front of the front face and over
the top face, both the compressional wave velocity and the shear wave velocity increase and
at the front corners, velocities decrease.

9.2. Short summary and discussion

The novel hybrid concept is tested successfully with synthetic data. In the context of UHSA,
the big gain of the concept is the transfer of prior knowledge from SML in the form of a
disturbance type, which can be used to implement a parametrization of the disturbance. It
is found that UHSA may still work if the parametrization of the disturbance is not perfectly
adequate, since in this work it is assumed that it is of cuboid shape although it is spherical
in the reference model. Still, the location, the material properties, and even the size of the
boulder are well determined. An application of an adjoint approach to the result of UHSA
can increase the level of detail. Concerning computation times, SML can be applied during
a short time in the case that data is available and in the case that the training phase of SML
is already conducted. The computation time of UHSA is strongly reduced by implementing
the uncertainties of the SML algorithm in the form of boundaries of the inversion parame-
ters. Also the adjoint method can profit from the transfer of results concerning computation
time since the misfit functional of the initial model is already closer to the global optimum.
However, there are still some issues to be investigated. For the SML approach, difficul-
ties come up if more complex ground scenarios are observed since the type of disturbance
needs to be defined in a class, lacking to give a prediction if the type of disturbance deviates
from that class. Furthermore, isotropic material without attenuation is considered in this
work. Anelastic ground behavior would make the hybrid approach more challenging and
more time-consuming for all of the three methods. Further issues are listed in Riedel et al.
(2022). In summary, the results of this work show that the hybrid concept can be useful for
exploration during tunneling since the combination of the methods brings a more detailed
image than each method can bring separately.
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10. Discussion

10.1. Comparability of the experiments to large-scale scenarios and
their additional value

The small-scale experiment is constructed with the aim to validate the FWI methods with
experimental data. The experiments cannot fully be compared to tunneling field experi-
ments, where one reason is that reflections occur at the model boundaries. However, the
last stage of experimental validation shows certain similarities to a representative 2D field
model, where the results are intensively analyzed and where relations to field applications
are discussed. Each of the scenarios brings a significant gain compared to synthetic scenar-
ios since real data is used for the inversion. This data naturally contains noise from different
sources as well as measurement errors, for instance due to the measurement on porous sur-
faces. Similarly, modeling errors occur when building the forward model, for instance when
geometries are measured, material properties are estimated or the source function is deter-
mined. Potential sources of error are listed in List 7.1. All of these error types also occur in
field scenarios but not in synthetic data, which illustrates the value of the small-scale experi-
ment. Some of the challenges might be more demanding on the small-scale while others are
more demanding on the large-scale. For the latter, several additional challenges will come
up which are to be discussed in the following section.

10.2. Challenges in mechanized tunneling

Considering field examples during mechanized tunneling, challenges will occur regarding
the forward modeling and the acquisition of measurements. Some of these challenges also
appear in the small-scale case, others do not. Also on the large-scale, a knowledge of the
source signature is crucial. On the small-scale, a direct measurement of the source func-
tion remains difficult since a measurement instrument would have to be found which can be
employed as an interlayer between the structure and the transducer and which at the same
time enables a high accuracy and sensitivity without seriously altering the system. On the
large-scale, a direct measurement of the source signal could be more easily achievable since
applied forces are higher and therefore easier to measure. If not, performing a similar de-
termination procedure like described in Section 6.2 is conceivable. Another challenge is the
precise determination of the material properties of the tunnel surroundings. An advantage on
the large-scale is that measurements may be acquired in multiple directions, from multiple
locations and on longer distances. This may increase the precision compared to the small-
scale, where the properties are determined on the basis of data acquired in one direction
and on a distance of a few centimeters only. A procedure like performed in the small-scale
scenarios seems beneficial, where a database with a gridded variation of material properties
is constructed and a misfit functional is evaluated in order to find the background velocities.
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The advantage of this procedure is that the data needs to be generated only once since the
diameter of the tunnel and the boundary conditions stay constant. If the background material
changes during excavation, the material properties could be determined close to real-time
with a simple evaluation of the data. A determination on the basis of travel times is rather
not suggested due to a lack of precision. When building the forward model, another ques-
tion to be considered is if the TBM (or parts of it) need to be modeled or if its influence can
be disregarded, which can only be reliably answered if on-site measurements are available.
On the large-scale, phenomena like attenuation, anisotropies and poroelasticity may have
to be considered, where modeling strategies are to be evolved. For the case of attenuation,
two quality factors are to be determined prior to inversion, increasing the difficulty of the
modeling. Lamert & Friederich (2018) investigate the influence on the inversion result if
the attenuation factors are determined slightly inaccurate and find that an approximate es-
timation of the quality factors may be sufficient. This might be a beneficial finding for an
application during mechanized tunneling. Besides the knowledge of material properties,
also a precise knowledge of the geometry is crucial for model building, where for instance
the amount of overburden, the shape of the tunnel, the shape of the Earth’s surface as well as
exact positions of sources and receivers are to be determined. Also here, strategies have to
be developed. Same as in the small-scale case, a stacking of the measurements may be use-
ful in order to increase the signal-to-noise ratio. However, it is not useful in the case that the
measurements are poorly repeatable, for instance during TBM advance. When processing
the measurements, noise of operating machines or urban noise needs to be considered. The
application of filters like bandpass filters is useful in order to remove unwanted frequencies.
In order to remove parts of seismic waveforms, additional filters like f-k-filters may come
into play. The removal of apparently poor traces also seems reasonable in the large-scale
case.

10.3. Sources and receivers

A planning concerning sources and receivers needs to be performed in terms of their quan-
tity, their positioning and the type of source. Concerning the quantity of sources and re-
ceivers, it is advisable to bear in mind that the calculation time increases proportionally to
the number of sources and that the number of receivers does not change the computation
time significantly (only for data evaluation). Therefore, a large number of receivers and a
small number of sources is desirable. The experiment in Chapter 8 shows that the usage of
two sources more or less distant to each other is advantageous compared to the usage of only
one source. A higher number of sources is always beneficial for the inversion and its num-
ber may be adapted to the possible computation time. Seismic receivers can be deployed as
numerous as possible with regard on the constructional effort.

The placement of sources and receivers is dependent on which type of tunnel is considered:
a shallow or a deep tunnel. In the case of deep tunnels, the Earth’s surface probably cannot
be considered for a positioning. On the one hand, applied source forces may be too weak
to transfer a significant amount of energy towards the surface; on the other hand, the model
domain may become too large for a fast inversion if considering the whole region from tun-
nel to Earth’s surface for FWI. In the case of shallow tunnels, sources and receivers placed
at the Earth’s surface can bring a significant advantage since also transmitted waves carry-
ing direct information about the anomalies are included in the data, where these waves also
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carry a higher amount of energy than reflected waves. Furthermore, a source placed at the
Earth’s surface brings a different angle of transmitted waves, which can be highly beneficial
for the inversion since the rear surfaces of disturbances may be better resolved or since also
regions may be covered, which instead would be lying in the 'shadow' of disturbances. The
synthetic scenarios of Chapter 5 show successful results with sources and receivers placed in
the tunnel only, with only slight differences to the results with surface receivers. Neverthe-
less, the advantage of surface receivers may increase if measurement errors and more severe
modeling errors come into play. Also the application of a borehole containing sources and
receivers could be considered, which would be highly beneficial due to a high amount of
transmitted waves. However, this might not always be applicable or be too expensive. Con-
cerning the placement of sources inside the tunnel, Lamert (2019) shows that a placement
at the tunnel face brings better results than a placement at tunnel walls (during an inversion
with an adjoint FWI approach). However, the placement is also a constructional question.
If receivers are to be placed at the tunnel face, this needs to be considered when building
the TBM. To be summarized, sources are, if possible, located best at tunnel faces and the
Earth’s surface. Receivers should be arranged all over the domain or wherever possible.

Source mechanisms that are typically deployed during mechanized tunneling are explosives
(Sattel et al., 1992), pneumatic impulse hammers (Borm et al., 2003) and seismic vibrators
(Borm et al., 2003). Furthermore, vibrations induced by the cutting head of the TBM may
be utilized for FWI (Petronio et al., 2007). In each case, it is beneficial to use a broadband
source signal, which is in most cases already naturally induced. Another important criterion
for the choice of a source function is that the source function can be precisely determined. In
this context, a source estimation of explosives could be more difficult than of sources that are
able to induce a controlled source function. If the vibrations of the cutting head shall be used,
difficulties could occur in terms of modeling source locations and functions. If a controlled
source function can be used, a Ricker function is suggested due to its successful deployment
in various studies concerning FWI in general (e.g. Gebraad et al. 2020, Bretaudeau et al.
2013) but also concerning tunneling applications (e.g Bohlen et al. 2007, Bharadwaj et al.
2017). In the case of well-known source functions for broadband signals like sweeps or
impulses, the signal response to a Ricker source signal can be computed and made use of
for FWI. The findings of Chapter 8 show that the usage of multiple source functions is useful
for FWI, where signal responses to arbitrary source functions can be computed without a
significant computational effort if the forward simulation is conducted with a dirac source.

10.4. Gains and restrictions of the applied FWI methods

During the course of this work, UHSA and UKF-PaLS reveal a good performance during
synthetic and experimental examples, where the optima are in most cases found during an
early stage of the inversion – showing that a prediction could be performed early or that
the number of iterations could be substantially reduced. The high precision of the results
is a consequence of the dimensionality reduction since it reduces the non-uniqueness of the
inverse problem and the complexity of the misfit functional. However, the dimensionality
reduction is also connected to restrictions.

The great restriction of UHSA is the need for prior knowledge in order to implement a
user-defined parametrization of the disturbance. As explained in Chapter 1, this knowledge
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may be available from several sources. Prior investigations are already conducted during
planning of the tunnel trajectory by, for instance, extrapolation from the Earth’s surface, ad-
ditional geophysical measurements, exploratory drillings and prior seismic surveys. Other
sources can be geophysical measurements or approaches like the SML approach described
in Chapter 9. Similarly, also classical seismic tomography methods can be a source of prior
knowledge. If a parametrization cannot be implemented, UHSA is difficult to apply. If it can
be implemented, UHSA conducts a global search with respect to the defined parametriza-
tion of the disturbance – meaning that the algorithm will find the parameter configuration
with the minimum misfit if the parametrization is correct and the number of cycles is high
enough. Hence, the parametrization is a restriction of the method, but a gain in the case that
it can adequately be implemented. Besides the restriction of the need for prior knowledge,
another restriction of UHSA is that complex structures like irregular boulders are difficult to
parametrize and therefore cannot fully be imaged. However, the results of Chapter 9 show
that UHSA can still work in terms of locating the object and approximating its size if the
parametrization of the disturbance is slightly wrong (since in this case, a cube instead of a
sphere was modeled). Furthermore, for the examples in this work, the structure is remeshed
prior to every forward run in order to obtain precise model boundaries. In the context of
complex 3D tunneling scenarios, a meshing with hexahedral elements may not be possible
anymore. In such a case, either a forward solver allowing for a meshing with tetrahedral
elements is to be chosen (leading to an increase of computation time). Or, another option
is not to remesh the model every forward simulation, but to use a static mesh and to as-
sign material properties to the elements which fall into the criteria of the background or the
disturbance domain. In such a case, a slight loss of precision is to be expected since the
resolution would be dependent on the chosen mesh. Hybrid methods like the one proposed
in Chapter 9 are conceivable. Same as for UKF-PaLS, uncertainty quantification could also
be applied for UHSA. However, it is not very meaningful for UHSA since the configuration
with the minimum misfit is already found with a high precision due to its global search na-
ture and since the number of inversion parameters is strongly restricted. Therefore, it is left
out of this study.

UKF-PaLS is less limited than UHSA, allowing to flexibly define the shapes of the dis-
turbance with an adjustable number of model parameters. However, the dimensionality
reduction also comes with some restrictions. For the examples in this work, the number of
disturbance materials is limited to one. Nevertheless, for most disturbances, inverting for
only one material may be expected to be sufficient since rapid material changes in exca-
vation direction can be detected. If not, material properties could also be coupled to the
radial basis functions in order to increase the possible sets of material properties. Further-
more, a region of investigation and a resolution are to be selected by positioning the bumps.
However, the region of investigation may also spread over the whole model domain, and
the resolution may be selected densely as the example in Section 8.3.3 shows. A setting of
these properties could be based on prior knowledge or on the desired region of investigation
or resolution. Another idea to decouple the method from these restrictions is to implement
translational degrees of freedom to single bumps or to the whole grid of bumps. An im-
plementation of the latter would only add 2 (2D) or 3 (3D) additional degrees of freedom
to the inversion, where the region of investigation would be enlarged and the density of
bumps inside this region could be reduced. Similarly, also the issue that the inversion re-
sult is worsened if bumps occur only at the edges (or even outside) of actual disturbances
(see Section 6.3.2) would be solved. Same as for UHSA, hybrid methods are conceivable
in which UKF-PaLS may provide an improved initial model for adjoint methods, where the
latter can image further details. For UKF-PaLS, the covariance of the model parameters can
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be utilized for an uncertainty quantification in order to reveal where anomalies are poten-
tially missed by the inversion. This work introduces an uncertainty measure defined as the
double standard deviation of the covariance matrix of the model parameters. The numerical
2D scenarios of Section 5.1 show that uncertainties often occur at locations of the model
which are not well covered with transmitted waves, where knowing these locations would
be beneficial for a tunneling application. Similarly, in the 2D experimental examples in Sec-
tion 8.3.3, the uncertainty measure extends the region of the disturbance correctly. The gain
of the uncertainty estimation is to be tested for 3D scenarios also. In this work, it is left out
since the limited region of investigation hinders a valuable evaluation.

10.5. Computation time

The use of the spectral element method makes the computation time of the applied inversion
scenarios comparatively small. Nonetheless, considering a 3D domain leads to a drastic
increase of computation time induced by the third dimension but also by a more irregular
meshing with varying element sizes due to the 3D tunnel. In this work, a 3D tunnel is
considered in Section 5.2 for UKF-PaLS and in Section 9.1.2 for UHSA.

The computation time of UHSA is strongly dependent on the number of inversion parame-
ters and its applied boundaries and thus, on the quantity of prior knowledge. Due to strong
prior knowledge, the UHSA scenario conducted in Section 9.1.2 consumes a relatively low
number of forward simulations. On a powerful computer, the computation time for a for-
ward simulation could be reduced many times over and furthermore, all forward simulations
during an UKF iteration can be parallelized. Therefore, with a reduced parameter set like the
one applied, an application of UHSA during mechanized tunneling could soon be achieved.

The computation time of UKF-PaLS is dependent on the chosen number of bumps. The
examples in Chapter 5 show examples of how bumps could be distributed in an application
during mechanized tunneling. The resulting inversion times are (with almost two weeks on
the high-performance cluster) way too long for an application during mechanized tunneling.
However, also here, an application on more powerful computers will become possible in a
couple of years. One advantage of UKF-PaLS is the possible parallelization of all simula-
tions per source during one iteration. Since a single simulation already takes only a couple
of minutes on the utilized cluster, the 25 iterations could be computed during a small amount
of time if large computational resources would be available. Furthermore, it is notably to
say that satisfactory results were already available after much less iterations than the applied
25 iterations.

To be summarized, the computational resources might be too expensive for an application
during mechanized tunneling nowadays but with exponentially increasing computational
power, the methods might be applied in a few years. Another great potential for a fast
prediction is the creation of metamodels with SML models as performed in Trapp et al.
(2019), which are summarized again in the next section.
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10.6. Supervised machine learning for the creation of metamodels

In Trapp et al. (2019), a SML algorithm for the creation of metamodels is introduced by
the co-authors Can Bogoclu and Dirk Roos. This approach creates a metamodel based on
gridded simulation data in order to completely replace the simulation model. Firstly, a
parametrization of the disturbance domain is selected, which can be the one selected for
UHSA, the level-set representation or some other parametrization. Then, a database of
simulation data with a gridded variation of inversion parameters is created. With respect to
the simulation data, a multi output deep Gaussian covariance network (DGCN) is trained,
constituting a surrogate model which outputs the waveforms for a given set of parameters.
The surrogate model is not dependent on the measurement – thus, if prior to drilling, the
background material properties are known and future boundary conditions can be estimated,
the creation of the metamodel can be conducted prior to drilling and a forward run can be
delivered close to real-time. In the case that the tunnel shape and the tunnel surroundings
do not change, which can be the case considering even surfaces or deep tunnels, even one
universal SML model could be used for the prediction. This is also a great advantage in
regard of continuously acquired measurements during excavation since no new simulation
needs to be generated for new sets of measurements. The optimization can be performed
with UHSA or the UKF, but also with greedy optimization methods like PSO due to the
small duration of a forward run. In Trapp et al. (2019), the DGCN is successfully applied
to the measurement data acquired on the aluminum block in Chapter 6, where the same
parametrization of the drilling as for UHSA is utilized. Only 128 forward simulations are
needed in order to obtain a reliable metamodel. The performance for a higher number of
parameters needs to be tested in future works, especially in regard of the required number
of samples.
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11. Summary and conclusion

This thesis considers two full waveform inversion methods based on dimensionality reduc-
tion and Bayesian inference for a potential application during mechanized tunneling. Both
methods provide precise results, with meaningful reconstructions usually being determined
in the early stages of the inversion. Although the dimensionality reduction induces restric-
tions, the methods are shown to perform well even when the parametrization of the dis-
turbance domain is not chosen fully optimal and when substantial errors are induced in
the frame of real measurements. With exponentially growing computational resources, full
waveform inversion during mechanized tunneling may become applicable in a few years.
In this context, the methods provide an alternative to common adjoint methods, where also
a combination or a parallel application of both types of methods is conceivable in order
to compensate for the restrictions and weaknesses of each other. The following paragraph
summarizes the main achievements and findings of this work. The last paragraph identifies
open research questions.

The further development of the methods as well as their application to seismic data are the
major goals of this work (see Section 1.5). In Chapter 5, UKF-PaLS is extended to three
dimensions and a multi-scale approach is implemented, achieving promising results in two
as well as in three dimensions. It is shown that uncertainty quantification can deliver a pre-
diction of where anomalies could potentially be missed by the inversion. Furthermore, the
method is shown to perform well even if sources and receivers are placed inside the tunnel
only. Chapters 6,7 and 8 represent the experimental stage of this work, where ultrasonic
seismic data are acquired on various specimens with which both methods are validated.
The additional value of this stage is that – same as in field scenarios – noise, measurement
errors and later modeling errors are naturally included. After the deployment of measure-
ment strategies (Chapter 4), adequate methods for the forward modeling are evolved for the
corresponding application scenarios, where the determinations of material properties and
the source functions are the most important ones. Despite measurement and modeling er-
rors which are still included, all of the inversion scenarios are deployed successfully which
demonstrates the robustness of the methods against these types of errors. The final phase of
experimental validation in Chapter 8 deals with a scenario that is somewhat close to a repre-
sentative tunneling scenario, so that an intensive comparison is made where the findings are
related to large-scale applications. Hybrid methods are conceivable for both methods and in
Chapter 9, UHSA is recommended as part of a hybrid scheme that includes both a super-
vised machine learning and an adjoint approach. The discussion part in Chapter 10 analyzes
the results of the thesis and outlines challenges and suggestions for field applications.

The investigations reveal that the application of the two applied methods can be useful for
advance exploration during mechanized tunneling. For a full validation of the methods,
field data from tunnel construction sites must be taken into account. Besides this kind of
validation, subjects of future studies may include an improvement of UKF-PaLS by the
implementation of translational degrees of freedom to the bumps (see Section 8.3.3) and
the implementation of Tikhonov regularization (see Section 5.3). Further synthetic three-
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dimensional scenarios are to be tested if more computational resources are available. In the
case the latter applies, research on Bayesian full waveform inversion with a less intense di-
mensionality reduction can be considered as well, for instance in the form of gridded veloc-
ity models. The optimization can be performed with the unscented Kalman filter; however,
other methods should also be considered, with e.g. Markov chain Monte Carlo being a com-
mon and promising approach. Furthermore, great potential lies in further studying the use of
supervised machine learning for the creation of metamodels, where the methods could also
be useful for various applications – even beyond engineering or geotechnical applications.
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Figure A.1.: Scenarios 1.1− 5.2 (Section 5.1.2) – Best estimates and double standard devi-
ations in medium dark grey after 5 iterations.
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Figure A.2.: Scenarios 1.1− 5.2 (Section 5.1.2) – Best estimates and double standard devi-
ations in medium dark grey after 10 iterations.
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Figure A.3.: Scenarios 1.1− 5.2 (Section 5.1.2) – Best estimates and double standard devi-
ations in medium dark grey after 15 iterations.
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Figure A.4.: Scenarios 1.1− 5.2 (Section 5.1.2) – Best estimates and double standard devi-
ations in medium dark grey after 20 iterations.
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Section 5.2: Results for scenario 1

vp (m
s ) vs (m

s )

4000 5331 2400 3199

source
receiver

Figure B.1.: Inversion result for scenario 1 from two points of view: Model corresponding
to parameter configuration with minimum misfit after 5 iterations compared
to borders of the true disturbance in light grey.
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Figure B.2.: Inversion result for scenario 1 from two points of view: Model corresponding
to parameter configuration with minimum misfit after 10 iterations compared
to borders of the true disturbance in light grey.
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Figure B.3.: Inversion result for scenario 1 from two points of view: Model corresponding
to parameter configuration with minimum misfit after 15 iterations compared
to borders of the true disturbance in light grey.
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Figure B.4.: Inversion result for scenario 1 from two points of view: Model corresponding
to parameter configuration with minimum misfit after 20 iterations compared
to borders of the true disturbance in light grey.
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Section 5.2: Results for scenario 2
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Figure B.5.: Inversion result for scenario 1 from two points of view: Model corresponding
to parameter configuration with minimum misfit after 5 iterations compared
to borders of the true disturbance in light grey.
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Figure B.6.: Inversion result for scenario 1 from two points of view: Model corresponding
to parameter configuration with minimum misfit after 10 iterations compared
to borders of the true disturbance in light grey.
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Figure B.7.: Inversion result for scenario 1 from two points of view: Model corresponding
to parameter configuration with minimum misfit after 15 iterations compared
to borders of the true disturbance in light grey. Note that this model is the same
as plotted in the previous figure since no model with a lower misfit functional
is found during iterations 10-15.
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Figure B.8.: Inversion result for scenario 1 from two points of view: Model corresponding
to parameter configuration with minimum misfit after 20 iterations compared
to borders of the true disturbance in light grey.
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talen und analogen Nachrichtenübertragungssysteme. Springer-Verlag.

Otto, Richard, Button, E., Bretterebner, Helfried, & Schwab, Peter. 2002. The application
of TRT (true reflection tomography) at the Unterwald tunnel. Felsbau, 20(2), 51–56.

Petronio, Lorenzo, Poletto, Flavio, & Schleifer, Andrea. 2007. Interface prediction ahead of
the excavation front by the tunnel-seismic-while-drilling (TSWD) method. Geophysics,
72(4), G39–G44.

Pratt, R. Gerhard, & Worthington, M.H. 1990. Inverse theory applied to multi-source cross-
hole tomography. Part 1: acoust wave-equation method 1. Geophysical prospecting,
38(3), 287–310.

Rao, Jing, Ratassepp, Madis, & Fan, Zheng. 2016. Guided wave tomography based on
full waveform inversion. IEEE transactions on ultrasonics, ferroelectrics, and frequency
control, 63(5), 737–745.

Riedel, Christopher, Musayev, Khayal, Baitsch, Matthias, Zhu, Hehua, & Hackl, Klaus.
2021a. Acoustic waveform inversion in frequency domain: Application to a tunnel envi-
ronment. Underground Space, 6(5), 560–576.

Riedel, Christopher, Musayev, Khayal, Baitsch, Matthias, & Hackl, Klaus. 2021b. Seismic
exploration in tunneling using full waveform inversion with a frequency domain model.
PAMM, 20(1), e202000141.

Riedel, Christopher, Mahmoudi, Elham, Trapp, Maximilian, Lamert, Andre, Hölter, Raoul,
Zhao, Chenyang, Musayev, Khayal, Baitsch, Matthias, König, Markus, Hackl, Klaus,
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