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Werkes oder von Teilen dieses Werkes ist zulässig. Sie ist grundsätzlich vergütungspflichtig.
Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtsgeset-
zes.

©2024 Institut für Mechanik der Ruhr-Universität Bochum

Printed in Germany

Einreichung der Dissertation (thesis submission): 20.11.2023
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Summary

In this dissertation the findings from an open research topic in the field of variational
methods are presented. They are used to model inelastic materials comprising mi-
crostructure. The derivation is based on the laws of thermodynamics implemented
within the variational principles. A time-incremental approach is introduced to yield
a set of equations applicable to numerical computations. This thesis consists of two
major topics, one dealing with effective models in the field of homogenization, and
a second one with relaxation.

The first part covers reduced models designed by means of multi-scale modeling
with effective properties. The coarse-scale model in terms of the free energy and
dissipation potential is based on the free energy and dissipation potentials defined
at the fine-scale, employing a coarse-scale model that comprises the same structure
of the fine-scale model. A main feature for this scheme is the careful selection of
the essential variables prescribing the inelastic behavior. Applying the variational
formulation results in a set of incremental evolution solution for the internal vari-
ables, which allows the application to numerical examples. The proposed approach
is applicable to structural elements in addition to computations in homogenization
problems.

The second part of this thesis prescribes materials with parameter-dependency defin-
ing inelastic behavior. The parameter covered in this investigation is pressure. Such
pressure-dependent plastic materials are characterized by non-associative flow rules
and a concave yield surface for the critical transition between ductile and brittle be-
havior. Concavity results in a non quasiconvex variational problem having no regu-
lar solutions. Moreover, experimental results from granular media have revealed the
existence of shear band microstructures. Non quasiconvex numerical problems are
accompanied with numerical instabilities. Solution techniques are given by means of
relaxation, i.e., minimization with respect to small scale structures. However, com-
puting a quasiconvex envelope is in most cases too complex, therefore, in the begin-
ning, a one-dimensional toy model is investigated for which an analytical solution
is defined. Lastly, a generalization to higher dimensions is done by approximating
a convex envelope of the free energy instead of a quasiconvex envelope. Various
numerical calculations are provided.
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Nomenclature

Latin Notations

a General tensor of first order
ai, aj Amplitude vectores at the sides of the polyhedral subdomains
Ai Stiffness in subdomain Ωi

Aeff Effective stiffness for the representative volume element
A, B General tensor of second order
b Nondimensional hardening modulus
b Body force and normal vector
B Strain concentration tensor
c Cohesion
C Tensor of elastic moduli
CR Reuss stiffness
D Dissipation distance
ei Strain tensor in subdomain Ωi

eM Macroscopic strain
epi Plastic strain tensor in subdomain Ωi

epM Macroscopic plastic strain tensor
ep,1 Plastic strain tensor for laminates in the 1st direction, Sec. 4.7
ep,2 Plastic strain tensor for laminates in the 2nd direction, Sec. 4.7
E Young’s modulus
fext Potential of external forces, Sec. 3.1
fess Potential of external forces in terms of the essential parameters, Sec. 3.1
F Force
F Deformation gradient
I Identity matrix
J Jacobian
J Jacobian matrix
K Bulk modulus
L Length of the cylinder in Sec. 3.1.2
n Normal vector
Ne Number of elements
NGP Number of Gauß points
Nsd Number of subdomains
p Plastic parameter in Sec. 4
q Hardening parameter in Sec. 3.1
q Driving force in Sec. 3.2
Q,Qp Positive definite quadratic potentials
r Radial coordinate
r Position vector
R radius of the cylindrical body
t Time
t Traction forces
T Torque
u Displacement
u Displacement field
uper Displacement field satisfying the periodic boundary conditions
v Velocity
x Vector of external state variables
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x Space coordinates in current configuration
X Space coordinates in reference configuration
z Axial coordinate of the cylinder in Sec. 3.1.2
z Vector of internal state variables.

Greek notations

α Hardening modulus in Sec. 3.1
β Hardening modulus in Sec. 4
γ Viscous parameter in Sec. 4.7
∆ Dissipation potential
∆macro Macroscopic dissipation potential
ε Strain
ε Strain tensor
εe Elastic strain tensor
εp Plastic strain tensor
θ Rotation angle
θ′ Twist rate in Sec. 3.1.2
κ Consistency parameter in Sec. 4
λ Consistency parameter in Sec. 3.2
λi Volume fraction in Sec. 3.2
λ1 Volume fraction for laminates in the 1st direction, Sec. 4.7
λ2 Volume fraction for laminates in the 2nd direction, Sec. 4.7
µ Shear modulus
ν Poisson’s ratio
ξmin, ξmax Lower and upper sides of the interval for the

pressure-dependent function, Sec 4
ρ Lagrange multiplier in Sec. 3.2
τ Shear stress field
σy Yield stress
σ Stress tensor
ϕ Friction angle
Φ Yield function
ψ, Ψ Free energy
Ψmacro Macroscopic energy
Ω Volume of a body
Ωi Volume of a subdomain
∂Ω Surface of a body

Abbreviations

macro Macroscopic
vol Volumetric
dev Deviatoric
eff Effective
ess Essential
RVE Representative volume element
per Periodic
cond Condensed
rel Relaxed
ext External
GP Gauß point
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Mathematical operators

δ(.) Variation
∂(.) Partial derivative
∆(.) Increment
∇(.) Nabla operator

arg min(.) Argument of the minimum
arg max(.) Argument of the maximum
div(.) Divergence
det(.) Determinant
grad(.) Gradient
inf(.) Infimum
lim(.) Limit of a function
min(.) Minimum
max(.) Maximum
sign(.) Signum function
sup(.) Supremum
sym(.) Symmetric part of a matrix
tr(.) Trace
dev(.) Deviator

d(.)/dt = ˙(.) Time derivative/ rate
d(.)/dx Total derivative with respect to x
∂(.)/∂x Partial derivative with respect to x

⟨.⟩ Averaged quantity
[.]+ Permits only positive values
(.)k Reference to last iteration step
(.)k+1 Reference to current iteration step
(.)′ First derivative
(.)′′ Second derivative
(.)−1 Inverted
(.)T Transposed
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1 Introduction

1.1 Motivation

Engineering technological change and the arising industrial demand for modern ma-
terials with special characteristics, increases the level of difficulty to model such ma-
terials. Complex materials are assigned with heterogeneous properties at the micro
level. Therefore, models with multi-scale character can be the best choice to pre-
scribe them. Nevertheless, modeling such systems to the full extent requires high
computation times and data storage. It is desirable now to investigate effective
models to capture the essential behavior of the system as close as possible, but rely
only on a small set of effective variables. Common used methods in the literature
to model complex materials are based on phenomenological models. These try to
mimic the material behavior directly at the macro-scale, reducing the computation
costs extremely. However, such models observe elaborate behavior and require a
large number of parameters. Many parameters have often no physical meaning and
are difficult to identify. The other possibility to model complex materials is the direct
numerical simulation. It captures the behavior at the micro-scale efficiently with a
few number of parameters. Yet, generating information at the macro-scale from the
micro-scale can be done through only computationally expensive procedures. So, the
target is to apply a variational approach to the homogenization of inelastic materials
with microstructure in which only few number of physically well-defined parameters
are involved. Then, it is possible to capture the essential material behavior at the
macro-scale as well at the micro-scale without increasing the computational costs.
Implementations of variational methods in the field of homogenization for inelastic
systems is not new. Similar models have been derived for examples in shape memory
alloys, see (Govindjee, Hackl, and Heinen 2007), (Junker and Hackl 2011), (Junker
and Hackl 2014), (Waimann, Junker, and Hackl 2016), and in the prediction of dis-
location patterns in single crystal metals, see (Aubry, Fago, and Ortiz 2003), (Conti
and Ortiz 2005), (Conti, Dolzmann, and Klust 2009), (Frankenreiter, Rosato, and
Miehe 2010), (Günther, Junker, and Hackl 2015), (Gürses and Miehe 2011).

In this thesis, two reduced models are investigated: the first reduced model RM1

and the second reduced model RM2, where the second one is developed to overcome
some examined drawbacks resulting from the first model.

An additional objective of this thesis is to investigate elastoplastic materials with
pressure-dependency (like soils and granular media). The interest in such materi-
als is regarded to the experimental results, which show shear band microstructures
under deformation.

Starting from investigations of elastoplastic materials characterized with microstruc-
ture as shown in (Ball and James 1987), (Chipot and Kinderlehrer 1988) and (Ball
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and James 1992) led to the realization that such experiments (comprising the evolu-
tion of microstructure) can be well explained by energy minimization. This empha-
sized the usage of the variational methods to understand the behavior of complex
materials. Therefore, we apply the variational approach to prescribe the evolving
microstructure in pressure-dependent plastic materials, namely, granular media.

A minimization with respect to these small scale microstructures leads to non qua-
siconvex potentials, resulting in numerical and stability issues. Therefore, the aim
is to introduce a paradigm that solves the problems of non-quasiconvexity by means
of model reduction via relaxation. We employ the variational approach to describe
the essential model features with as few parameters as possible for materials in soil
mechanics. This goal is implemented first by applying the relaxation approach to a
one-dimensional toy model in which analytical and numerical results are provided.
Then the evolution of the microstructure approximated by a convex envelope is cov-
ering the problem. Well-posedness of the introduced relaxation schemes is checked
by fulfillment of mesh-independency.

1.2 Outline

This thesis is structured as follows: we start with Chapter 1 under which this in-
troduction and outline follows, then in Chapter 2 the mathematical and mechanical
background for this work is provided. Some introductory sections to the variational
approach, the homogenization concept and the recipes to the relaxation scheme are
given as well. Two novel effective models are derived in Chapter 3 in a variational
manner prescribing systems with inelastic materials. Their applications are shown in
structural elements and in microstructural homogenization problems under periodic
boundary conditions. The first effective model returns very promising results and
is open to a large field of applications, but is restricted in microstructural problems
to polyhydral subdomains. The second effective model, with additional quadratic
constraints, was able to overcome this problem. This chapter is concluded with the
main findings from both models. In Chapter 4 models of pressure-dependent plastic
materials are investigated. We discuss first the classical models in soil mechanics,
motivating the critical issues leading to the problem of lack of quasiconvexity. Two
models are introduced in this chapter: the first one provides an analytical relaxed
solution for a one-dimensional problem and is then extended in a heuristic man-
ner to three-dimensions. The second model studies an evolution of the observed
microstructure by applying a convexification technique. Detailed discussion of the
results concludes this chapter. Lastly, a short outlook giving insights to possible fu-
ture work is presented in Chapter 5.
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2 Fundamentals

In this chapter, some mathematical and mechanical fundamentals are given to clarify
the methodology applied to the models presented in this thesis. First, in Sec. 2.1,
some mathematical notations and conventions from tensor analysis are given. Sec-
ond, in Sec. 2.2, the main continuum mechanical basics and laws of thermodynam-
ics are introduced. An introduction to the variational formulation, which applies all
over this thesis, is given in Sec 2.3, then a short review of multi-scale modeling is
presented to enhance the derivation of the models presented in Sec. 3. Some in-
troductory definitions prescribing inelastic materials with microstructure are given
later in Sec. 2.5. Lastly, a brief introduction to convex analysis is given in Sec. 2.6,
which is applied to the models outlined in Sec. 4.

2.1 Mathematical notations

The mathematical conventions presented here are based on the works of (Holzapfel
2002) and (Chou and Pagano 1992). In a Cartesian coordinate system, with basis
{ei}; i = 1, 2, 3 and using the indicial notation, a tensor of zeroth order corresponds
to a scalar, denoted as a, b, c.., whereas a tensor of first order corresponds to a vector
denoted as a,b, c.., and a tensor of second order corresponds to a matrix denoted as
A,B,C, ... with

a = (ai) =

a1a2
a3

 , A = (Aij) =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 . (2.1.1)

We will use all over this thesis boldface symbols for vector-valued or matrix-valued
objects.

There are also higher order tensors as for example the fourth order tensor expressing
the material stiffness, denoted as A,B,C, ....

Applying Einstein summation convention to a vector a is given as

a = aiei :=
∑
i

aiei = a1e1 + a2e2 + a3e3 . (2.1.2)
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2.1.1 Tensor products

Dyadic or tensor product: any second order tensor A can be expressed as a dyadic
product of two vectors a and b, given with Cartesian basis {ei} as

A = a⊗ b = aibjei ⊗ ej = Aijei ⊗ ej . (2.1.3)

The same can be generalized to a tensor of fourth order

A = Aijklei ⊗ ej ⊗ ek ⊗ el . (2.1.4)

The dot product (also known as scalar product) of two vectors gives a scalar c

a · b = aibjδij = c , (2.1.5)

where δij is the Kronecker delta written as

ei · ej = δij =

{
1, if i = j,
0, if i ̸= j.

(2.1.6)

The dot product of a vector and a second order tensor gives a vector

a ·B = aiBijej = c . (2.1.7)

The dot product of two second order tensors is again a second order tensor

A ·B = AijBjkei ⊗ ek = C . (2.1.8)

The double contraction of two second order tensors is a scalar

A : B = B : A = AijBij . (2.1.9)

The double contraction of a fourth order tensor and a second order tensor gives a
second order tensor

A : B = AijklBklei ⊗ ej = C . (2.1.10)

The cross-product known also as vector product of two vectors a and b gives a new
vector c

c = a× b = aiei × bjej = ϵijkuivjek = ckek , (2.1.11)

where ϵijk is the altering- or Levi-Civita symbol defined as

ϵijk =


1, for even permutations of (i, j, k) (i.e.123, 231, 312),
−1, for odd permutations of (i, j, k) (i.e.132, 213, 321),
0, if there is a repeated index.

(2.1.12)
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2.1.2 Tensor analysis

Scalar- ϕ(x), vector- u(x) and tensor-valued A(x) functions do assign a scalar, vector
and tensor to each material point x varying in space at a fixed time. Nabla (also
gradient) is a vector operator giving the partial derivatives of a function field f(x)
with respect to the coordinates xi

∇(.) =
∂(.)

∂xi
ei =

∂(.)

∂x2
e1 +

∂(.)

∂x2
e2 +

∂(.)

∂x3
e3 , (2.1.13)

gradf = ∇(f) =
∂f

∂xi
ei . (2.1.14)

The divergence of a vector field results from the dot-product of the nabla operator
with any vector field

divu = ∇ · u =
∂ui
∂xi

. (2.1.15)

The trace of a second order tensor A is a scalar that sums up the diagonal terms of
the matrix

tr(A) = Aii , (2.1.16)

whereas the deviatoric part of a tensor is computed as

dev(.) = (.)ij −
1

3
(.)kkδij . (2.1.17)

2.1.3 Voigt notation

The equations relating stress and strain are called constitutive equations. In the case
of elastic solids, the constitutive equations take the form of generalized Hooke’s law

σ = C : ε , (2.1.18)

where C is the fourth order tensor (elastic moduli) and the stress and strain tensors
are given respectively as

σ =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 , ε =

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

 . (2.1.19)

In order to simplify the notation and numerical implementation, the Voigt notation
introduced by (Voigt 1910) is used. It makes use of the symmetry, transforming the
second order stress and strain tensors into vectors with six components. Then the



6 2 Fundamentals

resulting tensor of elastic moduli, prescribing the material properties, is reduced into
a tensor of second order with only 6× 6 components. The stresses can be expressed
as a linear combination of the strain components as

σ11
σ22
σ33
σ23
σ13
σ12

 =


C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212

 ·


ε11
ε22
ε33
2ε23
2ε13
2ε12

 . (2.1.20)

2.2 Continuum mechanics and thermodynamics

The continuum mechanics is a powerful and effective tool to explain various phys-
ical problems successfully without detailed knowledge about their microstructure.
This section reviews some basic mechanical concepts of continuous media, where
macroscopic systems can be prescribed. Therefore, a study of motion and deforma-
tion is clarified. Then the classical balance principles in thermodynamics with their
consequences are discussed. For a detailed review of the aforementioned topics,
please refer to (Holzapfel 2002), (de Souza Neto, Peric, and Owen 2011) (Truesdell,
Noll, Truesdell, and Noll 2004), (Silhavy 1997), (Gurtin, Fried, and Anand 2010)
and (Wolfgang Demtroder 2017).

2.2.1 Kinematics

Kinematics is the study of motion and deformation. Let B be a body with continuous
distribution of matter in space and time. As a continuum body moves in space from
one instant into another, it occupies a continuous sequence of geometrical regions
denoted by Ω0, ...,Ω. Thus, every particle, or material point, p ∈ B has a position in
the mentioned regions. These regions that are occupied by the continuum body at a
given time t are called the configurations. We refer to the region Ω0 at initial time
t = 0 and the position vector X by the reference (undeformed configuration). When
body is in motion, the region Ω0 moves in space into a new region Ω occupied by the
continuum body B at time t > 0. This is called the current (deformed configuration)
prescribed by the spatial position vector x, see Fig. 2.1. The displacement field of a
material point relates its position vector in the reference configuration to its position
on the current configuration at time t.

u(X, t) = x(X, t)−X . (2.2.1)

The motion and deformation of a continuum body in solid mechanics are described
in terms of the displacement field. However, the primary field quantities in fluid me-
chanics describing the fundamental kinematic properties are the velocity field (first
time derivative of the motion) and the acceleration field (second time derivative of
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e3

e1

e2

Ω0

Ω

x(X,t)
X

u(X,t)

p
p`

Reference configuration Current configuration

Figure 2.1: Deformation of a body B. Representation of configurations.

the motion).

v(X, t) =
dx

dt
=
∂x(X, t)

∂t
, (2.2.2)

a(X, t) =
d2x

dt2
=
dv

dt
=
∂v(X, t)

∂t
. (2.2.3)

The deformation gradient tensor F maps a line element dX from the reference con-
figuration to a corresponding line element in the current configuration dx.

dx = F · dX , (2.2.4)

hence, we get the relation for the displacement gradient tensor,

F =
∂x

∂X
=
∂(u+X)

∂X
= Gradu+ I . (2.2.5)

The deformation gradient is said to be a two point tensor, as it involves points in
two distinct configurations. One index describes the spatial coordinates, xa, and the
other material coordinates, XA.

Analogously, mapping a volume element from the reference to the current configu-
rations at time t is defined according to the relation

dv = J(X, t)dV, J(X, t) = detF(X, t) > 0 , (2.2.6)

where J > 0 is the volume ratio (Jacobian determinant) insuring the impenetra-
bility of matter. We have seen, that points, lines or curves map onto points, lines
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and curves via the deformation gradient F. However, a unit vector N normal to
infinitesimal material surface element dS does not map to a unit vector n normal to
the associated infinitesimal spatial surface element ds via F. The relation for this
surface map is called Nanson’s Formula

ds = JF−TdS . (2.2.7)

In non-linear continuum mechanics, the strain tensor is subject to the different con-
figurations. Therefore, we define the material strain tensors dependent solely on the
material point, which are the Green-Lagrange strain tensor,

E =
1

2
(FT · F− I), with E = ET , (2.2.8)

and the right Cauchy-Green tensor C = FT · F, which is symmetric and positive
definite at each X ∈ Ω0. On the other hand, the spatial strain tensors associated
with the current configuration are, Euler-Almansi strain tensor,

e =
1

2
(I− (F · FT )−1), with e = eT , (2.2.9)

and the left Cauchy-Green tensor B = F·FT , which is as well symmetric and positive
definite. Rewriting the aforementioned strain tensors in terms of the displacement
gradient tensors in the reference and current configurations respectively is given as
follows

E =
1

2
(GradTu+Gradu) +

1

2
GradTu ·Gradu , (2.2.10)

e =
1

2
(gradTu+ gradu) +

1

2
gradTu · gradu , (2.2.11)

where

Gradu =
∂u

∂X
, and gradu =

∂u

∂x
. (2.2.12)

Considering the case of small strains with x ≈ X, which applies all over this thesis,
allows us to neglect the quadratic terms in the Green-Lagrange strain tensor as well
in the Euler-Almansi strain tensor. Hence, both strains coincide in the linearized
strain tensor.

ε =
1

2
(gradTu+ gradu) . (2.2.13)

2.2.2 Balance laws

In this section the fundamental balance principles, i.e. the conservation of mass,
balance of linear and angular momentum and the first and second laws of ther-
modynamics are given. Conservation laws are valid in all branches of continuum
mechanics and must be satisfied for all times.
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2.2.3 Conservation of mass

In non-relativistic physics mass cannot be produced or destroyed. It is assumed that
during a motion there are neither mass sources nor mass sinks, so that the mass m
of a body Ω is a conserved quantity.

m =

∫
Ω

ρdV , (2.2.14)

where ρ(x, t) is the mass density, a continuous scalar field depending on the position
x ∈ Ω and time t throughout the body.

2.2.4 Balance of linear and angular momentum

Consider a continuum body B occupying a region Ω with a boundary surface ∂Ω.
A body force b is acting per the volume of the body and the surface of the body is
subject to Cauchy traction vector t = σ · n, where n is the outward normal vector to
the surface. Hence, the global form of the balance of linear momentum is given as

d

dt

∫
Ω

ρvdV =

∫
∂Ω

tdA +

∫
Ω

bdV, (2.2.15)

applying the divergence theorem to Cauchy’s formula gives∫
∂Ω

tdA =

∫
∂Ω

σ · ndA =

∫
Ω

∇ · σdV. (2.2.16)

Substitute into Eq. 2.2.16 and utilize the conservation of mass, the resulting equation
should hold for any volume. Hence, we get the equilibrium equation in the local
form

∇ · σ + b = ρa . (2.2.17)

The balance of angular momentum in terms of the resultant moment M (the moment
of the resultant force F about a point x0 on the body), with the position vector r, has
the form

d

dt

∫
Ω

r× ρvdV =

∫
∂Ω

r× tdA +

∫
Ω

r× bdV . (2.2.18)

Making use of the balance of linear momentum and the divergence theorem we
obtain the symmetry of the Cauchy stress tensor.

σ = σT . (2.2.19)
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2.2.5 First law of thermodynamics: Balance of energy

The first law of thermodynamics governs the transformation from one type of energy
involved in a thermodynamic process into another, but it never governs the direction
of that energy transfer. It states that the rate of change of the total energy (kinetic K
and internal energy E) of a thermodynamic system equals the change of the external
mechanical work Pext done by surface tractions and body forces plus the thermal
power (heat power) Q done by heat fluxes and heat sources.

K̇ + Ė = Pext +Q . (2.2.20)

The kinetic energy is given by

K =

∫
Ω

1

2
ρv · vdV, (2.2.21)

and the internal energy is defined as follows

E =

∫
Ω

ΨdV +

∫
Ω

θsdV. (2.2.22)

Ψ is the Helmholtz free energy, θ is the absolute temperature and s is the entropy.
The external mechanical work is given as

Pext =

∫
Ω

b · vdV +

∫
∂Ω

t · vdA , (2.2.23)

and finally the heat power in terms of the heat source h and the heat flux qn has the
form

Q =

∫
Ω

hdV +

∫
∂Ω

qndA. (2.2.24)

The heat flux measures the rate at which heat enters the body across the boundary
surface ∂Ω and is defined per Stoke’s heat flux theorem shown below

qn = −q · n . (2.2.25)

In Eq. 2.2.25, the heat flux has a negative sign due to the opposite direction to
the normal vector n (outward normal to the surface element). Substituting into
Eq. 2.2.20, gives

d

dt

∫
Ω

(
1

2
ρv · v +Ψ+ θs)dV =

∫
∂Ω

(t · v + qn)dA +

∫
Ω

(b · v + h)dV. (2.2.26)

The surface integrals can be changed into volume ones by applying the divergence
theorem and making use of the prior laws and identical integrals. Hereafter, we get
the local form of the balance of energy (first law of thermodynamics).

Ψ̇ + θ̇s+ θṡ = σ : ε̇−∇ · q+ h. (2.2.27)
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2.2.6 Second law of thermodynamics: Entropy inequality

The second law of thermodynamics is responsible for the direction of an energy
transfer process, as physical observations show that the heat always flows from the
warmer to the colder region of a body (from the source of heat). A mechanical en-
ergy can be transformed into heat by friction and this can not be converted back into
mechanical energy. Therefore the entropy is an important thermodynamic property,
which is viewed as a quantitative measure of microscopic randomness or disorder.
The second law of thermodynamics is known by the total production of entropy,
which is supposed to be a positive quantity.

Γ =
d

dt

∫
Ω

sdV +

∫
Ω

(∇ · q
θ
− h

θ
)dV ≥ 0. (2.2.28)

Finally the local form of the entropy production inequality (known as Clausius-
Duhem inequality) is

σ : ε̇− sθ̇ − Ψ̇− 1

θ
q · ∇(θ) ≥ 0. (2.2.29)

2.2.7 Constitutive equations

To characterize a continuous media within the context of thermodynamics we need
to define thermodynamic potentials, which prescribe all thermodynamic properties
of a system. A thermodynamic potential is a function (scalar-valued) from which we
may derive the state variables of a system. One example is the Helmholtz free energy
as a function of the strain tensor ε, the temperature θ, the temperature gradient ∇θ
and the vector of internal state variables (for a system with irreversible processes) z.

Ψ = Ψ(ε, θ,∇θ, z). (2.2.30)

To make use of the second law of thermodynamics, we need to compute the rate of
the free energy applying the chain rule.

Ψ̇ =
∂Ψ

∂ε
: ε̇+

∂Ψ

∂θ
θ̇ +

∂Ψ

∂(∇θ)
· ˙(∇θ) + ∂Ψ

∂z
· ż . (2.2.31)

Plugging into Eq. 2.2.29, we get

(σ − ∂Ψ

∂ε
) : ε̇− (s+

∂Ψ

∂θ
)θ̇ − ∂Ψ

∂(∇θ)
· ˙(∇θ)− ∂Ψ

∂z
· ż− 1

θ
q · ∇(θ) ≥ 0 . (2.2.32)

Eq. 2.2.32 holds at every point of the continuum body and for all times. The terms
in brackets given by Coleman-Noll procedure, refer to (Noll, Coleman, and Noll
1974)and (Coleman and Gurtin 1967), are the general forms of the constitutive
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equations for the Cauchy stress tensor and the entropy describing thermal processes
defined respectively as

σ =
∂Ψ

∂ε
, and s = −∂Ψ

∂θ
. (2.2.33)

Moreover, we get from Eq. 2.2.32 an additional vanishing term due to the case that
the free energy of simple materials is independent of the temperature gradient

∂Ψ

∂(∇θ)
= 0. (2.2.34)

We still have to define the part dependent on z (the vector of internal variables). This
is done by considering a new quantity q, which is known as the thermodynamically
driving force prescribing the evolution of internal variables.

−∂Ψ
∂z

· ż ≥ 0, with q = −∂Ψ
∂z

, giving q · ż ≥ 0. (2.2.35)

The last term in Eq. 2.2.35 is known as the internal dissipation (for ex. in the form
of heat), which is a non-negative quantity (irreversible).

2.3 Variational principle

In this section, the variational formulation in terms of the total energy for a non-
conservative continuous material is given. We start with a general form of the Gibbs
energy (including the gradient of the internal variables), then come to a special
case known as the principle of the minimum dissipation potential (PMDP), as imple-
mented afterwards in this dissertation. The relations for Hamilton’s principle are in-
spired from the works of (Hamilton 1834), (Hamilton 1835) and (Bedford and Bed-
ford 1985). PMDP representation is based on the work of (Onsager 1931), (Hackl
1997), (Ortiz and Stainier 1999) and (Ortiz and Repetto 1999), (Carstensen, Hackl,
and Mielke 2002) and (Hackl and Fischer 2008) and for non-isothermal processes
from the works of (Hackl, Fischer, and Svoboda 2011) and (Junker, Makowski, and
Hackl 2014).

To prescribe Hamilton’s principle, we introduce the Gibbs energy G for a continuous
material as follows

G = Πint +Πext , (2.3.1)

where Πint represents the internal potential dependent on the Helmholtz free energy
as a function of the strain tensor and the vector of internal variables.

Πint =

∫
Ω

Ψ(ε, z)dV. (2.3.2)
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Whereas Πext is the external potential dependent on the body forces b and the trac-
tion forces t.

Πext = −
∫
Ω

b · udV −
∫
∂Ω

t · ndA, (2.3.3)

implying the Gibbs energy to be

G =

∫
Ω

Ψ(ε, z)dV −
∫
Ω

b · udV −
∫
∂Ω

t · ndA. (2.3.4)

Then Hamilton’s principle for non-conservative and continuous materials is given as∫ t1

t0

(δK − δG + δV)dt = 0. (2.3.5)

δK representing the virtual work of the kinetic energy and δV is the virtual work of
the dissipative forces. To describe the behavior of non-conservative processes, a de-
mand arises for additional scalar potential, called the dissipation function D, which
prescribes the irreversible transformation of the elastic energy into dissipation en-
ergy. A new force, called the dissipation force q̂, can be derived from the dissipation
potential as follows

q̂ = −∂D
∂ż

. (2.3.6)

Then the virtual work of the dissipative forces can be given as

δV =

∫
Ω

q̂ · δzdV. (2.3.7)

Let us restrict ourselves to the static case neglecting the velocity terms, i.e. the
kinetic energy, then we get a simplified form of Eq. 2.3.5

δG −
∫
Ω

q̂ · δzdV = δG +

∫
Ω

∂D
∂ż

· δzdV. (2.3.8)

It is worth mentioning that for conservative materials, Hamilton’s principle is re-
duced only to the variation of the Gibbs energy (first term in Eq. 2.3.8) as no dis-
sipation function exits. In the following, we distinguish between different cases for
the Gibbs energy.

2.3.1 General form of Hamilton’s principle

The most general case for Hamilton’s principle considers the Gibbs energy to be de-
pendent on the strain tensor (displacement field), internal variables and the gradient
of the internal variables, hence

G = G(u, z,∇z). (2.3.9)
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Applying the first variation and substituting into Eq. 2.3.8 gives

δu G + δz G +

∫
Ω

∂D
∂ż

· δzdV = 0, ∀ δu, δz . (2.3.10)

The variations δu, δz can be selected separately, then stationarity with respect to the
displacement field gives∫

Ω

∂Ψ

∂ε
: δεdV −

∫
Ω

b · δudV −
∫
∂Ω

t · δudA = 0, ∀δu . (2.3.11)

This gives back the equilibrium equation and Cauchy’s theorem

∇ · σ + b = 0, ∀x ∈ Ω , (2.3.12)
σ · n = t, ∀x ∈ ∂Ω. (2.3.13)

Similarly, stationarity with respect to the internal variables gives∫
Ω

∂Ψ

∂z
· δzdV +

∫
Ω

∂Ψ

∂∇z
: δ∇zdV +

∫
Ω

∂D
∂ż

· δzdV = 0, ∀δz . (2.3.14)

Integration by parts returns

∂Ψ

∂z
−∇ · ( ∂Ψ

∂∇z
) +

∂D
∂ż

= 0, ∀x ∈ Ω , (2.3.15)

(
∂Ψ

∂∇z
) · n = 0, ∀x ∈ ∂Ω . (2.3.16)

Eq. 2.3.15 is called Helmholtz equation and Eq. 2.3.16 gives again the Neumann
boundary condition. An example for the implementation of this general case of
Hamilton’s principle can be seen in damage modeling in the work of (Junker, Schwarz,
Jantos, and Hackl 2019), another application is presented in the field of topology op-
timization by (Junker and Hackl 2016).

2.3.2 The principle of the minimum dissipation potential - PMDP

A special case of Hamilton’s principle can be derived considering no more depen-
dency of the Gibbs energy on the gradient of the internal variables. The resulting
principle is called the principle of the minimum dissipation potential (PMDP), which
applies to the models to be introduced throughout this thesis. Stationarity with re-
spect to the internal variable δz and in comparison to Eq. 2.3.14 gives∫

Ω

∂Ψ

∂z
· δzdV +

∫
Ω

∂D
∂ż

· δzdV = 0, ∀δz . (2.3.17)
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The previous relation can be simplified to the expression

∂Ψ

∂z
+
∂D
∂ż

= 0, (2.3.18)

known as Biot’s equation, see (Biot 1962). Integration with respect to ż gives the
minimization problem

∂Ψ

∂z
· ż+D +A → min

ż
, (2.3.19)

with A, an integration constant to be defined as follows

A =
∂Ψ

∂ε
: ε̇. (2.3.20)

Now we can rewrite the minimization problem in terms of a Lagrangian L as

L = Ψ̇ +D → min
ż
. (2.3.21)

But according to Eqs. 2.2.35, differentiating the Helmholtz free energy with respect
to the internal variable returns the thermodynamically driving force, then the min-
imization problem shown above delivers the equations prescribing the set of inter-
nal variables known as the evolution equations, see (Carstensen, Hackl, and Mielke
2002).

Applications of the PMDP in the literature are manifold, like for example in the
field of damage models by (Dimitrijevic and Hackl 2008) and (Schwarz 2019) or
in damage-plasticity models by (Hoormazdi 2021). Further implementations are as
well in models of shape memory alloy by (Waimann 2018).

A similar approach is the principle of the maximum dissipation, presented in the
works of (Hackl and Fischer 2008) and (Hackl, Fischer, and Svoboda 2011).

2.4 Two-scale homogenization scheme

Constitutive models are available for classical materials, nevertheless, for many mod-
ern materials needed in several fields of technical applications no phenomenologi-
cal law can be meaningfully found to prescribe the effective macroscopic behav-
ior. As these effective properties are dependent on the complex description of the
microstructure. Therefore, it is favorable to attach an appropriate representative
volume element (RVE) prescribing the fine-scale, micro-scale, at each point of the
macro-structure. Implying two boundary value problems to be solved on both scales,
which is known as FE2 homogenization scheme. The transition between the scales
should fulfill the macro-homogeneity condition or known as Hill-Mandel condition,
see (Hill 1965) and (Mandel 1973). Further details and applications of the multi-
scale homogenization scheme can be inferred from the works of (Zienkiewicz and
Taylor 2005), (Kouznetsova, Brekelmans, and Baaijens 2001), (Zohdi and Wriggers
2001), (Bakhvalov and Panasenko 2012) and (Balzani, Schröder, and Brands 2010).
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2.4.1 Basic concepts in micro-macro mechanics

It is assumed that the macro-scale is homogeneous and the micro-scale is heteroge-
neous (including e.g. inclusions, cavities or other components). The main target of
two-scale homogenization is to define the effective response and properties at the
macrostructure in terms of suitable averaging (surface or volume integrals over the
RVE) for constituents from the micro-scale. Which means, for a given macroscopic
strain field ⟨ε⟩, find the macroscopic stress tensor ⟨σ⟩ and the effective stiffness
Ceff . This is to be performed at each integration point of the elements of the macro-
structure. Therefore, this macroscopic strain field is passed into the microstructure,
RVE, and can be used to formulate the boundary conditions on the RVE. The solution
of the boundary value problem of the RVE is then used to obtain the macroscopic
counterparts by averaging. Averaging relation to compute the effective components
at the macro-structure starting from an RVE with the volume Ω is given as

⟨f⟩ = 1

|Ω|

∫
Ω

fdV , (2.4.1)

The effective response is defined by the relation

⟨σ⟩ = Ceff : ⟨ε⟩, (2.4.2)

where Ceff does not prescribe material properties but rather averaging relations.
Furthermore, the RVE should be selected to satisfy the aforementioned homogeneity
condition (Hill’s condition or Hill-Mandel condition). Requiring the virtual macro-
scopic work to be equal to the averaged virtual work from the microstructure (the
RVE).

⟨σ : ε⟩ = ⟨σ⟩ : ⟨ε⟩. (2.4.3)

Meaning that the RVE should be large enough to prescribe the microstructure with-
out introducing nonexisting properties, at the same time, it should be small enough
relative to the size of the macrostructure. According to (Hill 1963), the RVE can be
defined as:

This phrase (the RVE) will be used when referring to a sample that (a) is structurally
entirely typical of the whole structure on average, and (b) contains sufficient number
of inclusions for the apparent overall moduli to be effectively independent of the sur-
face value of traction and displacement, so long as these values are “macroscopically
uniform”.

One additional requirement in the field of homogenization, is the periodic boundary
conditions that should apply to the microstructure, i.e. uper(r−) = uper(r+) on the
boundary points r−, r+ on opposite sides of the RVE. Hence, the macroscopic strain
em = ⟨ε⟩ is related to the displacement field in terms of the following decomposition

u = em · r+ uper . (2.4.4)

where uper is a fluctuation field.
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2.4.2 Effective properties

Voigt, see (Voigt 1889), is the first to analyze the effective mechanical properties of
micro-heterogeneous solids. He assumed the strain field within a sample of hetero-
geneous material is uniform. Leading to Voigt effective stiffness to be Ceff = ⟨C⟩. On
the other hand, Reuss (see (Reuß 1929)) approximated the stress field within poly-
crystalline materials to be uniform. Thus, if the Reuss field is assumed to be within
the RVE, then Reuss effective stiffness would be Ceff = ⟨C−1⟩−1. These two bounds
provide only rough qualitative information about the effective property, as given in
the following fundamental inequality, see (Hill 1952).

⟨C−1⟩−1 ≤ Ceff ≤ ⟨C⟩. (2.4.5)

For the comparison of the effective properties from the reduced models to be intro-
duced in 3.1 and 3.2, Reuss lower bound and Voigt upper bound suffices. Although
a significant more progress in estimating the effective properties of composites has
been achieved, the interested reader is refered to the works of (Hashin and Shtrik-
man 1963), (Hashin 1983), (Suquet 1997) and (Willis 1981).

2.5 Variational modeling of microstructure

We have examined so far materials consisting of sophisticated micro-scale, requiring
the application of multi-scale homogenization scheme. However, some experimental
results of inelastic materials are characterized with the formation of a fine structure,
i.e. a microstructure. This is an outcome due to the often resulting non-convex
variational problem under minimization. In which the gradient of displacement
field is no more continuous but exhibits small-scale oscillations, which are related to
mesh dependency. Energy models with similar properties are calculated via energy
relaxation, which is a general theory to study the effective macroscopic behavior
of materials which develop microstructure. A detailed mathematical insight to the
concepts of convexity and relaxation can be found in Sec. 2.6.

Variational homogenization of inelastic materials has been extensively investigated
in the literature, there are examples for models of shape memory alloy, see (Govin-
djee, Hackl, and Heinen 2007) and (Junker and Hackl 2011). Other examples are
from the prediction of dislocation patterns in metal single crystals given by (Conti
and Ortiz 2005), (Miehe, Lambrecht, and Gürses 2004) and (Kochmann and Hackl
2011).

The definitions and concepts presented in this chapter are based on the works of (Bar-
tels, Carstensen, Hackl, and Hoppe 2004), (Carstensen, Conti, and Orlando 2008)
and (Schröder and Hackl 2013). In the following sections 2.5.1, 2.5.2 and 2.5.3, we
give a brief introduction to the terms and schemes common in the field of variational
modeling of inelastic materials with microstructure, which we investigate later on
through out this dissertation.
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2.5.1 Condensed energy

Approaches to model inelastic materials with microstructure must provide informa-
tion about (a) the initiation of microstructure and (b) the evolution of microstructure
(formation of new microstructural patterns). Where the initiation of microstructure
usually follows from loss of material stability (local instability) and results in energy
reduction by breaking up the homogeneous deformation state into finer structures.
Initiation of microstructure can be investigated by writing the potentials in time in-
cremental settings using the so called condensed energy functional, which has been
often mentioned in the literature as in the works of (Bartels, Carstensen, Hackl, and
Hoppe 2004), (Carstensen, Conti, and Orlando 2008), (Mielke 2004) and (Ortiz and
Repetto 1999).

For a given free energy Ψ(∇ϕ, z), a dissipation potential ∆(z, ż) and a finite time
increment [tn, tn+1] one can write the dissipation distance D(z0, z1), (Mielke 2002)
and (Carstensen, Hackl, and Mielke 2002), as follows.

D(z0, z1) = inf
{∫ 1

0

∆
(
z(s), ż(s)

)
ds | z(0) = z0, z(1) = z1

}
. (2.5.1)

Then the values ϕn+1 and zn+1 can be approximated from the formulation

{ϕn+1, zn+1} = argmin
{∫

Ω

[
Ψ(∇ϕ, z) +D(zn, z)

]
dV − l(tn+1, ϕ)|ϕ, z

}
, (2.5.2)

where l(tn+1, ϕ) is the potential of external forces. Then the minimization with re-
spect to the vector of internal variables z gives the condensed energy.

Ψcond(∇ϕ) = inf
{
Ψ(∇ϕ, z) +D(zn, z)|z

}
, (2.5.3)

used to calculate the initiation of microstructure. Assuming that no microstructure
exists at the beginning of the time step, turns the problem of inelastic evolution to
be solely elastic problem with the relation

ϕn+1 = argmin
{∫

Ω

Ψcond(∇ϕ)dV − l(tn+1, ϕ)|ϕ
}
, (2.5.4)

and the update of internal variables can be computed from the following equation

zn+1 = argmin
{
Ψcond(∇ϕn+1) +D(zn, z)|z

}
. (2.5.5)

2.5.2 Essential microstructure

The condensed energy gives information only about the onset of the microstructure
due to the assumption that no microstructure exists at the beginning of the time step.
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But if we want to model a time continuous evolution, then we need to take into ac-
count the incremental update of the internal variables including the dependence on
their values from the preceding time step. Therefore, the condensed energy has no
more physical meaning. This problem can be overcome by considering the material
behavior to evolve within a closed class of microstructure, for example by refine-
ment. This class is called essential microstructure, given as a spatial distribution of
the deformation field ϕ and the internal variables z are parametrized in the form

ϕ = ϕ̂
(
x, zess, zmar

)
, z = ẑ

(
x, zess, zmar

)
. (2.5.6)

The essential parameters zess can be altered only by inelastic deformation, examples
for these parameters would be the volume fractions, normal directions or values
of the internal variables. On the other hand, the marginal parameters zmar can
be relaxed elastically, as for example the amplitudes of fluctuation fields. With this
parametrization and considering an appropriate representative volume element Ωrep,
for example by considering periodicity of the microstructure, then we are able to
compute the effective relaxed quantities by volume averaging. The relaxed energy
is then given as

Ψrel(∇ϕ, zess) =

inf
{ 1

|Ωrep|

∫
Ωrep

Ψ
(
∇ϕ+∇ϕ̂(x, zess, zmar), ẑ(x, zess, zmar)

)
dV
∣∣ zmar

}
, (2.5.7)

and the relaxed dissipation potential

∆rel(zess, żess) = inf
{ 1

|Ωrep|

∫
Ωrep

∆
( d
dt
ẑ(x, zess, zmar)

)
dV
∣∣ zmar, żmar

}
. (2.5.8)

Implying the variational structure of the problem to be the same, but with a reduc-
tion from an infinite variable z to a finite set of parameters zess. The new minimiza-
tion problem then has the form

0 ∈ ∂Ψrel

∂zess
+
∂∆rel

∂żess
. (2.5.9)

These relations will be further elaborated and supported with numerical examples
in Sec. 3 of this thesis.

2.5.3 Relaxation via lamination

For a general microstructure, computing the relaxed potentials in Eq. 2.5.7 and
Eq. 2.5.8 will be hard to achieve. Therefore, one possibility would be to compute
an approximation via lamination. This is done by computing a rank-one relaxation
for the condensed energy. Implementations of this procedure to time-incremental
problems can be found in the works of (Bartels, Carstensen, Hackl, and Hoppe
2004), (Kochmann and Hackl 2011) and (Hackl and Kochmann 2008).
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We will present in the following first-order laminates, but an extension to general
laminates can be done in a straightforward manner. Let the laminates of first-order
be characterized by N volume fractions λi assigned to parallel planes. Each plane
has a normal vector b and every volume fraction is provided by a value zi of the
corresponding internal variable. Each plane has its deformation gradient according
to the relation

Fi = F(I+ ai ⊗ b), (2.5.10)

with the amplitudes ai. Eq. 2.5.10 means that the deformation gradients are rank-
one connected to enforce the compatibility of laminate interfaces and ensure the
existence of a corresponding deformation field ϕ. By volume averaging we get

N∑
i=1

λiFi = F, (2.5.11)

implying
N∑
i=1

λiai = 0. (2.5.12)

This means, that any change in the direction of the normal vector b would lead to
a change in the internal variables and cause dissipation, therefore we consider the
normal vector b to be related to the material. Oppositely, we consider the amplitudes
ai can be changed purely elastically. Then a semi-relaxed energy can be computed
by enforcing the following minimization

Ψrel(F, λ, z,b) = inf
{ N∑

i=1

λiΨ(Fi, zi)
∣∣ai, N∑

i=1

λiai = 0
}
. (2.5.13)

Notice that the given energy is only partially relaxed, since a full relaxation re-
quires further minimization with respect to all internal variables and normal vec-
tors. Considering the numbering {1, . . . , N}, the former quantities are defined as
λ = {λ1, . . . , λN} and z = {z1, . . . , zN}. Let the lamination follows the same order-
ing and the normal vector b remains fixed, then we can write a relaxation for the
dissipation potential as

∆rel(λ, z, λ̇, ż) =
N∑
i=1

λi∆(zi, żi) + inf
{ N∑

i,j=1

∆λijD(zi, zj)
∣∣∆λij, (2.5.14)

N∑
i=1

∆λij = λ̇j,

N∑
j=1

∆λij = λ̇i,∆λij = 0 for |(i− j)modN | ≠ 1
}
.

A convexification technique will be implemented later on in Sec. 4.7 of this thesis.
There, the relaxed potentials are computed with N = {0, 1, 2}. However, the imple-
mentation of the semi-relaxed energy requires a check whether the formation of a
microstructure is becoming favorable or not. Meaning that solving Eq. 2.5.13 (nu-
merical minimization) is enhanced by considering an initiation scheme, which gives
properly selected values at the beginning of each time-step.
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2.6 Convex analysis

In this section some basic concepts from the field of convex analysis are given, in
order to clarify the mathematical background of the schemes and derivations im-
plemented within this thesis. The following definitions are inferred from the works
of (Rockafellar 1997) and (Dacorogna 2007).

2.6.1 Definitions

Convex set: a subset C of Rn is said to be convex if (1 − λ)x + λy ∈ C whenever
x ∈ C, y ∈ C and 0 < λ < 1.

The intersection of an arbitrary collection of convex sets is convex.

Convex combination: is a vector sum λ1x1 + λ2x2 + · · · + λmxm of x1, x2, . . . , xm if
the coefficients λi are all non-negative and λ1 + · · ·+ λm = 1. Then a subset of Rn is
convex if and only if it contains all the convex combinations of its elements.

Convex hull: of a given subset S is the intersection of all the convex sets containing
S of Rn.

Convex cone: a subset K of Rn is called a cone if and only if it contains all lin-
ear combinations of its elements. λ1x1 + . . . + λmxm where all the coefficients are
positive.

The orthogonal projection of a convex set C on a subspace L is another convex set.
As the orthogonal projection mapping onto L is a linear transformation assigning to
each point x a unique point y ∈ L.

Epigraph of a function: if f is a function with real values or ±∞ and whose domain
is a subset S of Rn, then the set {(x, µ)

∣∣x ∈ S, µ ∈ R, µ ≥ f(x)} is called the epigraph
of f and is denoted by epif . f is a convex function on S if its epif is convex as a
subset of Rn+1. The negative of a concave function on S is convex.

Convex function: let f be a function from a convex subset C to (−∞,+∞]. Then f
is convex on C if and only if

f
(
(1− λ)x+ λy

)
≤ (1− λ)f(x) + λf(y), 0 < λ < 1. (2.6.1)

If C = Rn then Jensen’s inequality reads as

f(λ1x1 + · · ·+ λmxm) ≤ λ1f(x1) + · · ·+ λmf(xm), (2.6.2)
whenever λi ≥ 0, λ1 + · · ·+ λm = 1. (2.6.3)

Let f be a twice continuously differentiable real-valued function on an open convex
set C ∈ Rn. Then f is convex on C if and only if its Hessian matrix is positive
semi-definite for every x ∈ C.
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A function f on Rn is 1st degree positively homogeneous if for every x the following
relation applys

f(λx) ≤ λf(x), 0 < λ <∞. (2.6.4)

Lower semicontinuity (l.s.c.): an extended-real-valued function f on an set S ⊂ Rn

is lower-semi-continuous at a point x of S if

f(x) ≤ lim
i→∞

λf(xi), (2.6.5)

or for a sequence x1, x2, . . . , in S, where xi converges to x and the limit of f(xi)
exists in [−∞,+∞]. Then lower semicontinuity is expressed as

f(x) = lim
y→x

inf f(y) = lim
ε↓0

(
inf
{
f(y)

∣∣∣|y − x| ≤ ε
})
. (2.6.6)

Lipschitz condition: A function f on a set S is called Lipschitzian and satisfies a
uniform Lipschitz continuity with a coefficient ϵ, if and only if

|f(y)− f(x)| ≤ ϵ|y − x|, ∀y ∈ S, ∀x ∈ S. (2.6.7)

This implies, that for f to be a convex function on any closed bounded subset S of
the domain of f , then f is Lipschitzian relative to S.

Legendre transformation: let f be a differentiable real-valued function on an open
subset C of Rn. The Legendre conjugate of the pair (C, f) is defined to be the pair
(D, g), where D is the image of C under gradient mapping ∇f , and g is the function
on D given by the formula

g(x∗) =
〈
(∇f)−1(x∗), x∗

〉
− f

(
(∇f)−1(x∗)

)
. (2.6.8)

It is not actually necessary to have ∇f one to one on C in order that g be well-
defined. It suffices if

⟨x1, x∗⟩ − f(x1) = ⟨x2, x∗⟩ − f(x2), ∇f(x1) = ∇f(x2) = x∗. (2.6.9)

Then the value of g(x∗) can be obtained from Eq. 2.6.8 by replacing (∇f)−1(x∗)
by any of the vectors it contains. Therefore, passing from (C, f) to the Legendre
conjugate (D, g), if the latter is well-defined, is called the Legendre transformation.

Let f be a (finite) differentiable convex function on Rn. In order that ∇f be a one to one
mapping from Rn onto itself, it is necessary and sufficient that f be strictly convex and
co-finite. When these conditions hold, f ∗ is likewise a differentiable convex function on
Rn which is strictly convex and co-finite, and f ∗ is the same as the Legendre conjugate
of f , the Legendre conjugate of f ∗ in then in turn f .

Weak lower semicontinuity:

Let the matrix η ∈ Rm×n be defined with T (η) = (η, adj2η, . . . , adjn∧mη) ∈ Rτ , where
adjsη stands for the vector formed by all the s × s minors of the matrix η. For the
special case m = n = 2, then T (η) = (η, det η).
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In the minimization problem 2.3.21, η would be the gradient of the displacement
field ∇u. The target is to make sure about the existence of minimizers. This depends
on the choice of admissible functions. But if we tend to solve the differential equa-
tions arising from the minimization problem, the strategy will be too hard in most
problems. Therefore, the essence of the direct methods of calculus of variations is
to split the problem into two parts. First to enlarge the space of admissible func-
tions, for example by considering spaces like Sobolev space W 1,p, where a general
existence theorem is guaranteed, then we prove some regularity results in order to
satisfy any minimizer of the aforementioned problem. The existence of minimizers
in the above space relies on the fundamental property of weak lower semicontinuity
defined as

uv ⇀ ū in W 1,p ⇒ lim inf
v→∞

I(uv) ≥ I(ū), (2.6.10)

with ⇀ to define a weak convergence. This property is necessary for the existence
of minimizer. In the scalar case, it is strongly satisfied if and only if η → f(x, u, η) is
affine, then we get

uv ⇀ ū in W 1,p ⇒ lim
v→∞

I(uv) = I(ū). (2.6.11)

But this is not the case for the vectorial case, therefore we need to consider the
notions from quasiconvex analysis introduced first by (Morrey 1966).

2.6.2 Notions of convexity

Let f : Rm×n → R,

• The function f is said to be rank one convex if

f
(
λη1 + (1− λ)η2

)
≤ λf(η1) + (1− λ)f(η2), (2.6.12)

for every η1, η2 ∈ Rm×n with rank{η1 − η2} ≤ 1 and every λ ∈ [0, 1].

• If f is Borel measurable and locally integrable, then it is said to be quasiconvex
if

f(η) ≤ 1

measD

∫
D

f
(
η +∇ϕ(x)

)
, (2.6.13)

for every bounded open set D ⊂ Rn, η ∈ Rm×n and ϕ ∈ W 1,∞
0 (D;Rm).

• A function f is said to be polyconvex if there exists F : Rτ(n,m) → R convex,
such that

f(η) = F
(
T (η)

)
, (2.6.14)

where

T (η) =
(
η, adj2η, . . . , adjn∧mη

)
. (2.6.15)
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• The different envelopes of a given function f are defined as

Cf = sup
{
g ≤ f : g convex

}
, (2.6.16)

Pf = sup
{
g ≤ f : g polyconvex

}
,

Qf = sup
{
g ≤ f : g quasiconvex

}
,

Rf = sup
{
g ≤ f : g rank one convex

}
.

implying

f convex ⇒ f polyconvex ⇒ f quasiconvex ⇒ f rank one convex.

Hence

Cf ≤ Pf ≤ Qf ≤ Rf ≤ f ,

in the scalar case all these envelopes do coincide.

• For rank one convexity and polyconvexity the sets could be extended in a
straightforward manner to f : Rm×n → R ∪ {+∞}. But this is not the case
for quasiconvexity. Therefore, the strategy to compute a quasiconvex envelope
is in general by defining the polyconvex one then verifying that it is rank one
convex, which means that they are identical and this would be the quasiconvex
envelope. The theory covering the techniques to compute a quasicovex enve-
lope within a mechanical problem is called the relaxation theory. An analytical
relaxed solution for a nonconvex energy of a 1D boundary value problem is
included in Sec. 4 and an approximation of a convex envelope in higher di-
mensions is presented in Sec. 4.7 of this thesis.
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3 Effective models for inelastic materials

In this section we want to introduce effective models that are capable of prescribing
the behavior of complex materials. This applies to materials that are characterized
by heterogeneous micro-scale, refer to Sec. 2.4, or to inelastic materials that show
under deformation, an evolving complex pattern at the microstructure, see Sec. 2.5.
Such complex materials are usually treated in the literature by multi-scale homog-
enization. Nevertheless, the implementation of a multi-scale scheme is a very time
and memory consuming procedure. The fine scale boundary value problem (RVE
at the microstructure) is to be computed for each integration point at every ele-
ment of the macroscale. Hence, we get the (full) effective coarse scale response
by averaging. This problem becomes rather more complicated for systems in three
dimensions. Therefore, we present in the following reduced models based on the
variational method to produce a system of equations in incremental settings. For
this purpose, we start with the free energy and the dissipation potential and as-
sume the infinite dimensional spaces can be reduced into finite ones. This would
be achieved by considering that the potentials are insensitive to any small changes
taking place in the marginal spaces, formerly defined in Sec. 2.5.

An introduction of the first reduced model is given in Sec. 3.1, then a view of an
elastoplastic material model is presented in Sec. 3.1.1. Later on, two computational
examples of structural elements are given in Secs. 3.1.2 and 3.1.3. In the next, the
theory is extended to problems with periodic microstructure, i.e. in homogeniza-
tion settings, as clarified in Sec. 3.1.4.Then, a sufficient number of numerical exam-
ples are given in Secs. 3.1.5, 3.1.6, 3.1.7 and 3.1.8 to prove the introduced theory.
These examples prescribe composite inclusions assigned to polyhedral sub-domains
(RVEs). A Comparison of a two-scale homogenization implementation is explained
in Sec. 3.1.9 and lastly the final results of the first effective model are concluded in
Sec. 3.1.10.

3.1 First effective model - RM1

We want to describe inelastic processes based on extremum principles. Therefore, we
consider a physical system defined by a set of external state variables x and internal
state variables z with a parametrization in a suitable parameter space ξ ∈ Ω,

x = x(ξ), z = z(ξ). (3.1.1)

The system’s behavior is assumed to be defined considering two scalar potentials,
the free energy Ψ(∇x,x, z) and the dissipation potential ∆(z, ż). Minimizing the
systems’s potential energy gives the evolution equations, where the gradient ∇ is
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with respect to ξ.

inf
x

{∫
Ω

Ψ(∇x,x, z)dξ + fext(x)
∣∣ x = x0 on ∂Ω

}
, (3.1.2)

and fext(x) is the potential of external forces. Stationarity of the minimization
problem in Eq. 2.3.21 gives the evolution of the internal variables, known as Biot-
equation,

∂Ψ

∂z
+
∂∆

∂ż
= 0. (3.1.3)

However, as mentioned in Sec. 2.5, we want to capture the behavior of the system
with only a finite number of variables instead of infinite ones. So we define suit-
able function spaces x ∈ X, z ∈ Z and linear projection operators onto the finite
dimensional spaces

P : X −→ RM , Q : Z −→ RN . (3.1.4)

Then the essential parameters and the marginal remainders are given by the projec-
tion operators as shown below

xess = Px, zess = Qz, (3.1.5)

Xmar = {x ∈ X |Px = 0} , Zmar = {z ∈ Z |Qz = 0} . (3.1.6)

Our goal now is to sufficiently describe the system using only essential parameters.
Meaning that our potentials, the free energy and dissipation potential, are invariant
under variation within the marginal spaces, which results as a stationarity of specific
minimization problems

∂Ψ

∂x
: δx = 0 for δx ∈ Xmar, (3.1.7)

∂Ψ

∂z
: δz = 0 for δz ∈ Zmar,

∂∆

∂z
: δz = 0 for δz ∈ Zmar,

∂∆

∂ż
: δż = 0 for δż ∈ Zmar .

Now we are capable of writing the macroscopic potentials in terms of the essential
parameters,

Ψmacro(xess, zess) = inf
x∈X,z∈Z

{ 1

|Ω|

∫
Ω

Ψ(∇x,x, z)dξ
∣∣ xess = Px, zess = Qz

}
,

(3.1.8)

∆macro(zess, żess) = inf
z∈Z,ż∈Z

{ 1

|Ω|

∫
Ω

∆(z, ż)dξ
∣∣ zess = Qz, żess = Qż

}
. (3.1.9)
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Assume that the minimization problem of the infinite dimensional problem can be
replaced by the following minimization problem

inf
żess∈RN

{
Ψ̇macro +∆macro

}
. (3.1.10)

Now consider the potential of external forces and the boundary condition to be ex-
pressed in terms of the essential parameters, with fess(x) = fess(xess) and the projec-
tion for the boundary conditions is given by Bxess. Then Eq. 3.1.2 can be rewritten
as follows

inf
xess∈RM

{∫
Ω

Ψmacro(xess, zess)dξ + fess(xess)
∣∣ Bxess = xess0 on ∂Ω

}
. (3.1.11)

Thus the reduced model is approximating the original system, and for a given fess
and xess0 as functions of time, one can compute xess and zess as functions of time as
well.

3.1.1 Elastoplasticity with isotropic hardening

We apply the introduced theory to bodies with standard rate-independent elastoplas-
tic material with Ω ⊂ Rn as a domain in Euclidean space representing the material
body. The external space variable u = u(r, t) is given by the displacement field as a
function of the position vector r ∈ Ω and the time parameter t. The internal space
variable z = {εp, q} represents the trace free plastic strain tensor, trεp = 0, and the
hardening parameter q (scalar). The free energy for standard elastoplastic material
with linear isotropic hardening is given as

Ψ(ε, εp) =
1

2
(ε− εp) : C : (ε− εp) +

1

2
αq2, (3.1.12)

with ε = 1
2
(∇u+∇uT ), the total strain tensor, C = C(r) is the tensor of elastic moduli

and α(r) is the hardening modulus. The dissipation potential for rate-independent
plastic materials has the form

∆(ε̇p) =

√
2

3
σy∥ε̇p∥, (3.1.13)

with σy = σy(r) is the initial yield stress. The evolution of the hardening parameter
q is related to the plastic strain with the relation

q̇(r, t) = ∥ε̇p∥ . (3.1.14)

To construct the Lagrangian, we insert the constraint given in Eq. 3.1.14 with the
Lagrange-parameter γ into the extremum problem.

L = Ψ̇ +∆+ γ(q̇ − ∥ε̇p∥) = σ : (ε̇− ε̇p) + α qq̇ +

√
2

3
σy ∥ε̇p∥+ γ(q̇ − ∥ε̇p∥),

(3.1.15)
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T

T

θ

Figure 3.1: Cylindrical body problem: A circular bar with a radius R subject to twist
θ or torque T .

where σ = C : (ε− εp) is the stress tensor. Variations with respect to γ, q̇, and ε̇p
yield the Biot-equation

q̇(r, t) = ∥ε̇p∥ , (3.1.16)
α q + γ = 0, (3.1.17)

devσ ∈

(√
2

3
σy + α q

)
ε̇p
∥ε̇p∥

. (3.1.18)

We observe a subdifferential due to the non-differentiability of the norm, which can
be expressed in terms of the yield function

∥devσ∥ ≤
√

2

3
σy + α q. (3.1.19)

The flow rule with the consistency parameter λ ≥ 0 reads as

ε̇p = λ devσ. (3.1.20)

3.1.2 Cylindrical body under torsion

Let us consider a circular bar, a cylindrical body, Ω with a radius R, subject at both
ends to rotation θ or torques T , see Fig. 3.1. This is a well understood problem in
the field of mechanics. The given loading implies a strict rotational motion with the
following displacement field

u = uϕ(r, z, t) = r z θ′(t) , (3.1.21)

where z is the axial coordinate, r is the radial coordinate, and θ′ = θ(t)
L

is the twist,
i.e. the rotation per unit length of the cylinder with the length L. To come up
with the relations for the low dimensional model (reduced model) prescribing the
torsion bar, we give first in a similar outline to Sec. 3.1.1 the kinematics and response
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defining this problem. Under symmetry and using the cylindrical coordinates, the
only remaining strain components for this pure shear deformation state are the ones
in z − θ plane, i.e.

γzθ = 2εzϕ = 2εϕz = θ′r. (3.1.22)

Analogously, we can define the plastic strain component p = p(r, t) as

p = 2εpzϕ = 2εpϕz, (3.1.23)

and the shear stresses in the cylinder with the shear modulus µ are given by

τ(r) = σzϕ = σϕz = µ(γ − p). (3.1.24)

Substituting into Eqs. 3.1.12 and 3.1.13 and plugging τy as the yield stress in shear,
we get

Ψ =
1

2
µ(γ − p)2 +

1

2
αq2, ∆(ṗ) = τy |ṗ| . (3.1.25)

The yield function and the flow rule can be given similar to the previous section by

|τ | ≤ τy + α q, ṗ = λ τ, λ ≥ 0. (3.1.26)

As well the evolution of hardening

q̇(r, t) = |ṗ(r, t)| . (3.1.27)

Note that the original problem in Sec. 3.1.1 is now reduced to a one dimensional
case (scalar setting). To cover the full set of equations, we additionally give the
relation connecting the shear stresses with the internal forces, i.e the relation for the
imposed end torque

T =

∫
A

τr dA =

∫ R

0

2πr2 τdr, (3.1.28)

Observe that the internal variables p(r, t), q(r, t) are functions implying an infinite
dimensional space. In order to construct a lower dimensional setting, we need to
apply refinement, meaning we subdivide the given domain Ω into a number of sub-
domains Nsd over the radius of the cylinder, refer to Sec. 2.5.2. Note that the split is
along the radius and not the length of the cylinder as the symmetry turns a depen-
dency only on the radius of the cylinder. So we split the cylinder into a number of
concentric rings

Ω =

Nsd⋃
i=1

Ωi, with r0 = 0 < r1 < . . . < rNsd−1 < rNsd
= R. (3.1.29)
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We define for convenience the following terms

m
(1)
i =

∫ ri

ri−1

r dr =
(r2i − r2i−1)

2
, m

(2)
i =

∫ ri

ri−1

r2 dr =
(r3i − r3i−1)

3
. (3.1.30)

Then the averages for each sub-domain from Eq. 2.4.1 can be written as

⟨f⟩i =
1

m
(1)
i

∫ ri

ri−1

frdr , (3.1.31)

The essential external parameter is simply the twist rate

xess = {θ′}. (3.1.32)

and the essential internal parameters are assumed to be arranged by

zess = {pi, qi}, i ∈ {1, 2, . . . , Nsd} . (3.1.33)

The mean values for the plastic parameter and hardening parameter per each sub-
domain are given respectively

pi = ⟨p⟩i =
1

m
(1)
i

∫ ri

ri−1

prdr, (3.1.34)

qi = ⟨q⟩i =
1

m
(1)
i

∫ ri

ri−1

qrdr. (3.1.35)

Due to the simplicity of the problem (assumption made in Eq. 3.1.21), then Eq. 3.1.34
provides an exact representation of the displacement field. The macroscopic (also
called effective) free energy given in terms of the essential parameters has the form

Ψmacro(θ
′, p1, . . . , pNsd

, q1, . . . , qNsd
)

= inf
p,q

{∫ R

0

2π

[
1

2
µ (rθ′ − p)

2
+

1

2
α q2

]
rdr

∣∣ pi = ⟨p⟩i, qi = ⟨q⟩i

}
. (3.1.36)

We can now construct the Lagrangian considering the aforementioned constraints
with the Lagrange-parameters λi, ξi

L =

Nsd∑
j=1

[∫ rj

rj−1

2π

(
1

2
µ (rθ′ − p)

2
+

1

2
α q2

)
rdr + λj

(
pj −

1

m
(1)
j

∫ ri

ri−1

prdr

)

+ξj

(
qj −

1

m
(1)
j

∫ ri

ri−1

qrdr

)]
. (3.1.37)
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Stationarity conditions give

p = rθ′ +
1

2πµ

λj

m
(1)
j

, q =
1

2πα

ξj

m
(1)
j

in Ωj. (3.1.38)

implying the essential internal variables per sub-domain Ωj to be

pj =
m

(2)
j

m
(1)
j

θ′ +
1

2πµ

λj

m
(1)
j

, qj =
1

2πα

ξj

m
(1)
j

. (3.1.39)

Substituting the previous equations into Eq. 3.1.36 gives

Ψmacro(θ
′, p1, . . . , pNsd

, q1, . . . , qNsd
)

=

Nsd∑
j=1

2πm(1)
j

1

2
µ

(
m

(2)
j

m
(1)
j

θ′ − pj

)2

+
1

2
α q2j

 . (3.1.40)

We apply the same steps to the dissipation potential

∆macro(ṗ1, . . . , ṗNsd
) = inf

ṗ

{∫ R

0

2π τy |ṗ| rdr
∣∣∣ ṗi = ⟨ṗ⟩i

}
. (3.1.41)

employing the Lagrange-multipliers ηi to enforce the constraints, stationarity condi-
tions yield

sign(ṗ) =
ηj

m
(1)
j 2πτy

in Ωj , (3.1.42)

which means that sign(ṗj) is constant in each Ωj implying |ṗj| = ⟨|ṗ|⟩j, then the
macroscopic dissipation potential is given as

∆macro(ṗ1, . . . , ṗNsd
) =

Nsd∑
j=1

2πm
(1)
j τy |ṗj|. (3.1.43)

Taking into account that the minimizers for q(r, t) in Eq. 3.1.36 and for ṗ(r, t) in
Eq. 3.1.41, are constant in each sub-domains, then Eq. 3.1.27 turns to be

q̇i = |ṗi| , for i = 1, . . . , Nsd. (3.1.44)

Balance laws give the relation for the torque as follows

T =
∂Ψmacro

∂θ′
= 2πµ

Nsd∑
j=1

(
(m

(2)
j )2

m
(1)
j

θ′ −m
(2)
j pj

)
. (3.1.45)
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and the effective Biot-equations are

0 ∈ ∂Ψmacro

∂pi
+
∂∆macro

∂ṗi
. (3.1.46)

This results in the following yield conditions and evolution equations per each sub-
domain Ωi

µ

(
m

(2)
i

m
(1)
i

θ′ − pi

)
∈ (τy + αqi) sign ṗi, for i = 1, . . . , Nsd. (3.1.47)

µ

∣∣∣∣∣m(2)
i

m
(1)
i

θ′ − pi

∣∣∣∣∣ ≤ τy + α qi, ṗi = λi

(
m

(2)
i

m
(1)
i

θ′ − pi

)
,

λi ≥ 0, for i = 1, . . . , Nsd. (3.1.48)

In the next section we give the values for the material parameters and the load-
ing used in the numerical example. For the considered material, the values are
Young’s modulus E = 1000 N/mm2, Poison’s ratio ν = 0.25, the yield stress in shear

τy = 0.5
√

2
3
N/mm2 and the hardening modulus for perfect elastoplasticity is a = 0

but for elastoplasticity with isotropic hardening is a = µ
50

N/mm2. We consider a
cylinder with the radius R = 10 mm, split into Nsd = 5 equal sub-domains. A cyclic
load is applied in time prescribing the twist along the length of the cylinder. The
load is defined by the relation θ′ = A1g(t), where A1 = 1.0 rad/mm describes the
distribution over the length of the cylinder, and the function g(t) applies the twist to
the cylinder in time, see Fig. 3.2,

g(t) = 2 ∗ 10−3
(
1− cos

(π
5

t

t0

))
cos
(30π

5

t

t0

)
, with t0 =

0.1 ∗ 5
600

sec. (3.1.49)

This minimization problem is compared to a full scale boundary value problem im-
plemented using the finite element method, which is considered to be a converged
reference solution. The torque computed according to Eq. 3.1.45 is shown in Fig. 3.3
in which the behavior is calculated once for a pure elastoplastic material and once
considering isotropic hardening. Very well matching behavior from the reduced
model and the exact solution is obtained.

The internal variables per each sub-domain {pi, qi}, i = 1, . . . , Nsd are updated using
the backward-Euler scheme. The evolution of the plastic strains along the radius R
at a specific time step t = 7.5 sec is given in Fig. 3.4. The lower plot shows that the
minimizer, refer to Eq. 3.1.39(1), is linearly dependent on the radial position with
jumps at the interfaces of the different sub-domains. But the behavior of the macro
plastic strains from the effective model is constant over each sub-domain, which can
be directly observed in Eq. 3.1.48. Intersection points for the FEM solution with the
solution from RM1 is captured exactly by the minimizer (same intersection points).
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Figure 3.2: Loading applied to the torsion problem θ′ = A1g(t) in the form of twist
rate over time.
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tic material with isotropic hardening (left) and with perfect plasticity
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Figure 3.4: Torsion bar: the resulting plastic strains in the effective model versus
radius r at time step T = 7.5 sec compared to the finite element results
and the minimizer (top), the mimimizer’s curve in a full view (bottom).
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Figure 3.5: Spherical body fixed at inner radius rin and displaced at outer radius rout.
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3.1.3 Pressurized spherical body

In this example Ω = {r ∈ R3
∣∣rin ≤ |r| ≤ rout} is a spherical body with internal radius

rin and external radius rout, see Fig. 3.5. The sphere is subject to a given displacement
in the radial direction externally, implying the displacement field to be dependent
only on the radial position r, u = ur(r, t). Considering spherical coordinates, we get
due to axial symmetry only the following strain components which are non-trivial.

εrr = u′, εθθ = εφφ =
u

r
. (3.1.50)

This implies the same components for the plastic strain to be non-trivial. Therefore,
we introduce a function p = p(r, t) in which we can express the components of the
plastic strain tensor

εprr = p, εpθθ = εpφφ = −1

2
p. (3.1.51)

Considering a perfectly elastoplastic material, we can write the free energy and dis-
sipation potential in terms of the components of the strain and plastic strain tensors
given above as

Ψ(u, p) =
K

2

(
u′ +

2

r
u

)2

+
2

3
µ

(
u′ − 1

r
u− 3

2
p

)2

, ∆(ṗ) = τy ∥ṗ∥ , (3.1.52)

where the volumetric components are not vanishing as in the circular bar example,
therefore, we notice the appearance of bulk modulus K. The full scale problem aims
to find u(r, t) and p(r, t) for a given uin(t) = u(rin, t) and uout(t) = u(rout, t), which
is an infinite-dimensional problem. As we need to define the internal and external
variables for each radial position r. Therefore, we apply the same procedure from
the previous example to produce a reduced scale model. The body Ω is divided
radially into Nsd sub-domains, so that each sub-domain is defined as

Ωi = {r ∈ R3 | ri−1 ≤ |r| ≤ ri}, (3.1.53)

with

rin = r0 < r1 < . . . < rNsd−1 < rNsd
= rout. (3.1.54)

Volume averaging for the spherical sub-divisions has the form

⟨f⟩i =
1

|Ωi|

∫
Ωi

fdr =
3

(r3i − r3i−1)

∫ ri

ri−1

f r2dr. (3.1.55)

We are interested only in the mean values of the plastic strains, therefore we intro-
duce

pi = ⟨p⟩i, (3.1.56)
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giving the essential internal parameters to be

zess = {pi}. (3.1.57)

And the essential external parameters are the boundary displacements

xess = {uin, uout}. (3.1.58)

Unlike the circular bar, the displacement field is now dependent on p(r, t) and the
boundary conditions and is not completely determined by the essential external pa-
rameter, (the twist rate) in the previous example. Therefore, we need to compute
these relations (the mean value for p and the boundary displacements at each sub-
domain). This implies, the macroscopic free energy can not be directly defined, but
we need to define first intermediate energies for each sub-domain.

Ψi
int(ui−1, ui, pi) =

inf
u,p

{∫ ri

ri−1

4πΨ(u, p) r2dr
∣∣∣ u(ri−1) = ui−1, u(ri) = ui, ⟨p⟩i = pi

}
. (3.1.59)

resulting in the macroscopic free energy to be

Ψmacro(uin, uout, p1, . . . , pNsd
) =

inf
ui

{
Nsd∑
j=1

Ψj
int(uj−1, uj, pj)

∣∣∣ u0 = uin, uNsd
= uout

}
. (3.1.60)

In order to take the constraints in Eq. 3.1.56 into account, we consider Lagrange-
multipliers λi. Variation with respect to u in Eq. 3.1.59 gives

−K

(
r2
(
u′ +

2

r
u

))′

+K

(
2r

(
u′ +

2

r
u

))
− 4

3
µ

(
r2
(
u′ − 1

r
u− 3

2
p

))′

− 4

3
µ

(
r

(
u′ − 1

r
u− 3

2
p

))
= 0, (3.1.61)

and variation with respect to p gives

−8πµ

(
u′ − 1

r
u− 3

2
p

)
=

λi

m
(1)
i

. (3.1.62)

Then equations 3.1.61 and 3.1.62 have the solutions

u = c1r + c2
1

r2
− 1

6K

λi

m
(1)
i

r ln r, (3.1.63)

p = −2c1
1

r3
− 1

π

(
1

9K
+

1

12µ

)
λi

m
(1)
i

, (3.1.64)
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with the integration constants c1, c2. In order to define the integration constants, we
have to evaluate Eq. 3.1.63 for the displacements at the sides of each sub-domain,
u(ri−1) = ui−1, and u(ri) = ui, this can be achieved by plugging into Eq. 3.1.59. Then
Lagrange-parameters λi are expressed in terms of the side displacements and the
means values of the plastic strains. With these steps, we obtain an explicit relation
for Ψi

int(ui−1, ui, pi). As a results, the arising Ψmacro(uin, uout, p1, . . . , pNsd
) requires

solving a linear system of equations in u1, . . . , uNsd
.

Analogously, the effective dissipation potential can be given by

∆macro(ṗ1, . . . , ṗNsd
) =

Nsd∑
j=1

2πm
(2)
j τy|ṗj|. (3.1.65)

For the evolution of the plastic strains, we introduce the thermodynamically driving
forces

fi = −∂Ψmacro

∂pi
, (3.1.66)

Minimizing the effective Lagrange-function results in the effective Biot-equations

fi ∈ 2πm
(2)
i τy sign ṗi, for i = 1, . . . , Nsd. (3.1.67)

This gives the yield condition and flow rule to be

|fi| ≤ 2πm
(2)
i τy, ṗi = λi fi, λi ≥ 0, for i = 1, . . . , Nsd. (3.1.68)

The dependency of the driving forces on the external and internal essential param-
eters produces a coupled problem, known as multi-surface plasticity, which will be
solved in a staggered scheme considering small time-steps to ensure the accuracy.
So the yield surface is evaluated at each sub-domain for a specific plastic strain pi
and all other variables are kept fixed.

The same material parameters are considered in the numerical computation as in
the torsion problem. The sphere has the internal and external radii as follows rin =
5mm and rout = 10mm. For this displacement driven problem, the inner radius is
restricted to move with uin = 0, and the outer radius is exposed to uout = A2g(t),
(see Fig. 3.1, where the function g(t) is defined in Eq. 3.1.48), and A2 = 3mm. Here
t0 =

0.5∗5
600

sec. A finite element calculation for the prescribed model provides an exact
converged solution for comparison.

Considering Nsd = 2 sub-domains, the displacements and plastic strains along the
radial position for specific times t = 2, 3, 4, 5 sec are shown in Fig. 3.6. Notice the
jump in the curves of the plastic strains at sub-domain interfaces. Moreover, the
behavior is not constant in each sub-domain as it was in the torsion problem.

A second refinement for the sphere is computed, this time withNsd = 5 sub-domains.
A comparison from the two computations (2 sub-domains and 5 sub-domains) for
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Figure 3.6: Illustration of the displacement field (left) and plastic strains (right)
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t = 2, 3, 4, 5 sec and 2 sub-domains.
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the normal stresses in the radial direction at the inner radius is shown in Fig. 3.7.
A very good matching behavior is observed. It should be expected, that applying a
higher refinement, i.e. increasing the number of sub-domains, enhances the compli-
ance between the the reduced model and the exact solution.

3.1.4 Homogenization of elastoplastic materials with periodic microstructure

After applying the aforementioned theory to inelastic structures, we come now to
the implementation to materials consisting of periodic microstructure. Assume our
material is provided with a rectangular representative volume element at the mi-
crostructure, which has a varying C(r) and σy(r) over the RVE with a volume Ω.

As defined in Sec. 2.4.1, passing a macroscopic strain (imposed at each integration
point of the macrostructure) eM = eM(t) = ⟨ε⟩ to the microstructure, allows us to
capture the behavior of the macrostructure, for example the macroscopic stress is
computed as σM = σM(t) = ⟨σ⟩. The periodic boundary conditions assigned to the
microstructure are defined in Eq. 2.4.4.

For the general macro-scale model, we need to define the plastic strains εp(r, t)
at each point of the domain Ω and for all times, which is an infinite-dimensional
problem. In order to introduce a lower scale model, we split the representative
volume element into Nsd distinct sub-domains Ωi as

Ω =

Nsd⋃
i=1

Ωi, (3.1.69)

where volume averaging is given as

⟨f⟩i =
1

|Ωi|

∫
Ωi

fdr. (3.1.70)

The mean value of the plastic strains per each sub-domain can be defined by the
following

epi = ⟨εp⟩i, (3.1.71)

resulting in the essential internal parameters

zess = ep = (epi) . (3.1.72)

On the other hand the essential external parameters are chosen as

xess = eM. (3.1.73)



40 3 Effective models for inelastic materials

We can now express the macroscopic free energy in terms of macroscopic strains and
macroscopic plastic strains by the relation

Ψmacro(eM, ep) = inf
uper, εp

{〈
1

2
(ε− εp) : C : (ε− εp)

〉
∣∣∣ u = eM · r + eper, epi = ⟨εp⟩i

}
. (3.1.74)

The side constraints from the plastic strains can be included in the minimization
problem by considering Lagrange-parameters ui, giving the Lagrangian to be

L =

〈
1

2
(ε− εp) : C : (ε− εp)

〉
+

Nsd∑
i=1

ui :
(
epi − ⟨εp⟩i

)
. (3.1.75)

Stationarity with respect to uper and epi, respectively, returns the balance law over
the domain and Lagrange-multipliers per each sub-domain.

∇ · (C : (ε− εp)) = 0 in Ω, (3.1.76)

C : (ε− εp) = ui in Ωi. (3.1.77)

But σ = C : (ε − εp), meaning that the balance law from Eq. 3.1.76 is trivially
satisfied, whereas Eq. 3.1.77 means σ = ui, implying that the stress is constant in
each sub-domain. Applying volume averaging gives the effective stiffness

Ceffi : (ei − epi) = ui, (3.1.78)

substituting for ui gives

ε− εp = C−1 : Ceffi : (ei − epi), (3.1.79)

where we introduced the abbreviations

ei = ⟨ε⟩i, Ceffi =
(
⟨C−1⟩i

)−1
. (3.1.80)

The resulting effective stiffness is called Reuss effective stiffness as a result for the
constant stresses (earlier defined in Sec. 2.4.2). Plugging the mean values into
Eq. 3.1.74 gives

Ψmacro(eM, ep) =

inf
uper

{
Nsd∑
i=1

|Ωi|
|Ω|

1

2
(ei − epi) : Ceffi : (ei − epi)

∣∣∣ u = eM · r+ uper

}
. (3.1.81)
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Minimization with respect to the mean plastic strains gives the conjugate driving
force for the essential internal parameters in each sub-domain

qi = −∂Ψmacro

∂epi
=

|Ωi|
|Ω|

σi, (3.1.82)

where the stress is constant over each sub-domain

σi = Ceffi : (ei − epi) . (3.1.83)

Similarly, the macroscopic dissipation potential can be expressed as

∆macro(ėp) = inf
ε̇p

{〈√
2/3σy ∥ε̇p∥

〉 ∣∣∣ ėpi = ⟨ε̇p⟩i

}
. (3.1.84)

ε̇p appears in an algebraic way only, hence, the dissipation potential can be directly
interpreted in terms of the mean values corresponding to each sub-domain

∆macro(ėp) =
1

|Ω|

Nsd∑
i=1

|Ωi|∆i
macro(ėpi), (3.1.85)

with

∆i
macro(ėpi) = inf

ε̇p

{〈√
2/3σy ∥ε̇p∥

〉
i

∣∣∣ ėpi = ⟨ε̇p⟩i

}
. (3.1.86)

In general, ∆i
macro(ėpi) can only be calculated numerically. For this reason, let us

assume that σy = σyi is constant in every sub-domain. Then it follows that

∆i
macro(ėpi) =

√
2/3σyi ∥ėpi∥, (3.1.87)

and we get the macroscopic dissipation potential per volume averaging

∆macro(ėp) =
√

2/3
1

|Ω|

Nsd∑
i=1

|Ωi|σyi ∥ėpi∥. (3.1.88)

Making use of Equations 3.1.82 and 3.1.88, we can write the yield conditions for
every sub-domain

∥devσi∥ ≤
√

2/3σyi. (3.1.89)

Remember that each σi requires the values of all (from each sub-domain) essential
internal variables ep = (epi).
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3.1.5 Polyhedral sub-domains

Assume the microstructure consisits of polyhedral sub-domains bounded by facets
Fi. Any microstructure may be approximated in this way with arbitrary accuracy
by choosing the facets small enough. Let ni be the outward normal vectors to the
facets. Then the average strains in every sub-domain can be calculated according to

ei = eM +
1

|Ωi|
∑

Fj⊂∂Ωi

sym(aj ⊗ nj), (3.1.90)

where sym(T) = 1
2
(T + TT), and the amplitude vectors ai are given by the surface

integrals

ai =

∫
Fi

uperdS. (3.1.91)

Periodic boundary conditions at the microstructure imply that the amplitude vectors
at the opposite facets on the boundary Fj ⊂ ∂Ω are dependent. The number of
independent amplitude vectors is Na. Rewriting Eq. 3.1.81 in terms of the ampli-
tude vectors from Eq. 3.1.90, yields the macroscopic energy to be dependent on the
amplitude vectors at each facet of the RVE.

Ψmacro(eM, ep) = inf
ai,...,aNa

{
Ψrve

(
eM, ep, a1, . . . , aNa

)}
, (3.1.92)

where

Ψrve(eM, ep, a1, . . . , aNa) =

Nsd∑
i=1

|Ωi|
|Ω|

1

2
(ei − epi) : Ceffi : (ei − epi) . (3.1.93)

As can be seen, the introduced energy is dependent only on averages of the dis-
placement field uper over the facets. As a result, the reduced model consists of only
averages over the sub-domains for the different quantities. Although ep = (epi), but
this does not require ε or εp to be constant on the sub-domains.

Stationarity conditions for the amplitude vectors are given by the minimization

∂Ψrve

∂ai

= 0, i = 1, . . . , Na. (3.1.94)

The former linear system of equations is under-determined, i.e. has multiple solu-
tions. However, all solutions give the same minimum energy Ψmacro. The macro-
scopic energy should be quadratic of the form

Ψmacro =
1

2
eM : Ceff : eM −

Nsd∑
i=1

epi : Feffi : eM +

Nsd∑
i,j=1

1

2
epi : Geffij : epj, (3.1.95)
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Figure 3.8: Representative volume element with sub-domains and amplitude vectors
for symmetric case, with Mat1 assigned to sub-domain Ω1 and Mat2 else-
where.

where Feffi and Geffij are stiffness-like tensors resulting from the minimization. But
it is not possible to give a closed form expressions for them. We obtain the thermo-
dynamically driving forces by

qi = −∂Ψmacro

∂epi
=

|Ωi|
|Ω|

σi = Feffi : eM −
Nsd∑
j=1

Geffij : epj. (3.1.96)

Equations 3.1.88 and 3.1.89 are still applicable for the polyhedral sub-domains.

3.1.6 Basic example

In the following we give a basic example for a composite material, consisting of a
microstructure provided with 9 polyhedral sub-domains, see Fig. 3.8. Mat1 is as-
signed to the center inclusion Ω1 with a constant elasticity tensor C1 and yield stress
σy1, and Mat2 elsewhere, with a constant elasticity tensor C2 and the yield stress
σy2. Considering a symmetric RVE, then only 5 sub-domains possess different aver-
age strains. Moreover, periodic boundary conditions require, that only 8 different
amplitude vectors have to be considered, see Fig. 3.8.

Let the volumes of each sub-domain be normalized as |Ωi| = 1, and let n1 = (1, 0),
n2 = (0, 1) be two normal vectors in x− and y− directions respectively. According to
Eq. 3.1.90 the average total strains in the shown sub-domains can be computed as
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Figure 3.9: Driven essential values of the non-zero components of eM, averaged

strains in 1− direction (left) and the 1− 2 shear plane (right).

follows

e1 = eM + 2 sym
(
a1 ⊗ n1 + a2 ⊗ n2

)
,

e2 = eM + sym
(
− a1 ⊗ n1 + (a4 − a3)⊗ n2

)
,

e3 = eM + sym
(
(a6 − a5)⊗ n1 − a2 ⊗ n2

)
,

e4 = eM + sym
(
(a7 − a6)⊗ n1 + (a8 − a4)⊗ n2

)
,

e5 = eM + sym
(
(a5 − a7)⊗ n1 + (a3 − a8)⊗ n2

)
,

(3.1.97)

yielding the macroscopic free energy to be

Ψmacro(eM, ep) = inf
a1,...,a8

{
Ψrve(eM, ep, a1, . . . , a8)

}
, (3.1.98)

where

Ψrve(eM, ep, a1, . . . , a8) =

1

18
(e1 − ep1) : C1 : (e1 − ep1) +

5∑
i=2

1

9
(ei − epi) : C2 : (ei − epi) . (3.1.99)

Assuming elastoplastic materials with the following material parameters, Mat1 with
E1 = 1000N/mm2, ν1 = 0.25, σy1 = 1.5N/mm2 in Ω1, and Mat2 withE2 = 5000N/mm2,
ν2 = 0.15, σy2 = 3.75N/mm2 elsewhere. The applied load in terms of the macro-
scopic strain eM(t) is varying in time, with a monotone normal component in 1−
direction and an oscillatory shear component in 1− 2 plane as depicted in Fig. 3.9.

For the numerical implementation, the reduced model RM1 with the introduced set
of equations is implemented in Mathematica. Energy minimization with respect to
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the amplitude vectors is calculated first, then the macroscopic stresses in terms of ai

and the plastic strains from the last time-step are computed applying the second law
in thermodynamics (differentiation of the free energy with respect to the averaged
strains). Later the updated internal variables, mean plastic strains, are evaluated
numerically. Herewith we have solved the material model locally, i.e. on the micro
level, macroscopic counterparts are computed per averaging. A very small time step
is used t ≈ 0.0041 sec to ensure the accuracy. On the other hand, a detailed finite el-
ement computation FEM is provided to allow for an exact solution for comparison.
This implementation is performed considering the same boundary conditions and
assigning a very fine mesh, namely, 40x40 quadratic elements to each sub-domain
resulting in a total number of elements of 14400. We employed quadratic quadri-
lateral elements with (9-Nodes elements) to attain a higher number of degrees of
freedom, performing as an accurate solution. The macroscopic behavior is obtained
via Hill-Mandel homogenization scheme, which is a built-in procedure in FEAP soft-
ware, refer to (Taylor and Govindjee 2022), used for the finite element analysis. All
numerical calculations are performed considering a plane stain state.

The reduced model is computed, as well, applying the requirements of Reuss lower
bound in which the following condition is considered

eM =

Nsd⋃
i=1

|Ωi|
|Ω|

ei , (3.1.100)

A comparison of the reduced model, Reuss lower bound and the finite element com-
putations for the symmetric RVE can be infered from Fig . 3.10. The macroscopic
stress components in time are shown in the top pane and the middle to the left.
The overall behavior from FEM is well captured by the reduced model, but the plots
in the bottom pane for the macroscopic response in 1− direction and 1 − 2 plane,
shows that the elastic stiffness is poorly presented by the reduced model. More-
over, the curves presenting the first component of the plastic strain in the center
inclusion captures the behavior properly, however it reflects lagre deviations in the
values. This has yet no great influence on the macroscopic stress history. The curves
expressing Reuss model provide a good qualitative behavior but not a quantitative
one.

3.1.7 Non-symmetric RVE

In the last example we considered a symmetric distribution of the geometry and ma-
terial properties for a simplified problem. Nevertheless, the current example presents
a more general case, with no point periodicity and additional material Mat3 to be
considered. Then the RVE has 9 different sub-domains imposing 9 different averaged
strains as well, which contribute to 18 different amplitude vectors, see Fig. 3.11.

We consider three different isotropic materials within the RVE. Mat1 in sub-domain
Ω1, Mat2 in sub-domain Ω2, and Mat3 elsewhere in the matrix. The material param-
eters are given as follows: (Mat1) E1 = 1000N/mm2, ν1 = 0.25, σy1 = 1.5N/mm2;
(Mat2)E2 = 2500N/mm2, ν2 = 0.3, σy2 = 2.0N/mm2; and (Mat3)E3 = 5000N/mm2,
ν3 = 0.15, σy3 = 3.75N/mm2.
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Figure 3.10: Comparison of the effective model, a Reuss model, and a finite ele-
ment model for a single inclusion RVE: (top row and middle left pane)
macroscopic stresses versus time, (middle right pane) 11 component of
the average plastic strain, ep1, of the center inclusion versus time, (bot-
tom row) stress-strain response for the normal stress and strain in the
1-direction and the shear stress and strain in the 1-2 plane.
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Figure 3.11: Representative volume element with sub-domains and amplitude vec-
tors for periodic boundary conditions but no point periodicity. Mat1 is
assigned to the center inclusion, Mat2 is assigned to sub-domain Ω2 and
Mat3 is assigned to the matrix elsewhere.

The average total strains for the non-symmetric RVE are computed in a similar man-
ner to the prior example and are given as

e1 = eM + sym
(
(a6 − a5)⊗ n1 + (a15 − a14)⊗ n2

)
,

e2 = eM + sym
(
(a9 − a8)⊗ n1 + (a13 − a15)⊗ n2

)
,

e3 = eM + sym
(
(a2 − a1)⊗ n1 + (a11 − a10)⊗ n2

)
,

e4 = eM + sym
(
(a3 − a2)⊗ n1 + (a14 − a13)⊗ n2

)
,

e5 = eM + sym
(
(a1 − a3)⊗ n1 + (a17 − a16)⊗ n2

)
,

e6 = eM + sym
(
(a5 − a4)⊗ n1 + (a12 − a11)⊗ n2

)
,

e7 = eM + sym
(
(a4 − a6)⊗ n1 + (a18 − a17)⊗ n2

)
,

e8 = eM + sym
(
(a8 − a7)⊗ n1 + (a10 − a12)⊗ n2

)
,

e9 = eM + sym
(
(a7 − a9)⊗ n1 + (a16 − a18)⊗ n2

)
.

(3.1.101)

In the following we discuss the numerical results as presented before, see Fig. 3.12.
It is observed from the behavior of the macroscopic stresses, that the reduced model
is capable properly of representing the full scale model. Even Reuss model seems to
be reasonable but fails to give close values. Moreover, the macroscopic response as
shown in the last row shows a very good compliance in comparison to the large scale
model with much higher number of degrees of freedom. An additional remark can
be made to the energy plots versus time (middle right pane) in which the effective
free energy from the reduced model is compared to the free energies computed
according to Reuss lower bound and Voigt upper bound. The position of the reduced
model between the upper and lower bounds provides a good qualitative behavior
that complies with Hill’s condition given in Eq. 2.4.5.
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Figure 3.12: Comparison of the effective model, a Reuss model, and a finite element
model for a two inclusion RVE: (top row and middle left pane) macro-
scopic stresses versus time, (middle right pane) RVE energy versus time,
(bottom row) stress-strain response for the normal stress and strain in
the 1-direction and the shear stress and strain in the 1-2 plane.
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Figure 3.13: Illustration of the plastic strain behavior averaged over Mat1 at the cen-
ter inclusion and Mat2 at sub-domain Ω2 in comparison to the finite
element results.

Figure 3.14: Contour plot for the plastic strain distribution from the finite element
computation in a deformed view, implementation for the RVE with a
square center inclusion.
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Figure 3.15: Normal vectors to the inclined facets of the representative volume ele-
ment with an octagon center inclusion.

Plots of the mean plastic strains at the center inclusion and the one above (the 11
components) are shown in Fig. 3.13. Where the plastic strains are averaged per
each material. A similar outcome to the symmetric RVE is obtained here also, as we
see that the plastic strains from the exact solution (FEM) at the center inclusion are
much less in comparison to the results from the reduced model. Nevertheless, the
behavior in the block to the top of the center inclusion is quite reasonable. Another
view of the plastic strains can be shown in Fig. 3.14, where the contour plot is from
the finite element solution shown at the deformed representative volume element.
Notice the strain concentration around the corners of the center inclusion. Which
might justify, why the reduced model with a very few number of degrees of freedom
is incapable of capturing this plastic strain concentration. Generally speaking, how
exact the reduced model can capture the behavior of the internal variables is still an
open question.

3.1.8 RVE with octagon center inclusion

This example shall examine a new shape for the center inclusion, here an octagon,
leading to different volume fractions for the resulting sub-domains (9 sub-domains).
Additionally, we need to take into account new orientations. As the facets are now
inclined with different angles, therefore we need to compute new normal vectors
n3,n4,n5,n6,n7,n8 as shown in Fig. 3.15, which have the values

n3 =
(
cos(45◦), sin(45◦)

)
, n4 =

(
cos(45◦),− sin(45◦)

)
,

n5 =
(
sin(67.5◦), cos(67.5◦)

)
, n6 =

(
sin(67.5◦),− cos(67.5◦)

)
,

n7 =
(
cos(67.5◦),− sin(67.5◦)

)
, n8 =

(
cos(67.5◦), sin(67.5◦)

)
.

(3.1.102)

In this example, Mat1 is assigned to the octagon inclusion, Mat2 is assigned to sub-
domain Ω2 and Mat3 elsewhere in the matrix. 20 different amplitude vectors shall
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Figure 3.16: Representative volume element with octagon center inclusion and 20
amplitude vectors. Mat1 is assigned to the center inclusion, Mat2 is
assigned to sub-domain Ω2 and Mat3 is assigned elsewhere.

be computed to cover all the different facets under periodic boundary conditions.
The average total strains are given as

e1 = eM+sym
(
(a5−a4)⊗n5+(a6−a3)⊗n6+(a20−a17)⊗n8+(a19−a18)⊗n7

)
,

e2 = eM + sym
(
a7 ⊗ n1 − a14 ⊗ n3 + a9 ⊗ n2 + a18 ⊗ n7

)
,

e3 = eM + sym
(
a16 ⊗ n4 − a7 ⊗ n1 + a10 ⊗ n2 − a20 ⊗ n8

)
,

e4 = eM + sym
(
a3 ⊗ n6 − a1 ⊗ n1 + a14 ⊗ n3 − a11 ⊗ n2

)
,

e5 = eM + sym
(
a1 ⊗ n1 − a5 ⊗ n5 − a16 ⊗ n4 − a12 ⊗ n2

)
,

e6 = eM + sym
(
a4 ⊗ n5 − a2 ⊗ n1 + a11 ⊗ n2 + a13 ⊗ n4

)
,

e7 = eM + sym
(
a2 ⊗ n1 − a6 ⊗ n6 − a15 ⊗ n3 + a12 ⊗ n2

)
.

e8 = eM + sym
(
a8 ⊗ n1 − a13 ⊗ n4 + a17 ⊗ n8 − a9 ⊗ n2

)
,

e9 = eM + sym
(
a15 ⊗ n3 − a8 ⊗ n1 − a19 ⊗ n7 − a10 ⊗ n2

)
.

(3.1.103)

The same isotropic elastoplastic materials, with material parameters from the non-
symmetric polyhedral RVE, are implemented in the numerical calculations. For the
exact solution obtained from the finite element analysis, a very fine mesh with 40x40
quadrilateral elements is assigned to each sub-domain, whereas the octagon is split
into 4 quarters, each with 40x40 quadrilateral elements, resulting in 6400 elements
mesh for the center inclusion. A comparison between the reduced model and the
exact solution for the RVE with an octagon center can be inferred from Fig. 3.17.

We observe once again that the reduced model is suitable to capture the macro-
scopic response reasonably in comparison to the FE solution. The macroscopic stress
component in 2− direction shows much higher values, eventhough the behavior is
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Figure 3.17: Comparison of the effective model and a finite element model for the
octagon inclusion RVE. Macroscopic stresses versus time (top row and
middle left pane). Stress-strain response for the normal stress and
strain in the 1-direction and the shear stress and strain in the 1-2 plane
(middle right pane and bottom row).
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Figure 3.18: A plate with a hole under given displacement at the right hand side.

qualitatively well presented. We aim in the next to integrate the introduced theory
of RM1 into a two-scale homogenization scheme FE2 as defined in Sec. 2.4.

3.1.9 Two-scale homogenization scheme including the reduced model RM1

For this implementation, we consider a well known boundary value problem, which
is the plate with a hole as shown in Fig. 3.18. The plate has the dimensions 10
mm x 10 mm with a centrally located hole of radius 1.25 mm. The left side of
the plate is restrained from moving horizontally and the right side is subjected to a
linearly increasing horizontal displacement, Ux, to a magnitude of 0.01 mm. At the
macroscopic level the plate is discretized with 1793 hexahedral elements restrained
in z−direction, implying a plane-strain state. For an FE2 implementation, as earlier
introduced, we need to provide a finite element discretization at the micro-scale,
as well, according to Hill-Mandel procedure, resulting in a very computationally
expensive scheme (in its general applications).

The illustrated mesh provides a macrostructure of the concerned problem. Two
different microstructures will be pointwise assigned. For the first calculation, the
plate with a hole represents a material provided with the RVE with 9 sub-domains
and the octagon center inclusion as presented in Sec. 3.1.8, giving reduced two-
scale scheme. In the second implementation, a full FE2 scheme is calculated in
which the material of the plate is provided with the same RVE, but discretized into
192 hexaherdal elements. A small thickness is considered implying a plane strain
state. For both microstructures refer to fig. 3.19. Note that the computation results
are independent on the size of the microstructure.

The force-displacement diagram in x− direction computed form the response at the
right side of the plate is shown in Fig. 3.20, in which the behavior from the reduced
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Figure 3.19: RVE at the microstructure, with 9 sub-domains for the reduced model
(left) and with 192 finite element mesh for the full model (right).

simulation is well represented in comparison to the much higher degree of freedom
FE2 computations. The compliance can be observed for the elastic phase, as well for
the plastic phase when yielding takes place. It can be even enhanced by using higher
order elements instead of the linear used ones, but this would once again increase
the computation time for the full model remarkably. Similar conclusion could be
drawn, when considering Fig. 3.21, where the contour plots for the displacements
in x− direction are given, once from the reduced model at microstructure (top) and
once from the full-scale model (bottom).

An important advantage worth mentioning is the relative computation times for the
two models. The computational time needed to complete the FE2 was 71700 sec,
whereas on the same hardware it was only 8548 sec for the reduced two-scale scheme
– a speed up of roughly 8.4 times.

3.1.10 Conclusion - RM1

The presented reduced model RM1 is formulated starting from two scalar potentials
(the free energy density and the dissipation potential) applying a variational scheme.
Making use of the definition of essential microstructure given in Sec. 2.5.2, we were
able to decrease the number of degrees of freedom vastly. This resulted in a robust
model, that is capable of capturing the essential behavior of the full-scale model to
a very large extent. The model is applied to structural elements as well to compos-
ites, moreover it is preserving the structure of the original system. The examples
from the structural elements, the torsion bar and the pressurized sphere, show very
good agreement with the full-scale model. On the other hand, the examples from
microstructural homogenization shows that the macroscopic stresses and the stress-
strain response are very well captured in comparison to a detailed finite element
solution. Nevertheless, the averaged plastic strains showed strong concentration in
small regions, which did not match the effective solution. One further drawback
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Figure 3.20: Force-Displacement diagram in x−direction for the two-scale homoge-
nization problem: obtained from the effective model (blue) and FE2

method (red).

of the introduced model is the restriction to be applied only to microstructure with
polyhedral sub-domains, in order to be able to define the amplitude vectors normal
to each facet. Meaning, microstructure with rounded or elliptical sub-domains can
not be presented by this model. Another drawback is the deviation by the effective
stiffness, which does not match the exact elastic effective stiffness. One possibility
to resolve this problem for applications in microstructural homogenization will be
presented in the next section, in the second reduced model RM2.

3.2 Second effective model - RM2

An extended approach for the effective models is considered to overcome the draw-
backs arising from the implementation of RM1 into microstructural homogenization
problems. Therefore, we rederive in Sec. 3.2.1 a new reduced model considering
higher constraints, then in Sec. 3.2.2 an explanation of the numerical treatment is
given. Later on in Secs. 3.2.3, 3.2.4, 3.2.5 and 3.2.6 several numerical problems
are presented to clarify the advantages of the second reduced model and its broader
applicability. In Sec. 3.2.7 an overall conclusion for RM2 is given.

3.2.1 Derivation of the model

Higher order moments/variables in the definitions of the essential variables (exter-
nal and internal) are considered.

1

2

∫
Ωi

ε : C : εdV = λiqi(ei), for Ωi ∈ Ω. (3.2.1)
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Figure 3.21: Contour plot for the two-scale homogenization problem. Displacements
in x−direction at the macrostructure, obtained from the effective model
assigned to the microstructure (top) and FE2 full-scale model(bottom).



3.2 Second effective model - RM2 57

1

2

∫
Ωi

εp : C : εpdV = λiqpi(epi), for Ωi ∈ Ω, (3.2.2)

Here “:” is the contraction over all components involved, Ω is a suitable parameter
space, λi ≥ 0 are the volume fractions with

∑Nsd

i=1 λi = 1 and (q, qp) are positive
definite quadratic potentials ensuring the next conditions to be fulfilled

εM = 0 ⇒ ε(x) = 0 ∀x, epi = 0 ∀i ⇒ εp(x) = 0 ∀x. (3.2.3)

This means that we don’t allow strain fluctuations, when the averages are equal to
zero. Let us enforce Eq. 3.2.2 by employing a Lagrange multiplier ρ and considering
Nsd to be the number of sub-domains

Ψ =
1

2

∫
Ω

(ε− εp) : C : (ε− εp) dV −
Nsd∑
i=1

σi :

(
λiepi −

∫
Ωi

εpdV

)

−
Nsd∑
i=1

ρi

(
Qpi(epi)−

1

2

∫
Ωi

εp : C : εpdV

)
. (3.2.4)

Stationarity with respect to εp returns a uniform stress in each sub-domain as

σi = C : (ε− εp)− ρi C : εp = Const. in Ωi,

σi = C : ε− (1 + ρi) C : εp. (3.2.5)

Averaging over Ωi gives

CRi : (ei − epi)− ρi CRi : epi = σi. (3.2.6)

Recall, the constant stresses in each sub-domain, imply Reuss stiffness CRi. Substi-
tute Eq. 3.2.5) into Eq. 3.2.6 and solve for εp, we get

εp =
1

1 + ρi

(
ε− C−1 : CRi : ei

)
+ C−1 : CRi : epi. (3.2.7)

The elastic strains can be computed as

ε− εp =
ρi

1 + ρi
ε+

1

1 + ρi
C−1 : CRi : ei − C−1 : CRi : epi in Ωi. (3.2.8)

Plugging into the free energy gives
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2Ψ =

∫
Ωi

(ε− εp) : C : (ε− εp) dV,

=

(
ρi

1 + ρi

)2 ∫
Ωi

ε : C : εdV + 2λi
ρi

(1 + ρi)2
ei : CRi : ei

− 2λi
ρi

1 + ρi
ei : CRi : epi + λi

1

(1 + ρi)2
ei : CRi : ei

− 2λi
1

1 + ρi
ei : CRi : epi + λi epi : CRi : epi,

=

(
ρi

1 + ρi

)2 ∫
Ωi

ε : C : εdV + λi
1 + 2ρi
(1 + ρi)2

ei : CRi : ei

− 2λi ei : CRi : epi + λi epi : CRi : epi,

=

(
ρi

1 + ρi

)2 [∫
Ωi

ε : C : εdV − λi ei : CRi : ei

]
+ λi (ei − epi) : CRi : (ei − epi) .

(3.2.9)

Finally the effective free energy in terms of the first constraint can be written as

Ψmacro =
1

2

Nsd∑
i=1

λi (ei − epi) : CRi : (ei − epi)

+

Nsd∑
i=1

(
ρi

1 + ρi

)2

λi

[
qi(ei)−

1

2
ei : CRi : ei

]
. (3.2.10)

In a similar manner and making use of Eq. 3.2.7 we get∫
Ωi

εp : C : εpdV =

(
1

1 + ρi

)2 ∫
Ωi

ε : C : εdV − 2λi
1

(1+ ρi)2
ei : CRi : ei

+ 2λi
1

1 + ρi
ei : CRi : epi + λi

1

(1 + ρi)2
ei : CRi : ei

− 2λi
1

1 + ρi
ei : CRi : epi + λi epi : CRi : epi,

=

(
1

1 + ρi

)2 [∫
Ωi

ε : C : εdV − λi ei : CRi : ei

]
+ λi epi : CRi : epi. (3.2.11)

Rearranging, the second constraint in Eq. 3.2.2 can be formulated(
1

1 + ρi

)2 [∫
Ωi

ε : C : εdV − λi ei : CRi : ei

]
=

2λi qpi(epi) − λi epi : CRi : epi. (3.2.12)

To evaluate the used Lagrange-multipliers ρi, we introduce the abbreviations

Ψ0i(ai) =
1

2
ai : CRi : ai, Ψ0 =

Nsd∑
i=1

λiΨ0i. (3.2.13)
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Giving

ρi =

[
qi(ei)−Ψ0i(ei)

qpi(epi)−Ψ0i(epi)

] 1
2

− 1, (3.2.14)

and

ρi
1 + ρi

= 1−
[
qpi(epi)−Ψ0i(epi)

qi(ei)−Ψ0i(ei)

] 1
2

. (3.2.15)

Pluging Eqs. 3.2.14 and 3.2.15 into Eq. 3.2.10 we get the macroscopic energy to be

Ψmacro = Ψ0(ei − epi) +

Nsd∑
i=1

λi

(
qi(ei)−Ψ0i(ei)

)
(3.2.16)[

1− 2

(
qpi(epi)−Ψ0i(epi)

qi(ei)−Ψ0i(ei)

) 1
2

+
qpi(epi)−Ψ0i(epi)

qi(ei)−Ψ0i(ei)

]
,

= Ψ0(ei − epi) +

Nsd∑
i=1

λi [qi(ei) + qpi(epi)−Ψ0i(ei)−Ψ0i(epi)]

− 2

Nsd∑
i=1

λi

[(
qi(ei)−Ψ0i(ei)

) 1
2
(qpi(epi)−Ψ0i(epi))

1
2

]
.

Let us redefine the quadratic potentials (in the last energy equation) in terms of the
averages by the following

qpi = Ψ0i(epi) =
1

2
epi : CRi : epi, (3.2.17)

qi = Ψ0i(ei) =
1

2
ei : Ai : ei. (3.2.18)

To define the tensor Ai, we can compute the macroscopic stresses by differentiating
the macroscopic energy with respect to the averaged strains

σM = Ai : ei − CRi : epi = Aeff :

(
eM −

Nsd∑
i=1

λi A−1
i : CRi : epi

)
,

= Aeff : (eM − epM) . (3.2.19)

Here Aeff is the effective stiffness, and epM is the averaged plastic strain computed
according to the next relations

Aeff =

(
Nsd∑
i=1

λi Ai
−1

)−1

, epM =

Nsd∑
i=1

λi A−1
i : CRi : epi. (3.2.20)
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Notice that the macroscopic stress reduces in the elastic case to

σM = Ai : ei = Aeff : eM. (3.2.21)

Now, let B be the strain-concentration tensor, given by the solution of the elastic
boundary value problem defined as

ε(x) = B(x) : eM, (3.2.22)

then we obtain the macroscopic stresses

σM =
〈
C(x) : ε(x)

〉
=
〈
C(x) : B(x)

〉
: eM = Ai :

〈
B
〉
i
: eM, (3.2.23)

with

ei =
〈
B
〉
i
: eM, Aeff =

〈
C : B

〉
, Ai = Aeff :

〈
B
〉
i

−1
,

and the brackets ⟨⟩ are used for averaging. The effective stiffness appearing in
Eq. 3.2.23(2) returns the exact elastic stiffness through the influence of the strain
concentration tensor B. The derivation of its components as per Eq. 3.2.22 will
be discussed later on in the numerical preparation section. The importance of the
concentration tensor is that it shifts the burden from finding C, now approximated
by Reuss-stiffness, into finding the concentration tensor B resulting from the solu-
tion of an elastic problem. This appeared in the literature for example in the works
of (Zohdi and Wriggers 2001) and (Parnell 2016). Let us plug A tensor into the
macroscopic energy

Ψmacro =
1

2

Nsd∑
i=1

λi ei : Ai : ei +
1

2

Nsd∑
i=1

λi (ei − epi) : CRi : (ei − epi)

− 1

2

Nsd∑
i=1

λi ei : CRi : ei, (3.2.24)

giving the stresses per each sub-domain to be

σi = (Ai − CRi) : ei + CRi : (ei − epi) ,

σi = Ai : ei − CRi : epi. (3.2.25)

Multiplying both sides from the left hand side with Ai
−1, we get

Ai
−1 : σi = ei − Ai

−1 : CRi : epi. (3.2.26)

Averaging gives,

Aeff
−1 : σ = eM −

Nsd∑
i=1

λi Ai
−1 : CRi : epi,

⇔ σ = Aeff : eM − Aeff :

Nsd∑
i=1

λi Ai
−1 : CRi : epi. (3.2.27)
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Substituting the value of σ in Eq. 3.2.26 and evaluating for ei gives

ei = Ai
−1 : CRi : epi + Ai

−1 : Aeff : eM

− Ai
−1 : Aeff :

Nsd∑
j=1

λj Aj
−1 : CRj : epj. (3.2.28)

We can now evaluate the quadratic terms obtained in Eq. 3.2.24

Nsd∑
i=1

λi ei : Ai : ei =

Nsd∑
i=1

λi epi : CRi : Ai
−1 : CRi : epi

+ 2

Nsd∑
i=1

λi epi : CRi : Ai
−1 : CRi : eM

− 2

Nsd∑
i=1

λi epi : CRi : Ai
−1 : Aeff :

Nsd∑
j=1

λj Aj
−1 : CRj : epj

+ eM : Aeff : eM − 2 eM : Aeff :

Nsd∑
j=1

λj Aj
−1 : CRj : epj

+

( Nsd∑
j=1

λj Aj
−1 : CRj : epj

)
: Aeff :

Nsd∑
k=1

λk Ak
−1 : CRk : epk,

(3.2.29)

Nsd∑
i=1

λi ei : CRi : epi =

Nsd∑
i=1

λi epi : CRi : Ai
−1 : CRi : epi

+

Nsd∑
i=1

λi epi : CRi : Ai
−1 : Aeff : eM

−
Nsd∑
i=1

λi epi : CRi : Ai
−1 : Aeff :

Nsd∑
j=1

λj Aj
−1 : CRj : epj.

(3.2.30)

The thermodynamically driving force can be computed as follows

σi = qi = − 1

λi

∂Ψ

∂epi
,

= CRi : Ai
−1 : Aeff : (eM − epM)− CRi :

(
CRi

−1 − Ai
−1
)
: CRi : epi.

(3.2.31)

We substitute and rearrange to get the final set of equations that will be used in the
numerical computations.
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Ψmacro =
1

2
(eM − epM) : Aeff : (eM − epM)

+
1

2

Nsd∑
i=1

λi epi :
(
CRi − CRi : Ai

−1 : CRi

)
: epi, (3.2.32)

σi = CRi : Ai
−1 : Aeff : (eM − epM)− CRi :

(
CRi

−1 − Ai
−1
)
: CRi : epi,

(3.2.33)

ei =
〈
B
〉
i
: eM, (3.2.34)

Aeff =
〈
C : B

〉
, Ai = Aeff :

〈
B
〉
i

−1
. (3.2.35)

3.2.2 Numerical preparation

In order to show the enhancement achieved by the second reduced model RM2 in
comparison to RM1, we consider for the numerical examples the same material pa-
rameters as before, i.e. (Mat1) E1 = 1000N/mm2, ν1 = 0.25, σy1 = 1.5N/mm2;
(Mat2)E2 = 2500N/mm2, ν2 = 0.3, σy2 = 2.0N/mm2; and (Mat3)E3 = 5000N/mm2,
ν3 = 0.15, σy3 = 3.75N/mm2. We compute the composites with the square and oc-
tagon inclusions as in Sections 3.1.7 and 3.1.8 and then consider additional exam-
ples, which are only possible to compute with the second reduced model. Therefore,
we consider the same cyclic loading path as shown in Fig. 3.9.

For the finite element results, representing the exact solution, we employ Hill-Mandel
homogenization scheme, as given earlier. Very fine meshes per each sub-domain are
employed in order to capture the inhomogeneities of the microstructure. Therefore,
the polyhedral RVE is provided with (40x40) quadratic quadrilateral elements (9-
nodes elements) per each sub-domain, whereas the RVE with the octagon center
inclusion has 6400 elements (quadratic quadrilaterals) at the center and (40x40)
quadratic elements for the other inclusions. Beside the exact finite element solution,
we need for the implementation of the second reduced model RM2, the components
of the strain concentration tensor Bi for each sub-domain. This allows to write the
averaged strains per each sub-domain ei, which can be achieved by running three
elastic finite element calculations (only one time-step each). It is the case due to the
plane strain state leaving only three nontrivial components for the strain tensor to
be identified. Let us write Eq. 3.2.22 in index notations

e11 = 1e1 ⊗ e1, =⇒ εij(x) = Bij11(x)1, (3.2.36)
e22 = 1e2 ⊗ e2, =⇒ εij(x) = Bij22(x)1,

e12 = 1e1 ⊗ e2, =⇒ εij(x) = Bij12(x)1.

Then the components of Bi are obtained from the three arising strains per each
sub-domain (notice the dependence on the position x). Meaning that each strain
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Figure 3.22: Representative volume element with 9 sub-domains under periodic
boundary conditions. Mat1 is assigned to the center inclusion, Mat2
is assigned to sub-domain Ω2 and Mat3 is assigned to the matrix else-
where.

contributes to a column in Bi at the corresponding position. No more amplitude
vectors shall be computed here as required in RM1 removing the restriction by the
implementation to the polyhedral sub-domains.

3.2.3 RVE with square center inclusion

This example consists of 9 different sub-domains with uniform distribution, i.e. the
same volume fractions |Ωi|/|Ω| = 1/9. Three isotropic elastoplastic materials are
assigned to the domains as shown in Fig. 3.22.

The averaged response is compared to the response from the first reduced model
and a macroscopic response from the finite element analysis associated with a much
higher number of degrees of freedom, refer to Fig. 3.23.

It is obvious that the second reduced model shows a very good agreement with
the finite element solution. Not only in the elastic phase, which is now exactly
matching, but even the plastic phase after yielding is properly represented by the
reduced model RM2. At the same time, a comparison of the plastic strains averaged
over Mat1 and Mat2 in sub-domains Ω1 and Ω2 respectively, as given in Fig. 3.24,
shows that the reduced model is not capturing the exact behavior of the plastic
strains at the correct position. It can be interpreted that the averaged plastic strains
are combined at the neighboring sub-domains, which implies a different mean value
in comparison to the exact solution from the finite element computations. Therefore,
as long as the macroscopic response is not influenced, we might say that plastic
yielding is well represented but its exact distribution is not.
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Figure 3.23: Comparison of the effective models RM1,RM2 and a finite element
model for the square inclusion RVE. Macroscopic stresses versus time
(top row and middle pane). Stress-strain response for the normal stress
and strain in the 1-direction and the shear stress and strain in the 1-2
plane (bottom row).
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Figure 3.24: Illustration of the plastic strain from RM2, averaged over Mat1 at the
center inclusion and Mat2 at sub-domain Ω2, in comparison to the finite
element results.

3.2.4 RVE with octagon center inclusion

Here we have a bigger center inclusion with a volume fraction of |Ω1|/|Ω| = 0.1768
and the other volume fractions have the value λi = 0.1029 for i = 2, . . . , 9. Material
assignment to the different sub-domains can be inferred from Fig. 3.25. We can
make the same positive conclusion after comparing the macroscopic stress behavior
to the one from the first reduced model and the finite element computations. See
Fig. 3.26. A very good compliance is achieved by the second reduced model even
in terms of the second component of the macroscopic stress, in the first row to the
right, which shows a large deviation to the exact solution for the results from the
first reduced model.

On the other hand, the comparison of the mean plastic strains at sub-domains Ω1 and
Ω2 would emphasize the last conclusion (the combined values at the neighboring
sub-domains). See Fig. 3.27. As the bigger size of the center inclusion (the octagon)
allowed to show some values of the initiated plastic strain, and is not only vanishing
as was the case for the square center inclusion. In contrary to the center inclusion,
the results from sub-domain Ω2 show higher values for the averaged plastic strains.
These are influenced by the arising plastic strains distributed over the surrounding
inclusions associated with Mat3.

A drawback beyond the first reduced model RM1 was the capability of prescribing
microstructure with curved edges. However, the second reduced model RM2 with
the higher order restraints added to the energy potential, allowed to overcome this
problem. Therefore, we investigate in the next examples microstructure with ellipti-
cal inclusions.
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Figure 3.25: Representative volume element with an octagon center inclusion. Mat1
is assigned to the octagon, Mat2 is assigned to sub-domain Ω2 and Mat3
is assigned to the matrix elsewhere.

3.2.5 RVE with ellipse center inclusion

Now we consider a more general case, where the RVE is split into 9 non-uniform sub-
domains. Consisting of an elliptical center inclusion and different volumes for the
other inclusions within the matrix. The volume fractions for the different inclusions
are given as follows λ1 = 0.1619, λ2,4,5,9 = 0.1222 and λ3,6,7,8 = 0.0874. See Fig. 3.28
for an illustration of the sub-divisions and the material allocations.

The finite element solution is obtained by assigning 9600 quadratic quadrilateral
elements (9-nodes elements) to the ellipse and 40x40 elements to each other sub-
domain. Employing a finite element problem with 179198 degrees of freedom to
provide the exact solution. This is then compared to the reduced scale problem
(only 9 sub-domains) computed according to RM2.

The resulting macroscopic stresses and the macroscopic response are shown in Fig. 3.29.
The solution from the reduced model matches the exact solution to a very large ex-
tent. We notice that all the tangents and the peaks are properly captured in all the
curves, whether in the elastic or the plastic zones.

Even the mean plastic strains averaged over materials Mat1 and Mat2 are well rep-
resented, see Fig. 3.30. From the curves to the left, we notice that yielding in the
center inclusion is shown from the finite element solution earlier than the one from
the reduced model RM2. At the same time the values from the reduced model, in
the neighboring sub-domain Ω2, are higher than the ones from the exact solution.
Meaning that a sum of the mean values from both sub-domains would imply the
exact mean value for the plastic strain. Nevertheless, the reduced scale model with
much less number of degrees of freedom is not able to express the exact distribution.
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Figure 3.26: Comparison of the effective models RM1,RM2 and a finite element
model for the RVE with an octagon center inclusion. Macroscopic
stresses versus time (top row and middle pane). Stress-strain response
for the normal stress and strain in the 1-direction and the shear stress
and strain in the 1-2 plane (bottom row).
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Figure 3.27: Illustration of the plastic strain from RM2, averaged over Mat1 at the
octagon inclusion and over Mat2 at sub-domain Ω2, in comparison to
the finite element results.

Figure 3.28: Representative volume element with an elliptical center inclusion. Mat1
is assigned to the ellipse, Mat2 is assigned to sub-domain Ω2 and Mat3
is assigned to the matrix elsewhere.
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3.2.6 RVE with random inclusions

The last example is extended in a way that more elliptical inclusions are inserted.
See Fig. 3.31. We consider 13 sub-domains, with Mat1 assigned to the octagon
center inclusion and Mat2 assigned to the ellipses (Ω2, . . . ,Ω7) and Mat3 assigned to
the rest of the matrix (Ω8, . . . ,Ω13). Notice that the reduced scale solution requires
for each ellipse the corresponding components of the strain concentration tensor
(B2, . . . ,B7), despite the same material assignment. The reduced model is computed
in this example with the following volume fractions λ1 = 0.0509, λ2,...,8 = 0.0307,
λ8,9,11,12 = 0.1386 and λ10,13 = 0.1051.

For the reference solution derived from the finite element analysis we split the oc-
tagon into 1600 elements, each ellipse into 800 elements, sub-domains Ω10,13 into
3200 elements and sub-domains Ω8,9,11,12 into 5600 elements producing a total num-
ber of 35200 quadratic quadrilateral elements (9-nodes elements), which shall re-
turn a very accurate solution. Three isotropic elastoplastic materials are assigned, as
mentioned before, and Hill-Mandel homogenization scheme is applied. The macro-
scopic stresses are averaged over the whole domain Ω and the mean plastic strains
are averaged per each material, i.e. over sub-domain Ω1 for Mat1 and over sub-
domains Ω2, . . . ,Ω7 for Mat2 and over the remaining sub-domains for Mat3.

A comparison between the macroscopic stresses from the reduced model RM2 and
their counterparts from the finite element implementation shows a very good agree-
ment, see Fig. 3.33.

On the other hand, the comparison between the mean plastic strains averaged over
the different materials with the mean values from the finite element solution, as seen
in Fig. 3.32, shows a weakly presented behavior. Once again the mean plastic strain
at the center inclusion is vanishing and the values in the neighboring sub-domains
associated with Mat2 are higher than the mean values from the exact solution. Assist-
ing our understanding in terms of the gathered values for the mean plastic strains.

3.2.7 Conclusion - RM2

In this section we extended the first reduced model RM1 defined in Sec. 3.1. Em-
ploying higher order moments, we are able to deliver the exact effective stiffness in
the elastic phase due to the contribution of the strain concentration tensors. Another
considerable enhancement in comparison to the first reduced model is the applica-
bility to microstructure with curved edges.

By means of several numerical examples, we proved that the reduced model is ca-
pable of describing the macroscopic behavior of the different RVEs successfully in
terms of the macroscopic stress-strain behavior. Nevertheless, the drawback of the
first reduced model in representing the essential internal variables is still persisting.
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Figure 3.29: Comparison of the effective model RM2 and a finite element model for
the RVE with an elliptical center inclusion. Macroscopic stresses versus
time (top row and middle pane). Stress-strain response for the normal
stress and strain in the 1-direction and the shear stress and strain in the
1-2 plane (bottom row).



3.2 Second effective model - RM2 71

0 1 2 3 4

0,00000

0,00005

0,00010

0,00015

0,00020

0,00025

0,00030

0 1 2 3 4

0,0000

0,0002

0,0004

0,0006

0,0008

0,0010

Center inclusion Block above center inclusion

 RM2

 FEM

Time [sec]

P
la

st
ic

 s
tr

a
in

 c
o
m

p
o

n
e

n
t 

e
[-

]
p

1
-1

1
 

 RM2

 FEM

Time [sec]
P

la
st

ic
 s

tr
a

in
 c

o
m

p
o
n

e
n
t 
e

[-
]

p
1

-1
1

 

Figure 3.30: Illustration of the plastic strain from RM2, averaged over Mat1 at the
elliptical inclusion and over Mat2 at sub-domain Ω2, in comparison to
the finite element results.

Figure 3.31: Representative volume element with random shaped inclusions. Mat1
is assigned to the octagon in the center, Mat2 is assigned to ellipses and
Mat3 is assigned to the matrix elsewhere.
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Figure 3.32: Illustration of the plastic strain from RM2, averaged over Mat1 at the
octagon inclusion and over Mat2 at the elliptical inclusions, in compar-
ison to the finite element results.

As the mean values of the plastic strains are rather gathered around some edges,
therefore they are not present at the exact position, i.e. sub-domain. However,
this disadvantage does not seem to have an influence on the overall macroscopic
response.
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Figure 3.33: Comparison of the effective model RM2 and a finite element model for
the RVE with random inclusions. Macroscopic stresses versus time (top
row and middle pane). Stress-strain response for the 1-direction and
1-2 plane (bottom row).
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4 Pressure dependent plasticity

This chapter is devoted to granular materials (silt, clay, sand, . . . ) possessing pressure-
dependent plastic behavior, which has been explained so far by the classical models
in soil mechanics via linearized plasticity based on pressure-dependent flow rules.
Despite the applicability of these models to engineering purposes, they can not ex-
plain the complex structures observed in experiments, see (Wolf, König, and Tri-
antafyllidis 2003), where shear band patterns in different granular materials under
the application of various boundary conditions have been detected.

In fact, shear bands can be understood as jumps in the strain field (deformation
gradient) under increasing stresses in which the variational problem under time
discretization is nonconvex, meaning that the variational problem might not have a
minimizer and a microstructure is observed. Such problems have been treated in the
literature by the relaxation methods, see (Conti and Dolzmann 2018) and (Conti and
Dolzmann 2015) as examples for applications on phase transformation and plasticity
problems, or other applications as in (Bartels 2004) and (Bartels 2005).

In terms of the variational approach, these shear band patterns are understood as
laminate microstructure and determined through mathematical compatibility condi-
tions, which require in the nonlinear theory that two adjacent elastic strains A and
B be rank-one connected in the sense that A−B = a⊗n. The vector n provides geo-
metric information since it represents the orientation of planes that can connect the
two states A and B. Minimizing the original energy with respect to such compatible
microstructures results in the relaxed energy. Definitions and notions of relaxation
can be inferred from Sec. 2.6.2.

In the following, we want to introduce analytical and numerical relaxation results
for the proposed type of problem. Therefore, we start with a review of the classical
models in soil mechanics in Sec. 4.1, then in Sec. 4.2 we give the variational formu-
lations needed for the relaxation method. Later in Sec. 4.3 a one-dimensional model
with analytical relaxation results will be introduced and next an extension to a three-
dimensional case with numerical results is given in Secs. 4.4 and 4.5. An evolution
of the microstructure with numerical applications is investigated in Sec. 4.7. Finally,
this chapter is concluded in Sec. 4.8.

4.1 Classical models in pressure-dependent plasticity

The main class of materials comprising pressure-dependent plastic behavior are soils
and granular media. They consist of heterogeneous mixture of fluids (air and wa-
ter) and particles (silt, clay, sand and gravel) with no to a very little cementation.
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Figure 4.1: Mohr-Coulomb, Drucker-Prager, Cam-Clay, and modified Cam-Clay
yield-surfaces.

The shear strength of soil materials is given by friction and interlocking of the par-
ticles in which densely packed grains tend to spread apart from each other under
shear strains. This expansion of the soil matrix under shearing is called dilatancy,
see (Schofield 2005). Dilative soils become looser, whereas contractive soils become
denser. A critical state line separates the dilatant and contractive states for soils.

The importance of the critical state soil mechanics is that soil and other granular
materials, if continuously being sheared and distorted, will ultimately reach a state
in which the soil behaves as a frictional fluid with a constant volume and a constant
ratio of shear stress to mean normal stress, regardless of the initial state of the
material, see (Yu, Zhuang, and Mo 2019). Many elastoplastic models based on the
critical state theory were successfully developed prescribing mechanical problems
for soils. Important examples are Mohr-Coulomb failure criterion and its smooth
form, Drucker-Prager, in addition to the original and modified Cam-Clay models.
The critical yield surface of the different mentioned models can be inferred from
Fig. 4.1

A key point of elastoplastic materials is that, unlike elastic materials, they maintain
permanent change of their configuration upon unloading, if sufficiently large shear
strains occur in the material. On the other hand, they may support arbitrary hydro-
static pressures. This behavior is usually modeled in linearized settings via a convex
set K ⊂ Rn×n

sym , which prescribes the set of admissible stresses in the material leading
to elastic deformations. Contrarily, for stresses acting on ∂K, the permenant plastic
deformations occur. These deformations are defined via a flow rule that determines
the evolution of the plastic part of the total elastoplastic deformation field. Now the
set K is an infinite cylinder with

K =
⋃
π∈R

πI⊕K =
⋃
π∈R

{πI+ e, e ∈ K} , (4.1.1)

where I denotes the identity matrix, and K is a compact subset in Rn×n
D defined as

Rn×n
D = {E ∈ Rn×n : E = ET , tr(E) = 0} , (4.1.2)

which is the set of all symmetric and trace free matrices.

Thus the basic problem in the theory of linear elastoplasticity can be formulated as
follows. Given a material body described in its reference configuration by a domain
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Ω ⊂ Rn, find a deformation y : Ω → Rn and a decomposition of the symmetrized
displacement gradient ε defined by

y(x) = x+ u(x) , ε(x) =
1

2
(∇u(x) +∇u(x)T ) , (4.1.3)

into an elastic and a plastic part, ε = εe + εp, εp ∈ Rn×n
D , such that the following

system of equations holds:

• constitutive equation σ = C : εe,

• balance of momentum utt − divσ = f ,
or the equilibrium condition −divσ = f ,

• stress constraint σ ∈ K,

• associated flow rule (ξ − σ) : ε̇p ≤ 0 for every ξ ∈ K.

Please notice that the last assumption is not realistic for materials in which frictional
effects play a dominant role as in clay, sands and other granular materials. Here
pressure-dependency needs to be considered, leading to a flow rule that can not
be prescribed by an infinite cylinder, like in the classical Mises plasticity models,
but rather with cones in the space of principle stresses, like the Drucker-Prager and
Mohr-Coulomb models. To be specific, let π = −1/3 trσ denote the pressure, then
the convex elastic domain is given as

K =
πmax⋃

π=πmin

πI⊕Kπ =
πmax⋃

π=πmin

{πI+ E,E ∈ Kπ} , (4.1.4)

where Kπ is a compact subset in Rn×n
D and −∞ ≤ πmin < πmax ≤ ∞. In order to

comply with experimental observations, plastic deformation should still be volume
preserving. For this purpose, the former flow rule is then replaced by the non-
associated flow rule and the full system of equations in its quasistatic form is given
by

• constitutive equation σ = C : εe,

• the equilibrium condition −divσ = f ,

• stress constraint σ ∈ K,

• non-associated flow rule (ξ − σ) : ε̇p ≤ 0 for every ξ ∈ Kπ.

It is important to point out that ε̇p is now normal to the boundary of Kπ ⊂ Rn×n
D but

not normal to K ⊂ Rn×n
sym , see Fig. 4.2. This is an observation, that lies in the heart of

soil mechanics problems investigated by means of the variational formulation.
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π

↑
↑

↑
↑

Figure 4.2: Illustration of the sets K and Kπ, normal vector on K in green color,
leading to an associated flow-rule, normal vector on Kπ in orange color,
leading to a non-associated flow-rule.

4.2 Variational settings

In this section we want to provide all the necessary equations required for the vari-
ational implementation, some examples from the literature can be found in (Hackl
and Fischer 2008), (Miehe, Schotte, and Lambrecht 2002) and (Hackl 1997). Let
us consider a physical system expressed in terms of (a set of) external; controllable;
state variables, here given by the total strain tensor ε and internal state variables
z = {εp, p}, where εp is the plastic strain tensor and p ≥ 0 is a hardening variable.
Starting with the same scheme as in Sec. 3, we assume that the system behavior can
be prescribed with only two scalar potentials: the free energy Ψ(ε, z) and the dis-
sipation potential ∆(ε, z, ż). Then minimizing Lagrange function, as in Eq. 2.3.21,
returns by stationarity condition

ż = arg inf
ż

{
Ψ̇ + ∆

}
, (4.2.1)

which can be expressed in terms of the Biot equation

0 ∈ ∂Ψ

∂z
+
∂∆

∂ż
. (4.2.2)

Let the free energy be given as

Ψ =
K

2
trε2 + µ ∥devε− εp∥2 + ρ(trε) p+

β

2
∥εp∥2 , (4.2.3)

where K is the bulk-modulus, µ is the shear-modulus, β is the hardening-modulus
and ρ(trε) is a concave function governing the pressure-dependency. This function is
defined within an interval [trεmin, trεmax] and is zero outside of it and can be shown
for a typical model, for example, capped Drucker-Prager as in Fig. 4.3.

According to the second law in thermodynamics, the stress tensor can be derived as

σ =
∂Ψ

∂ε
= (K trε+ ρ′(trε) p)I+ 2µ (devε− εp) . (4.2.4)
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ρ(tr(ε)) [GPa]

tr(ε)max

 tr(ε)[-]
tr(ε)min

Figure 4.3: Typical functions ρ in the definition of a pressure-dependent yield surface
covered by our theory; one function is continuously differentiable (solid
line), one is piece-wise affine (dashed line).

In the last equation, the volumetric part (the pressure) is given by π = −Ktrε −
ρ′(trε)p. Here, the second term may be interpreted as a consolidation pressure due
to an inelastic volume change governed by the hardening variable p. Nevertheless,
a more consistent variational approach would be achieved, if in the energy equation
an explicit internal variable θp prescribing the inelastic volume change is included,
as in the following energy equation

Ψconsol =
K

2
(trε− θp)

2 + µ ∥devε− εp∥2 + ρ(θp) p+
β

2
∥εp∥2 . (4.2.5)

However, we keep for the mean time everything simple and use the energy equation
from Eq. 4.2.3. The dissipation potential is assumed to be

∆(ε̇p, ṗ) =

{
0 for ∥ε̇p∥ ≤ ṗ ,

∞ otherwise .
(4.2.6)

Substitution into Eq. 4.2.2 gives

devσ − βεp ∈ ρ(trε)signε̇p , (4.2.7)

or expressed equivalently in terms of the yield function as

Φ := ∥devσ − βεp∥ − ρ(trε) ≤ 0 , (4.2.8)

and the internal variables can be given by the flow rules

ṗ = ∥ε̇p∥, ε̇p = κ (devσ − βεp) , (4.2.9)

where κ ≥ 0 is a consistency parameter satisfying the Kuhn-Tucker conditions

κ ≥ 0, Φ ≤ 0, κΦ = 0 . (4.2.10)
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We have now everything set to switch into a time-incremental approach as done in
the works of (Carstensen, Hackl, and Mielke 2002) and (Ortiz and Repetto 1999).
This approach allows us to investigate the evolution of the material microstructure.
Let us consider a time increment ∆t = [tn, tn+1], then for given external forces and
boundary conditions at time tn+1, we can find the values εn+1 and zn+1 starting from
the values of the internal variables zn at time step tn.

The dissipation distance gives the time-incremental version of the dissipation poten-
tial as

D(εp,0, p0, εp,1, p1)

= inf
εp,p

{∫ t1

t0

∆(ε̇p(t), ṗ(t))dt
∣∣εp(0) = εp,0, p(0) = p0, εp(1) = εp,1, p(1) = p1)

}
,

=

{
0 for ∥εp,1 − εp,0∥ ≤ p1 − p0 ,

∞ otherwise .
(4.2.11)

And the minimization problem in Eq. 4.2.1 gives now the updated internal variables
as

{εp,n+1, pn+1} = arg inf
εp,p

{
Ψ(ε, εp, p) +D(εp,n, pn, εp, p)

}
. (4.2.12)

Minimization with respect to p gives immediately

p− pn = ∥εp − εp,n∥ . (4.2.13)

Substituting Eq. 4.2.13 into Eq. 4.2.12 and minimizing with respect to εp gives

2µ(devε− εp)− βεp ∈ ρ(trε)sign(εp − εp,n) . (4.2.14)

Solving for εp in Eq. (4.2.14) yields

εp = εp,n +
1

2µ+ β

[
2µ∥devε− εp,n∥ − ρ(trε)

]
+
sign(devε− εp,n) , (4.2.15)

with [x]+ = max{0, x}. Now we are able to write the formerly defined condensed
energy in Sec. 2.5.1.

Ψcond(ε, εp,n, pn) = inf
εp,p

{Ψ(ε, εp, p) +D(εp,n, pn, εp, p)} , (4.2.16)

which yields

Ψcond(ε, εp,n, pn) =
K

2
trε2 + µ ∥devε− εp,n∥2 + ρ(trε)pn +

β

2
∥εp,n∥2

− 1

2

1

2µ+ β

[
2µ∥devε− εp,n∥ − ρ(trε)

]2
+
.

(4.2.17)
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The condensed energy can be considered as formally elastic depending on the pa-
rameters εp,n, pn at the previous time-step. It gives information about the initiation
of the microstructure but not its evolution. Herewith, the inelastic problem can be
replaced by a sequence of elastic problems. Moreover, the internal variables can be
updated using equations 4.2.13 and 4.2.15.

4.3 A one-dimensional model problem

Starting with the former derivation, it can be observed that the resulting condensed
energy is nonconvex due to the concavity of the function ρ(trε). Then, we need to
compute a quasiconvex envelope to prescribe the effective behavior of the system.
However, a quasiconvex envelope can be calculated analytically only in rare special
cases. Therefore, we restrict ourselves to a one-dimensional problem in which the
quasiconvex envelope and the convex one do coincide. To achieve this description,
we apply a specific deformation state considering a slender bar with fibers of material
under uniform tension or compression and shear. We assume the fibers to be stiff
enough, so that no bending deformations would appear. Then the only remaining
non-vanishing strain components in Cartesian coordinates are

ux = u(x), uy = v(x) + y u′(x), uz = z u′(x) , (4.3.1)

εxx = εyy = εzz = u′, εyx = εxy =
1

2
v′, (4.3.2)

where we neglected terms of the form yu′′ and zu′′, which are small due to the
slenderness of the bar. For the plastic strains, we assume that the only remaining
components are the ones corresponding to shearing in the plane x − y, i.e. εp :=
εpyx = εpxy. Then the free energy can be rewritten in terms of the above non-
vanishing strain components as

Ψ =
K

2
ε2xx + µ

(
(εyx − εpyx)

2 + (εxy − εpxy)
2)+ ρ(εxx) p+ β ε2pxy . (4.3.3)

Plug Eq. 4.3.1 into Eq. 4.3.3

Ψ =
K

2
(u′)

2
+ 2µ

(
1

2
v′ − εp

)2

+ ρ (u′) p+ β ε2p . (4.3.4)

Analog to the previous implementation, minimizing with respect to εp and p gives
the condensed energy, now for the one-dimensional model problem

Ψcond(u
′, v′, εp,n, pn) =

K

2
(u′)

2
+ 2µ

(
1

2
v′ − εp,n

)2

+ ρ (u′) pn

− 1

2

1

2µ+ β

[
2µ

∣∣∣∣12 v′ − εp,n

∣∣∣∣− ρ (u′)
]2
+
.

(4.3.5)
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In the next derivations, we will consider for simplicity that pn = 0, which allows to
ease the mathematical treatment. Confirming once again that the model can deliver
information about the initiation of the microstructure only (the updated internal
variables do not enter the condensed energy). Nevertheless, a model investigating
the evolution of the microstructure will be presented in Sec. 4.7.

It is convenient for the mathematical treatment to seek a dimensionless formulation.
For this purpose, we define modified variables and quantities with the following
transformation relations

y1 =

√
K

2µ
u′, y2 =

1

2
v′, r(y1) =

1

2µ
ρ (u′) , b =

β

2µ
, (4.3.6)

employing the condensed energy to take the form

Ψcond(y1, y2, εp,n, pn)

= 2µ

[
1

2
y21 +

1

2
(y2 − εp,n)

2 − 1

2

1

b+ 1

[
|y2 − εp,n| − r(y1)

]2
+

]
. (4.3.7)

Finally we may drop the multiplicative constant 2µ and write zn = εp,n. Since Ψcond is
the free energy density in the variational functional that needs to be minimized in the
first time step, it is crucial to understand the convexity properties of Ψcond in order to
employ the direct method in the calculus of variations. It turns out that the concavity
of r leads to a lack of convexity of Ψcond and the approach via relaxation (Dacorogna
2007) requires one to characterize the quasiconvex envelope of Ψcond, which, in the
scalar case, reduces to the convex envelope. This task is accomplished in the next
paraghraph.

For any function f : R2 → R we denote the convex envelope of f by fc and, if f is
differentiable at y ∈ R2, the linear Taylor polynomial of f about the point y by Tyf .
Fix b > 0 and ymin, ymax ∈ R with ymin < ymax. Define the set of admissible dissipation
functions by

R := {r ∈ C(R, [0,∞)) | supp(r) = [ymin, ymax], r|[ymin,ymax] concave} . (4.3.8)

Fix ymid := (ymin + ymax)/2 and define the piece-wise affine function r0 ∈ R by

r0(y1) =
√
b ·
(
ymax − ymin

2
− |y1 − ymid|

)
· χ[ymin,ymax](y1) , (4.3.9)

Note that the slope of r0 is only related to the hardening parameter b and, depending
on the relative size of rmax = max r and b, the two curves may have intersections or
not. Our theory covers the case of small values of b for which the two curves do not
intersect. For r ∈ R, the condensed energy is given by

f (r)
zn (y) =

1

2
(y21 + (y2 − zn)

2)−
(|y2 − zn| − r(y1))

2
+

2(b+ 1)
. (4.3.10)
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Figure 4.4: Definition of the condensed energy for the model problem. The set Y0 in
Eq. 4.3.11 is enclosed by the blue curves (±r), the sets Y± correspond to
the sets above and below Y0, respectively, and the set Ỹ is the comple-
ment of these three sets in R2.

Since the energy depends only on y2 − zn, it is sufficient to calculate the convex
envelope f (r)

c of f (r) := f
(r)
0 with zn = 0; the convex envelope of f (r)

zn (y1, y2) is given
by f (r)

c (y1, y2 − zn). If the dissipation function is uniquely defined from the context,
we simply write f instead of f (r). Define the disjoint sets

Ỹ = {y ∈ R2 : y1 ≤ ymin or y1 ≥ ymax} ,
Y0 = {y ∈ R2 : y1 ∈ (ymin, ymax), |y2| < r(y1)} ,
Y± = {y ∈ R2 : y1 ∈ (ymin, ymax), ±y2 ≥ r(y1)} ,

(4.3.11)

whose union is R2, see Fig. 4.4. These sets describe the regions in which the con-
densed energy f (r) is given by different algebraic expressions, depending on the sign
of |y2| − r(y1).

A natural approach to calculate the convex envelope of a continuous function f :
Rd → R is to find pairwise distinct points y(1), ..., y(q) ∈ Rd with q ≤ d+ 1 that satisfy
the subgradient condition

∃v ∈
q⋂

i=1

∂f(y(i)) : ∀i, j ∈ {1, ..., q} : f(y(i))− ⟨v, y(i)⟩ = f(y(j))− ⟨v, y(j)⟩ ,

(4.3.12)

and to define, for all y ∈ Conv({y(1), ..., y(q)}), the convex hull of the points y(1), . . . , y(q),
a candidate for the convex envelope of f by

y =

q∑
i=1

λiy
(i) , fc(y) =

q∑
i=1

λif(y
(i)) , λi ∈ (0, 1],

q∑
i=1

λi = 1 . (4.3.13)



84 4 Pressure dependent plasticity

(2)yy
x
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Figure 4.5: Characterization of the convex envelope (thick, dashed) of a nonconvex
function f (thick). The value fc(y) is calculated from two points y(1) and
y(2) on the graph of f and the derivatives of fc at the three points y(1), y(2)

and y coincide. The convex hull coincides on [y(1), y(2)] with the tangent
to f at both the points y(i).

It is useful to note that the representation in 4.3.13 is related to the tangent plane
of f if one of the points y(i) in case that f is differentiable at y(i). In fact, if for some
direction w ∈ Rd and some y ∈ Rd the directional derivative Dwf(y) exists, then
v ∈ ∂f(y) implies ⟨v, w⟩ = Dwf(y). If f is even differentiable in y, then {∂f(y)} =
{∇f(y)}. This leads to the observation that, if y(1), ..., y(q)) ∈ Rd is a solution of
Eq. 4.3.12 and if f is differentiable in some y(i), then for all y ∈ Conv({y(1), ..., y(q)})
the function fc is given by

fc(y) = (Ty(i)f)(y) = f(y(i)) + ⟨∇f(y(i)), y − y(i)⟩ . (4.3.14)

The calculation of the subgradient involves an evaluation of the values of f on the
whole space, and the solution of Eq. 4.3.12 is in general challenging, further neces-
sary calculations can be found in (Behr, Dolzmann, Hackl, and Jezdan 2023).

Theorem 1. Recall the definition of Ỹ in 4.3.11 and define the disjoint sets

Y1 = {y ∈ R2, |y2| < r0(y1)}, (4.3.15)

Y2 = {y ∈ (ymin, ymax)× R, r0(y1) ≤ |y2| <
b+ 1√
b

ymax − ymin

2
− r0(y1)

b
},

Y3 = {y ∈ (ymin, ymax)× R,
b+ 1√
b

ymax − ymin

2
− r0(y1)

b
≤ |y2| ≤

b+ 1√
b

ymax − ymin

2
},

Y4 = {y ∈ (ymin, ymax)× R,
b+ 1√
b

ymax − ymin

2
< |y2|},
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Figure 4.6: Construction of the relaxed energy. The sides of the rhombus Y1 have
slope ±

√
b and correspond to the dashed dissipation function in Fig-

ure 4.3.

as shown in the right panel in Figure 4.6. Then the convex envelope fc of f is given by

fc(y) =



1

2
y21 +

1

2

b

b+ 1
y22 on Ỹ ,

1

2
y21 +

1

2
y22 on Y1 ,

1

2
y21 +

1

2
y22 −

(|y2| − r0(y1))
2

2(b+ 1)
on Y2 ,

1

2
y21 +

1

2
y22 −

(|y2| − r0(y1))
2

2(b+ 1)

− 1

2

b

b+ 1

(
|y2| −

b+ 1√
b

ymax − ymin

2
+
r0(y1)

b

)2 on Y3 ,

1

2
y21 +

1

2

b

b+ 1
y22 +

1

2
(y1 − ymin) · (ymax − y1) on Y4 .

(4.3.16)

For a detailed mathematical proof refer to (Behr, Dolzmann, Hackl, and Jezdan
2023). It is based on the verification of the geometry for the calculation of fc in
the left panel in Fig. 4.6, which formalizes the intuitive picture for the convex hull
of a function in Fig. 4.5. In fact, fc = f on Y1 and for y ∈ Y2 the convex hull fc(y) is
obtained as an average of two function values where the red line segments intersect
the green and the blue line, respectively. Finally, for y ∈ Y3 the value of fc(y) is an
average of three points, namely of the function values in the three corners of the
triangle Y3. The convex hull coincides with the tangent plane to f at y+∗ as indicated
in Eq. (4.3.14).
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For the construction of the convex envelope of the condensed energy f (r) we first
derive pairs and triples of points y(1), ..., y(q) ∈ R2 (q = 2, 3), in which f (r) is differ-
entiable in the variable y2 and in which ∂2f (r) is equal. Then we derive a candidate
for the direction v ∈ Rd satisfying the equation in Eq. (4.3.12). However, at this
point we do not know whether this v is indeed a subgradient of f in all the points
y(1), ..., y(q). For those pairs and triples for which we expect this to be true, we do
not show explicitly that the first part in Eq. (4.3.12) is satisfied, rather we apply the
construction described in Eqs. (4.3.13) and (4.3.14) and prove in Theorem 1 that
this construction leads to the convex envelope. It is a remarkable result of the subse-
quent analysis that the explicit formulas for the relaxed energy show a very different
behavior with respect to the dependence on the dissipation function r. In fact, for
small values of b relative to r, i.e., for

√
b · ymax − ymin

2
≤ r

(
ymin + ymax

2

)
, (4.3.17)

which is the case of relevance in soil mechanics, the relaxed energy is in fact inde-
pendent of r.

4.4 Extension to three-dimensional model problem

The convex envelope in the one-dimensional case for the function f(y1, y2, εp,n, pn)
given in Theorem 1 may be generalized in a natural way to three dimensions by em-
ploying a substitution inspired by the transformation of variables defined in Eq. 4.3.6.
In this sense, we define a formally relaxed energy as

Ψrel(ε, εp,n, pn) = f

(√
K

2µ
trε, ∥devε∥, εp,n, pn

)
. (4.4.1)

Observe that, when applying the same substitution to the one-dimensional con-
densed energy given in Eq. 4.3.7, we recover the original three-dimensional con-
densed energy given in Eq. 4.2.17. We give now the physical formulation of r0 from
Eq. 4.3.9.

ρ0(trε) =
√
βK
(trεmax − trεmin

2
−
∣∣∣∣tr(ε)− trεmax + trεmin

2

∣∣∣∣ ) (4.4.2)

The relaxed energies as per Eq. 4.3.16 and their derivatives with respect to the strain
tensor, i.e. the corresponding relaxed stress tensors are presented on the domains
Yi, i = 1, . . . , 4 by the following expressions.

Domain Y1:

Ψ1,rel =
K

2
(trε)2 + µ ∥ devε∥2, σ1,rel = K(trε) I + 2µ devε . (4.4.3)
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Domain Y2:

Ψ2,rel =
K

2
(trε)2 + µ ∥devε∥2 − 4µ2

2(2µ+ β)

(
∥devε∥ − 1

2µ
ρ0(trε)

)2
, (4.4.4)

σ2,rel = K(trε) I + 2µ devε− 4µ2

2µ+ β

(
∥devε∥ − 1

2µ
ρ0(trε)

) devε

∥devε∥

− 2µ
√
β K

2µ+ β

(
∥devε∥ − 1

2µ
ρ0(trε)

)
I .

(4.4.5)

Domain Y3:

Ψ3,rel =
K

2
(trε)2 + µ ∥devε∥2 − 4µ2

2(2µ+ β)

(
∥devε∥ − 1

2µ
ρ0(trε)

)2
− 2µβ

2(2µ+ β)

(
∥devε∥+ 1

β
ρ0(trε)−

2µ+ β

2µ

√
K

β

trεmax − trεmin

2

)2
,

(4.4.6)

σ3,rel = K(trε) I + 2µ devε− 4µ2

2µ+ β

(
∥devε∥ − 1

2µ
ρ0(trε)

) devε

∥devε∥

− 2µ
√
β K

2µ+ β

(
∥devε∥ − 1

2µ
ρ0(trε)

)
I

− 2µ
√
β K

2µ+ β

(
∥devε∥+ 1

β
ρ0(trε)−

2µ+ β

2µ

√
K

β

trεmax − trεmin

2

)
I

− 2µβ

2µ+ β

(
∥devε∥+ 1

β
ρ0(trε)−

2µ+ β

2µ

√
K

β

trεmax − trεmin

2

) devε

∥devε∥
.

(4.4.7)

Domain Y4:

Ψ4,rel =
K

2
(trε)2 +

2µβ

2(2µ+ β)
∥devε∥2 + K

2

(
trε− trεmin

)(
trεmax − trε

)
,

(4.4.8)

σ4,rel = K(trε) I +
2µβ

2µ+ β
devε+K

(trεmax + trεmin

2
− trε

)
I . (4.4.9)

4.5 Numerical results 1D

We make use of the dimensionless formulation introduced in Eq. 4.3.6. The function
r(y1) is selected to fit the yield surface of a modified Drucker-Prager model employ-
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Figure 4.7: Elastic region given by the function r(y1).

ing piece-wise quadratic function given by

r(y1) = rmax



1−
(
y1 − y0

)2(
y0 − ymin

)2 , for ymin ≤ y1 ≤ y0 ,

1−
(
y1 − y0

)2(
ymax − y0

)2 , for y0 ≤ y1 ≤ ymax ,

0 , otherwise ,

(4.5.1)

where ymin = −0.058, ymax = 0.00107, y0 = −0.0385 and rmax = 0.016, see Fig. 4.7.
We choose a hardening parameter b = 0.095 to insure that we are within the regime
of small values of b treated in Sec. 4.3.

The first numerical test is for a one-dimensional specimen (beam) of length L =
1, represented by a domain Ω = (0, 1). We employ a space discretization using
n = 80 standard linear finite elements. The specimen is fixed at the left-hand side,
(u, v)(0) = (0, 0), and subjected to given displacements (u, v)(L) = (uext, vext) in x-
and y-direction, respectively, at the right-hand side.

The affine solution is given by x 7→ (u(x), v(x)) = x(uext, vext) with constant deriva-
tive (uext, vext). We fix uext throughout our calculations and vary vext exploring
four different regions in the phase diagram from Fig. 4.6, which correspond to the
four panels in Figs. 4.8 and 4.9: (uext, vext) in (a) Y1, (b) Y2 ∩ {y2 ≤ r(y1)}, (c)
Y2 \ {y2 ≤ r(y1)} and (d) Y3, respectively.

The total energies are then functions of the vectors of nodal displacements u =
{u1, . . . , un+1}, v = {v1, . . . , vn+1} with u1 = v1 = 0 and un+1 = uext, vn+1 = vext,
given as

Wcond,rel(u,v) =
n∑

j=1

ψcond,rel

(uj+1 − uj
L/n

,
vj+1 − vj
L/n

) L
n
, (4.5.2)

for the condensed and the relaxed energy, respectively. The minimization is per-
formed using the Mathematica function FindMinimum, which employs a gradient-
based local search. Note, that for the relaxed energy, the minimum is obtained for
the affine displacements ui = i−1

n
uext, vi = i−1

n
vext.
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We add a random perturbation of amplitude α to the exact solution given above
as an initial guess for the minimization procedure. Hence, let rand(i) be a random
function possessing a uniform distribution within the interval [−1, 1]. Then the initial
guess is for i = 2, . . . , n given by

uinii =
i− 1

n
uext + α

L

n
rand(i) , (4.5.3)

vinii =
i− 1

n
vext + α

L

n
rand(n+ i) . (4.5.4)

Two tests are performed, once with the a perturbation of amplitude α = 0.01 and a
second test with α = 0.1. Results are depicted in Figs. 4.8 and 4.9. The numerical
simulations reflect the predictions based on the phase diagram in Fig. 4.6. We expect
the calculations employing the condensed energy to return microstructure consisting
of up to three distinct points in y1-y2-space. These microstructures will approximate
the actual minimum more or less successfully depending on the quality of the initial
guess. This behavior is precisely reflected by the points in red color corresponding to
the condensed energy in Figs. 4.8 and 4.9. The calculations employing the relaxed
energy, on the other hand, are expected to return the actual minimum up to round-
off errors, which is precisely what is found. Due to the fact that the graph of the
relaxed energy contains affine (flat) areas, the variational problem with the relaxed
energy does have a unique affine mininimizer, the displacement gradients are not
expected to take only values in the local minima of the nonconvex free energy lead-
ing to the formation of microstructure, and can in fact take any value on the affine
parts of the energy. The only restriction is the global restriction, that the total energy
of the displacement is equal to the minimum. This behavior is reflected once again
by the points in green color corresponding to the relaxed energy in Figs. 4.8 and 4.9.
In the following, we comment on the outcome from Figs. 4.8 and 4.9 in detail.

In case (a) with vext ∈ [0, 0.0036], both the relaxed and the condensed energy are
convex with f = fc and the corresponding minimizers are affine with gradient
(uext, vext). For larger values of vext ∈ [0.0036, 0.014] the function f is locally con-
vex but different from its relaxation fc which is obtained by a mixture of two states
and which is affine on lines parallel to the boundary of the region Y3, see the red
lines in the left panel in Fig. 4.6. Thus the calculation with the condensed energy
is expected to discover the microstructure supported on two points while the cal-
culation with fc can use all the gradients on the affine part. In fact, the second
panel in Figs. 4.8 and 4.9 shows exactly this behavior. The case (c) corresponds to
vext ∈ [0.014, 0.063] and shows the same behavior of case (b), the only difference be-
ing that f is not locally convex at the point (uext, vext). Finally, for vext ∈ [0.0163, 0.15]
the condensed energy f is not locally convex and the relaxed energy fc is affine on
the triangle Y3. Therefore the range of the gradient of the numerical solution for the
calculation with the condensed energy is expected to be located in the three corners
of the triangle while the gradient of the solution with the relaxed energy can explore
the full triangle. The last panel in Figs. 4.8 and 4.9 confirms this prediction.

Notice, that considering a larger value for the amplitude of perturbation α results in
more scattered values as the initial guess is further a way from the exact minimum.
This difference is obviously noticed in the last panel from Fig. 4.9, where the points
of the approximate minimizer from the relaxed energy are spread even outside the
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relaxation region Y3. Despite this higher perturbation, the gradient of the solution
from the relaxed energy for the cases (a), (b) and (c) (as shown in the panels 1-3 in
Fig. 4.9) is still able to return the exact minimum.

The procedure employing the condensed energy does not recover the exact mini-
mum, but produces values which are between 10% and 20% higher. However, the
values are lower than the energy of the condensed energy evaluated at the affine
solution. The approximate minimizer attempts to mimic the construction of the
relaxed energy by concentrating points at the corresponding positions within the y1-
y2-plane. The procedure employing the relaxed energy returns the exact minimum
with working precision in all cases.

In the following, we present a third test for the one-dimensional problem (the beam)
assigning convex perturbation in time. Meaning that we increase the displacement
at the right hand side in m steps to its final value (here m = 50 steps). In each step,
we take for the minimization the initial guess from the previous one. These values
are randomized (with α) and adapted to avoid any unrealistic high gradient in the
rightmost element as follows:

uini,ki =
k

k − 1
uk−1
i

(
1 + α

L

n
rand(i)

)
, vini,ki =

k

k − 1
vk−1
i

(
1 + α

L

n
rand(n+ i)

)
,

i = 2, . . . , n, (4.5.5)

where k denotes the number of the specific step and n gives the mesh size.

Results are depicted in Fig. 4.10. The procedure employing the relaxed energy again
recovers the exact minimum within working precision, but the minimizers comprise
a smaller number of points now. The procedure employing the condensed energy
still does not recover the exact minimum.

In order to decide how close can the implemented minimizing procedure attain the
exact minimum, the relative error from the relaxed and condensed energy with re-
spect to the exact energy is investigated. The calculations are performed for a ran-
domly perturbed initial guess with α = 0.1 and considering m = 0 and m = 50
time-steps. The results can be inferred from Fig. 4.11. We notice from the green
curves (representing the relative error of the relaxed energies), that the applied re-
laxation covers the exact minimum with a considerably small error in the different
relaxation regions and under different initial values. On the other hand, the con-
densed energy fails to find the exact solution, when the minimization is starting
with an initial guess that is too far away from the exact solution, as can be seen in
the last two graphs from the right panel in Fig. 4.11.

4.6 Numerical results 2D

The generalization to a three-dimensional model derived formerly in Sec. 4.4 is
tested through two-dimensional boundary value problems (in plane strain settings).
First, the results from the square plate with a circular hole are provided, then the
calculation results from the double notch and the cracked plate are shown.
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Figure 4.8: Minimization with exact initial guess plus random perturbation (α =
0.01) for increasing boundary values uext, vext. Left column: y2 = v′(x)
versus position x of the beam, right column: points of the approximate
minimizers (y1, y2) within relaxation domains as depicted in Fig. 4.6.
Comparison from the condensed and relaxed energies for a mesh with
80 elements.
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Figure 4.9: Minimization with exact initial guess plus random perturbation (α = 0.1)
for increasing boundary values uext, vext. Left column: y2 = v′(x) versus
position x of the beam, right column: points of the approximate minimiz-
ers (y1, y2) within relaxation domains as depicted in Fig. 4.6. Comparison
from the condensed and relaxed energies for a mesh with 80 elements.
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Figure 4.10: Minimization with perturbed initial guess plus time-increment for in-
creasing boundary values uext, vext. Left column: y2 = v′(x) versus posi-
tion x of the beam, right column: points of the approximate minimizers
(y1, y2) within relaxation domains as depicted in Fig. 4.6. Comparison
from the condensed and relaxed energies for a mesh with 80 elements.
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Figure 4.11: Comparison of the relaxed and condensed energy with the energy com-
prising the exact solution for the beam with 80 elements mesh, apply-
ing random perturbation and increasing boundary values for uext, vext.
Right panel with time-discretization, left panel without.
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Figure 4.12: A plate with a circular hole subject to a given displacement in x-
direction on the right-hand side. The figure to the left shows the coarse
mesh with 1793 elements and that to the right the fine mesh with 4917
elements. The elements employed for the stress plots are marked in red
and cyan.

4.6.1 A plate with a hole

A square plate with the dimensions 10 mm x 10 mm and a centrally located hole
of radius 1.25 mm is investigated. The the left-hand side of the plate is fixed and
it is subject to displacements in x-direction along the right-hand side. The applied
displacements are linearly increasing in time. Unlike the studied plate in Sec. 3.1.9,
we consider now loading in compression in order to study the critical case for granu-
lar materials under pressure. Two unstructured meshes are computed, a coarse one
with 1793 elements and a finer mesh with 4917 elements. The meshes are shown in
Fig. 4.12.

Finite element computations are performed using the finite element analysis pro-
gram FEAP, (Taylor and Govindjee 2022). Standard hexahedral (8-Nodes) elements
are used, they are restricted in the 3rd direction employing plane strain conditions.
Stresses are calculated as analytical derivatives of the energies with respect to the
strains. Tangent operators are calculated as second derivatives of the energies with
respect to the strains, numerically via perturbation. Equilibrium states are obtained
by standard Newton-Raphson procedure.

For the computations, we use the same material parameters as in the one-dimensional
case taken from a modified Mohr-Coulomb material model, see (Shen, Shi, and Bar-
ton 2018), with bulk modulus K = 3.9GPa, shear modulus µ = 2.8GPa, internal
friction angle ϕ = 32◦, cohesion c = 25MPa, Poisson’s ratio ν = 0.25, and tensile
strength σt = 5MPa. Under load increment, the elements in the neighborhood of
the hole start to plastify first. Therefore, we compare the results for the model em-
ploying the relaxed energy at the marked elements adjacent to the hole for both
meshes. The values are taken from a specific integration point at these elements. We
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Figure 4.13: Square plate with circular hole: from top left to bottom right: stresses
σxx, at the marked elements in cyan, and σyy, σxy and plastic strain εpxy,
at the marked elements in red, as a function of the external boundary
displacement ux,ext.

would like to mention, that a comparison to the condensed energy is not possible,
as the lack of convexity causes severe numerical instabilities. Therefore, only the
behavior of the relaxed model can be inferred from the results below.

The final external displacement is reached employing 100 load steps. The corre-
sponding strains switch from domain Y1 into domain Y2, inducing an initiation of
microstructure. In Fig. 4.13, we show the stresses and plastic strains (calculated as
the difference of total and elastic strains) at the elements marked in Fig. 4.12 against
the external displacements. The point marked in cyan color in Fig. 4.12 correspond
to the Gauss-integration point closest to the vertical axis of symmetry. The point
marked in red color in Fig. 4.12 correspond to the Gauss-integration point closest to
the diagonal. A global comparison for a force-displacement diagram at the free edge
to the right of the plate can be seen in Fig. 4.14.

The distribution of the stresses σyy and σxy at the same instant are given in Fig. 4.15.
It can be seen, that for both meshes the results agree very well for local and global
quantities. Microstructure is initiating at the same positions and load step despite the
different spatial discretization. Contours of the plastic strains are shown in Fig. 4.16
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Figure 4.14: Square plate with circular hole: force-displacement diagram at the free
end to the right of the plate.

for a state shortly after microstructure initiation at uext = 0.0014 mm. This demon-
strates, that the relaxed model is mesh independent and capable of capturing the
material behavior in different zones of relaxation.

4.6.2 Double notch

The next boundary value problem is a double-notched specimen fixed at the bottom,
and exposed vertically to time-dependent displacement in y−direction at the top
edge. The specimen has the dimensions 18 mm x 50 mm and a thickness of 3 mm.
We fix the movement in z− direction, implying a plane strain state for all computa-
tions. The upper edge is loaded linearly into a total magnitude of uy = −0.04 mm.
Two spatial discritizations using tri-linear hexahedral elements are considered, giv-
ing a coarse mesh with 1147 elements, and a finer mesh with 2898 elements, as can
be seen in Fig. 4.17. The Finite element computations are performed using FEAP
software.

We employ in our computations the same material parameters from the modified
Mohr-Coloumb material model implemented in the plate with a hole boundary value
problem. Under loading the zones around the notches start to plastify first, and then
the microstructure initiation proceeds to spread along the center line connecting the
notches. The global quantities from the free edge to the top of the specimen can
be seen in Fig. 4.18. In addition to a local comparison of the stresses against the
external displacement at the marked elements (in red) at a specific integration point
as shown in Fig. 4.19.

We observe a very good compliance from the coarse and fine meshes, on both the
global and the local level, implying mesh-independent behavior under relaxation.
Further investigations of the contour plots of the coarse and fine meshes can be in-
ferred from Figs. 4.20 and 4.21. We see in Fig. 4.20 the distribution of the stresses
in xx and yy directions at the end of loading time, whereas Fig. 4.21 shows the
distribution of the shear stresses for the total loading magnitude, in addition to the
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Figure 4.15: Contours from the plate with a hole. Distribution of the stresses σyy and
σxy. Coarse mesh (left) and fine mesh (right).

contour plots of the plastic strains around a loading value uy,ext = 0.01 mm, taken
shortly after the initiation of the microstructure. We come up with the same conclu-
sion, that the relaxed model is capable of capturing the initiation of microstructure
to a very good extent. Notice the same global distribution and stress concentration
zones. Besides, the evolution of the plastic strains is taking place at the same time
and same positions despite the different meshes.

4.6.3 Crack problem

A more sophisticated boundary value problem, namely the cracked plate, will be
considered next. The plate has the dimensions 50 mm x 50 mm and a thickness of 5
mm, with a prior opening crack in the plate. The lower side of the plate is fixed and
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Figure 4.16: Contours from the plate with a hole. Distribution of the plastic strain
εpxy shortly after microstructure initiation. Coarse mesh (left) and fine
mesh (right).
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Figure 4.17: A Specimen notched to the left and right sides, subject to a given dis-
placement in y-direction on the top free edge. The figure to the left
shows the coarse mesh with 1147 elements and that to the right the
fine mesh with 2898 elements. The elements employed for the stress
plots are in the center marked in red. The nodes marked in green on
the left edge are used for the displacement comparison.
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Figure 4.18: Double notch: force-displacement diagram at the free edge to the top
of the specimen.

the upper side is compressed by means of a given displacement linearly increasing
in time, to a total magnitude of uy = −0.05 mm. Three different meshes are investi-
gated, a coarse mesh with 720 elements, a fine mesh with 2000 elements and a finer
mesh with 5600 elements, see Fig. 4.22. Tri-linear hexahedral elements are assigned
for the finite element computations, with a fixed thickness, z− direction, implying a
plane strain state for all computations.

The global response in terms of the force-displacement diagram in y− direction from
the upper free edge of the plate is shown in Fig. 4.23. The curves are matching
despite the different mesh sizes.

An additional comparison is provided at the marked elements to the top of the crack
tip, as given in Fig. 4.24. Shown are the shear stress components and the evolving
plastic strains from the different meshes. We observe very good results, even though
the shear stresses from the very fine mesh is a little bit deviated, but this is due to the
effect of refinement for the local comparison and not a mesh-dependent evidence.
As the plastic strains are complying very well. An additional evidence for the mesh-
independency can be observed even from the global distribution of the shear stresses
given in Fig. 4.25 for the three meshes. The same distribution and concentration
domains are obtained in the different contour plots.

In the presented effective model and the subsequent examples, only an initiation
of the microstructure was captured. Therefore, the goal of the next section is to
investigate a detailed time-incremental evolution of the microstructure.

4.7 Evolution of the microstructure

The aforementioned inelastic material, with a non-quasiconvex free energy seen in
Eq. 4.2.17, tends to reduce its energy under energy minimization and attains an en-
ergy minimum. However, this does not happen through homogeneous deformation
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plastic strain εpxy, at the marked elements in red, and the displacement
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Figure 4.20: Contours from the double notch problem. Distribution of the stresses
σxx and σyy. Coarse mesh (left) and fine mesh (right).
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Figure 4.21: Contours from the double notch problem. Distribution of the shear
stresses σxy at the end of loading time and the plastic strain εpxy
shortly after microstructure initiation. Coarse mesh (left) and fine mesh
(right).



104 4 Pressure dependent plasticity

Uy

↑↑↑↑↑↑↑↑↑↑↑↑↑ ↑↑↑↑↑↑↑↑↑↑↑↑↑ ↑↑↑↑↑↑ ↑↑

Uy

↑↑↑↑↑↑↑↑↑↑↑↑↑ ↑↑↑↑↑↑ ↑↑ ↑↑↑↑↑↑↑↑↑↑↑↑ ↑↑↑↑↑↑ ↑↑

Figure 4.22: Crack problem: a coarse mesh with 720 elements to the left, a fine mesh
with 2000 elements to the right and a finer mesh with 5600 elements
to the bottom. The elements marked in red are employed for the of the
stress comparison and the green nodes to the left are for the displace-
ment comparison.
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Figure 4.23: Crack problem: force-displacement diagram at the free edge to the top
of the plate.
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Figure 4.24: Crack problem: shear stresses in xy plane to the left and plastic strains
εpxy to the right.

state, but it rather breaks up into finer-scale microstructure. Therefore, we need
a statistical description for these small-scale structures, by identifying probability
measures, here the volume fractions. These volume fractions contribute to effective
quantities by applying volume averaging for the small-scale structures at the micro-
scale into the macro-scale. This scheme is called relaxation (refer to Sec. 2.5.3). An
approximation of the convex envelope for the free energy is computed, due to the
fact that the computation of a quasi-convex envelope is in general too complicated.

The material under investigation shows an elastic behavior, as long as the loading
pairs [trε, devε] are within domain Y1, see the right panel of Fig. 4.6. Nevertheless,
as the material leaves the elastic region, the findings from the relaxation approach
presented in Sec. 4.3 have shown different relaxed regions depending on the sides of
the interval [ξmin, ξmax] on which the function ρ(trε) is defined, meaning that for each
relaxed zone a mixed state is encountered. Therefore, the statistical measure pre-
scribing the evolving microstructure shall distinguish between the different domains.
Domain Y1 accounts for an elastic or one-phase region, domains Y2 mixes elastic and
plastic behavior in a two-phase region with different contributions, whether from
the side of ξmin or ξmax. On the other hand, domain Y3 prescribes a three-phase re-
gion for the elastic and plastic contributions from both sides. Lastly, domain Y4 is
a two-phase region with only plastic evolution and no elastic behavior is observed
more. Hence, we consider three volume fractions λ0, λ1, λ2, enforcing λi ≥ 0 and∑N

i=0 λi = 1 for i = 0, 1, 2.

The introduced volume fractions correspond to a new set of internal variables ep,1, ep,2,
p1, p2 (plastic strain histories and hardening parameters). Now we can formulate the
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Figure 4.25: Crack problem: contours of the shear stresses in xy plane, coarse mesh
top left, fine mesh top right and a finer mesh lower lane.

relaxed energy in terms of these newly defined internal variables

Ψeff = Ψvol +Ψdev , (4.7.1)

=
K

2

(
trε− λ1ξmin − λ2ξmax

)2
1− λ1 − λ2

+ µ
∥∥devε− λ1ep,1 − λ2ep,2

∥∥2
+
β

2

(
λ1p

2
1 + λ2p

2
2

)
.

In order to model a time-continuous evolution of the microstructure, we need to
capture the dissipation required to change from one state in time to the next. Thus,
we define the effective dissipation potential as

∆eff =
1

2γ
(λ̇21 + λ̇22) +

{
0 for ∥ėp,i∥ ≤ ṗi, λ̇i ≥ 0 ,

∞ otherwise ,
i = 1, 2. (4.7.2)
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where γ > 0 is a viscous parameter applying time regularization. Consider a finite
time increment ∆t = tn+1 − tn, we can write the dissipation distance as follows

D(λi,0, λi,1, pi,0, pi,1, ep,i,0, ep,i,1)

= inf
λi

{∫ t1

t0

∆eff(λ̇i(t), ėp,i(t), ṗi(t)) dt
∣∣ pi(0) = pi,0, pi(1) = pi,1,

λi(0) = λi,0, λi(1) = λi,1, ep,i(0) = ep,i,0, ep,i(1) = ep,i,1

}
,

=
1

2γ

((
λ1,1 − λ1,0

∆t

)2

+

(
λ2,1 − λ2,0

∆t

)2
)

+

{
0 for ∥ep,i,1 − ep,i,0∥ ≤ pi,1 − pi,0 ,

∞ otherwise .
(4.7.3)

Then the minimization problem to solve is given by

{λ1,n+1, λ2,n+1} = arg inf
λ1,λ2

{
Ψ̇eff

(
εn+1, ep,i,n, pi,n, λi,n

)
+D

(
ep,i,n, pi,n, λi,n

)}
.

(4.7.4)

Returning the time-incremental evolution equations for the set of internal variables

ep,i,n+1 = ep,i,n +
1

2µ+ β

(
2µ ∥devεn+1∥ − β pi,n

)
+
sign devεn+1 , (4.7.5)

pi,n+1 = pi,n + ∥ep,i,n+1 − ep,i,n∥ , (4.7.6)

λi,n+1 = λi,n + γ∆t(qi)+ , (4.7.7)

here ∆t is the time-increment and qi is the thermodynamically driving force pre-
scribing the evolution of the microstructure, which can be computed according to
the second law in thermodynamics as follows

qi = −∂Ψeff

∂λi

(
trεn+1, devεn+1, ep,i,n, pi,n, λi,n

)
, i = 1, 2 , (4.7.8)

=
Kξmax,min

(
trε− λ1ξmin − λ2ξmax

)
1− λ1 − λ2

−
K
(
trε− λ1ξmin − λ2ξmax

)2
2(1− λ1 − λ2)2

− β

2
p2i + 2µ

(
devε− λ1ep,1 − λ2ep,2

)
: ep,i .

4.7.1 Initiation

A critical point in computing the evolution of microstructure is to check its initiation,
i.e. to check whether it is getting energetically favorable to form a microstructure
or not. Considering a similar procedure as in (Kochmann and Hackl 2011), we
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maximize the driving force subject to the constraint pi = ∥ep,i∥, then substitute in
Eq. 4.7.8 to get

qi,ini(devε, trε, ep,i, pi, λi) = lim
λi→0

qi(devε, trε, ep,i, pi, λi) , (4.7.9)

giving

q1,ini(λ1 = 0) =
Kξmin

(
trε− λ2ξmax

)
1− λ2

−
K
(
trε− λ2ξmax

)2
2(1− λ2)2

− β

2
∥ep,1∥2 + 2µ

(
devε − λ2ep,2

)
: ep,1 , (4.7.10)

q2,ini(λ2 = 0) =
Kξmax

(
trε− λ1ξmin

)
1− λ1

−
K
(
trε− λ1ξmin

)2
2(1− λ1)2

− β

2
∥ep,2∥2 + 2µ

(
devε − λ1ep,1

)
: ep,2 . (4.7.11)

The initial plastic strains and hardening variables maximizing the driving forces re-
sult from the equations

∂q1,ini(λ1 = 0)

∂ep,1
= −β ep,1 + 2µ(devε− λ2ep,2) = 0 , (4.7.12)

∂q2,ini(λ2 = 0)

∂ep,2
= −β ep,2 + 2µ(devε− λ1ep,1) = 0 , (4.7.13)

giving

ep,1,ini =
2µ

β

(
devε− λ2ep,2

)
, p1,ini = ∥ep,1,ini∥ , (4.7.14)

ep,2,ini =
2µ

β

(
devε− λ1ep,1

)
, p2,ini = ∥ep,2,ini∥ . (4.7.15)

We plug these initial values into the driving forces to get two test conditions, which
decide whether the evolution of a specific phase is getting preferable or not. So test1
leads to initiation of λ1 and test2 leads to initiation of λ2. These test conditions are
computed as follows

q1,max =
Kξmin

(
trε− λ2ξmax

)
1− λ2

−
K
(
trε− λ2ξmax

)2
2(1− λ2)2

− 2µ2

β
∥devε− λ2ep,2∥2 +

4µ2

β
∥devε− λ2ep,2∥2 = 0 , (4.7.16)
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simplifying gives the relation for test1 implying an evolution of λ1

q1,max = −
K
(
trε+ (−1 + λ2)ξmin − λ2ξmax

)2
2(−1 + λ2)2

+
2µ2

β
∥devε− λ2ep,2∥2 = 0 .

(4.7.17)

analogously, test2 giving the evolution of λ2 reads as

q2,max = −
K
(
trε+ (−1 + λ1)ξmax − λ1ξmin

)2
2(−1 + λ1)2

+
2µ2

β
∥devε− λ1ep,1∥2 = 0 .

(4.7.18)

We have now everything set to show the numerical implementation for the preceding
theory.

4.7.2 Numerical treatment

We have derived time-incremental equations suitable for the numerical implementa-
tion. The given relaxation scheme returns a well-posed problem under minimization.
In order to solve the resulting coupled problem, we apply a staggered scheme, mean-
ing, for each time-step tn+1 we have from the boundary conditions and the loading
state trεn+1, devεn+1 in addition to the internal variables from the previous time-step
p1,n, p2,n, ep,1,n, ep,2,n, λ1,n, λ2,n. The initiation conditions given by test1 in Eq. 4.7.17
and test2 in Eq. 4.7.18 are calculated and three cases are investigated, a) only test1
is satisfied, b) only test2 is satisfied or c) test1 and test2 are satisfied together.

Fulfillment of test1 implies an evolution of the plastic phase-1 with λ1, therefore
p1,ini,n+1, ep,1,ini,n+1 and q1,n+1 from Eq. 4.7.8 are computed with p2,n, ep,2,n, λ2,n to
remain fixed. The internal variables corresponding to phase-1 ep,1,n+1, p1,n+1, λ1,n+1

are then updated according to Eqs. 4.7.5, 4.7.6, 4.7.7 respectively.

However, if test2 is fulfilled, then the same steps are done for phase-2 with the
internal variables ep,2,n+1, p2,n+1, λ2,n+1 to be updated and the internal variables
corresponding to phase-1 are fixed. On the other hand, loading pairs contributing
to coupled evolution, i.e. causing a fulfillment of test1 and test2 together, then an
evolution of the microstructure is present in the three-phase region. Therefore, the
internal variables from both plastic phases shall be updated, but in a staggered way
as well. The updated values are then passed to the next time-step. Please notice that
as long as the time-step and loading-increment are kept small enough, the order of
solving the previous equations should not influence the final results.

Several numerical calculations will be given to emphasize the introduced relaxation
scheme. We provide first two examples computed locally, i.e at the material point.
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Later on applications using the finite element method for well known boundary
value problems are given. The same applied material parameters, as in Sec. 4.6, are
used. The material parameters are bulk-modulus K = 3.9GPa, the shear-modulus
µ = 2.8GPa and Poisson’s ratio ν = 0.25. The hardening parameter is selected as
β = 0.53GPa. Nevertheless, the concave function ρ(trε) is beyond our interest, as it
is necessary only for the condensed energy, which is proven to cause numerical in-
stability due to the lack of convexity. However, the values for the interval on which
the pressure-dependent function is defined are important. Hence, we give the values
ξmin = −0.0695 and ξmax = 0.00128. The viscosity term has the value γ = 100 1

GPa.s
.

4.7.3 Material subject to uniaxial compression and simple shear

We consider the material is exposed to hydrostatic pressure and simple shear in-
creasing linearly in time with the following values for the strain tensor

ε =

−0.0003 t 0.0006 t 0
0.0006 t −0.0003 t 0

0 0 −0.0003 t

 , (4.7.19)

where a time-increment of ∆t = 0.00625 sec is applied. Under loading the material
leaves the elastic region Y1 to enter the region Y2 to the side of ξmin employing a
transition from the elastic phase-0 to the plastic phase-2. This leads to an initiation
of λ2 with the corresponding internal variables in phase-2, namely, p2 and ep,2. With
further loading, the material enters the three-phase region Y3, see the right panel in
Fig. 4.6, allowing the initiation of λ1 with its corresponding internal variables p1, ep,1
as well.

The resulting stresses and internal variables under uniaxial-pressure can be inferred
from Fig. 4.26. Notice the peak around a total time of 32 sec (εxy = 0.017) in the
response curve for the shear plane (graph to the top right panel), which refer to
the transition from a two-phase into a three-phase region. We can observe that at
this transition point, as the microstructure in phase-1 evolves, the driving force q2 is
getting negative, causing no further updates to the internal variables corresponding
to phase-2. Therefore, they remain constant for the rest of the loading time.

4.7.4 Material under shearing and constant pressure

In the following test, we subject the material under consideration to constant uniaxial-
pressure with shearing in plane x− y increasing in time, according to the next strain
tensor

ε =

−0.015 0.0015 t 0
0.0015 t −0.015 0

0 0 −0.015

 , (4.7.20)

The applied time-step is ∆t = 0.0025 sec. The given strains produce loading pairs
[trε, devε] that cause a horizontal movement along trε axis at the very beginning,
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Figure 4.26: Output from the test of uniaxial compression. From top left to bottom
left: the response in the normal directions to the left and the response
in shear plane x − y to the right, the evolving plastic parameters in
addition to the volume fractions from both directions, the plastic strain
histories in x− y shear plane.
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and then a gradual vertical increment (deviatoric effect) takes place. Meaning, un-
der loading, the material leaves the elastic zone Y1, then moves further vertically
to enter the two-phase region Y2, and then even further to achieve the three-phase
region Y3. Outputs from this test are shown in Fig.4.27.

At the beginning, an evolution of λ1 with its internal variables takes place, as long
as the loading pairs are in the two-phase region to the side of ξmax. Later on, loading
proceeds and the material enters the mixed zone, initializing λ2 and causing the
internal variables from phase-2 to evolve as well. We can observe the curve of λ1,
with a changing tangent and two peaks that reflect the mentioned region transition,
the first one is for a transition from Y1 to Y2 and the second peak shows the change
between Y2 and Y3. The different relaxation regions can be inferred from Fig. 4.6.

4.7.5 Finite element comparison for the plate with a hole

We have presented so far only local results for the relaxation scheme introduced
above. Now we want to extend our investigations to a global comparison computed
via the finite element method. For this purpose, we studied for the sake of compar-
ison, the same boundary value problem as in Sec. 4.6.1, a rectangular plate with
a centered hole. The right side of the plate is subject to a horizontal displacement
increasing linearly in time, to a total magnitude of ux = −0.035 mm. To ensure
the stability of the staggered scheme mentioned before, we apply the given displace-
ment in very small increments |∆ux| = 0.0000875 mm. The same coarse and fine
meshes are tested, as shown in Fig. 4.12. Tri-linear hexahedral elements with a
fixed thickness are used implying a plane strain state. The implementations are per-
formed using the finite element program FEAP. The elements employed for stress
comparison and comparison of the internal variables are the ones marked in red.

A global comparison of the force-displacement curves from the coarse and fine
meshes at the right free edge of the plate can be seen in Fig. 4.28. Notice the match-
ing behavior under relaxation within the elastic phase and after evolution, meaning
that the minimization problem solved is able to return one global minimum despite
the different mesh-size.

In addition to the global results, we want to compare the evolving internal variables
locally. These results are captured at the elements beside the hole marked in red,
see Fig. 4.12. The comparison of the stresses and the internal variables as a result of
the evolving microstructure are plotted against the external applied displacements,
results can be inferred from Fig. 4.29.

The results from the plate with a hole reflects one transition under the given dis-
placement from the elastic zone into a two-phase region Y2 to the side of ξmin. In the
top pane we see the normal stress component σyy and the shear stress component
σxy at a specific integration point from the marked elements. A very good compli-
ance from the coarse and fine meshes in the different regions can be observed. The
following curves in the mid and lower rows represent the arising internal variables,
which are initiating at the same time and providing the same behavior despite the
different mesh-size.
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Figure 4.27: Output from the simple-shear test. From top left to bottom left: the
response in the normal directions to the left and the response in shear
plane x − y to the right, the evolving plastic parameters in addition to
the volume fractions from both directions, the plastic strain histories in
x− y shear plane.
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Figure 4.28: A plate with a hole (evolution), force-displacement diagram in
x−direction at the right free side.

An additional evidence for the well-posedness of the variational problem under con-
sideration can be obtained from figures 4.30 and 4.31. They show the stress dis-
tribution and contour plots of the internal variables from the coarse mesh (to the
left) and the fine mesh (to the right). Notice the same evolution positions and dis-
tribution. A very good agreement from both meshes is observed, which reflects a
mesh-independent behavior for the relaxed evolution model.

4.7.6 Finite element comparison for the double notch

We study the double notched specimen shown in Fig. 4.17. The bottom edge of the
specimen is fixed and the upper edge is subject to a vertical displacement increasing
linearly in time, to a total magnitude of uy = −0.085 mm, with a very small loading
increment of |∆uy| = 0.0002125 mm.

We apply the finite element computations for the two shown meshes. As a result, we
get the global force-displacement diagram in y− direction at the upper free edge, to
be inferred from Fig. 4.32. Yielding at the upper side of the specimen takes more
time in comparison to the results from the relaxed model in Fig. 4.18, but here as
well, the matching global compliance implies a mesh-independent behavior.

Moreover, we observe in Fig. 4.33 the resulting displacements in x− and y− di-
rections at the marked nodes in green (in Fig. 4.17) beside the local values of the
stresses σyy and σzz at the marked elements in red for the same integration point.
Whether from the shown displacements to the left of the specimen or from the
stresses at the center, we observe very good compliance despite the different spa-
tial discretizations.

A further comparison can be inferred from Fig. 4.34, in which the internal variables
are given. Notice that the plots reflect evolution in the two-phase domain with an
initiation of all internal variables from phase-2. Although the plastic parameter and
plastic strain seem to evolve first, but this can be understood in the negative values
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of the driving force of λ2, as shown in Eq. 4.7.7. Therefore, λ2 remains zero for
some time before it starts to evolve as q2 turns positive. The comparison is from the
marked elements in red at the center of the specimen.

The distribution of the stresses σxx, σxy over the double-notched specimen is shown
in Fig. 4.35. We observe a very good matching behavior, in addition to some small
deviations for the stress concentrations around the notches. But concentrations
around the notches are expected and this behavior can be enhanced by seeking
further mesh refinement.

The contour plots from the internal variables are given in Fig. 4.36. They show the
same distribution and evolution positions for the internal variables. Emphasizing
once again the well-posedness of the minimization problem under relaxation.

4.7.7 Finite element comparison for the crack problem

The next example under consideration is the cracked plate, shown in Fig. 4.22. We
consider in our computations here only two meshes, the coarse mesh with 720 el-
ements and the fine mesh with 2000 elements. The upper side of the plate is ex-
posed to a vertical displacement increasing linearly in time, to a total magnitude of
uy = −0.075 mm, with a very small loading increment of |∆uy| = 0.0001875 mm. All
requirements for the plane strain state are fulfilled here as well.

An evolution of the microstructure starts at the zone surrounding the crack tip,
where the loading values lead to a contribution to phase-2 with an initiation of
the corresponding internal variables λ2, p2, ep,2. The resulting displacements at the
nodes marked in green from the coarse and fine meshes in addition to the response
in the normal direction yy and in shear plane xy are shown in Fig. 4.37. Stress plots
are captured from an integration point at the elements beside the crack tip, marked
in red in Fig. 4.22.

A view of the internal variables is given in Fig. 4.38, compared as well at the marked
elements beside the crack tip. A very good compliance between the different meshes
is observed. Although λ2 does not evolve directly after the evolution but rather later
on, when the thermodynamically driving force gets positive, i.e. as ep,2 becomes
more negative.

A contour plot comparison gives an insight into the global behavior of the cracked
plate. The comparison of the stress distribution and the contours of the internal
variables can be inferred from Fig. 4.39. We observe a very good agreement in the
global behavior, which leads to the same conclusion that our introduced model is
mesh-independent.

The cracked plate is a very complicated boundary value problem characterized with
high stress concentrations at the crack tip, yet assigning higher refinement around
the crack tip, returned well-posed stable results from the performed computations
of the relaxed model.
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4.8 Conclusion - pressure-dependent plasticity

We established a variational model for pressure-dependent plasticity common in
models of soil mechanics. Our approach employed a novel aspect by using a char-
acteristic function as dissipation potential. That way, it was possible to establish a
dissipation distance as well as a condensed energy connected to a time-incremental
setting in a consistent manner. This allowed us to investigate the initiation of mi-
crostructure via relaxation theory by calculating the quasiconvex envelope of the
condensed energy. For a one-dimensional model problem, for which the quasicon-
vex envelope coincides with the convex envelope, we succeeded in arriving at a
closed-form expression. Interestingly, the quasiconvex envelope turned out to be
largely independent of the yield surface of the original model for small values of
the hardening parameter b. The proof of this surprising fact illustrates that even the
microstructure can be chosen independently of the yield surface. Numerical simu-
lations confirmed the predictions of the analytical results and illustrated the qual-
itatively different behavior of the variational models using the condensed and the
relaxed energy, respectively. In particular, the simulations employing the condensed
energy succeeded in finding the necessary oscillations. It was possible to extend the
one-dimensional formulation to higher dimensions in an empirical manner. Numer-
ical simulations for a paradigmatic model problem provided strong evidence for the
superior predictive power of the relaxed model.

A time-incremental evolution model has been introduced, which is based on the
approximation of a convex envelope characterizing the evolving microstructure. The
relaxation techniques are inspired by the findings from the first investigations on
pressure-dependent plasticity, where the relaxation zones are encountering mixed
states. Therefore, these relaxation parameters turn out to be the internal variables
of the relaxed problem. By means of different numerical results we clarified the
introduced model and its applicability delivering a very good compliance in the local
and global behavior. This has been proved in terms of the mesh-independent results
from different numerical simulations.

Some future additions to the proposed models can be mentioned, for example an
enhancement from the variational point of view can be obtained by considering an
additional internal variable to prescribe the plastic volumetric change. Besides, a
better relaxed envelope, applying a relaxation via lamination, can be calculated to
get a more physical relaxed envelope closer to the quasiconvex one.
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Figure 4.30: Contour plot from the plate with a hole (evolution). Distribution of the
normal stresses σyy and shear stresses in plane x−y. Coarse mesh (left)
and fine mesh (right).
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Figure 4.31: Contour plot from the plate with a hole (evolution). Distribution of
the internal variables, plastic parameter p2 and the volume fraction λ2.
Coarse mesh (left) and fine mesh (right)
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Figure 4.33: Double notch (evolution): from top left to bottom right: displacements
in x− and y−directions, stresses σyy and σzz, as a function of the ex-
ternal boundary displacement uy,ext. Stress comparison at the marked
elements in red, and displacement comparison at the marked nodes in
green.
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Figure 4.34: Double notch (evolution): from top left to bottom left: plastic parame-
ter p2, volume fraction λ2, and plastic strain components ep,2,xx, ep,2,yy,
ep,2,xy, as a function of the external boundary displacement uy,ext. Com-
parison at the marked elements in red.
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Figure 4.35: Contours from the double notch problem (evolution). Distribution of
the stresses σxx and σxy. Coarse mesh (left) and fine mesh (right).
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Figure 4.36: Contours from the double notch problem (evolution). Distribution of
the plastic variable p2 and the volume fraction λ2 at the end of loading
time. Coarse mesh (left) and fine mesh (right).
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Figure 4.37: Crack problem (evolution): from top left to bottom right: displace-
ments in x− and y−directions, stresses σyy and σxy, σxy, as a function
of the external boundary displacement uy,ext.
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Figure 4.38: Crack problem (evolution): from top left to bottom right: plastic pa-
rameter p2, the volume fraction λ2, and plastic strain components ep,2,xx,
ep,2,yy, as a function of the external boundary displacement uy,ext.
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Figure 4.39: Contours from the crack problem (evolution). Distribution of the
stresses σxy, the plastic parameter p2 and the volume fraction λ2. Coarse
mesh (left) and fine mesh (right).
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5 Outlook

Applications of the variational method in the literature are manifold. We provided
so far different approaches in order to attract the attention to this field of research.
Nevertheless, further investigations are still open. For example, applying the reduced
models to materials with non-linear constitutive laws like for example damage mod-
els, or a straight-forward extension to viscous materials with rate-dependent contri-
bution in the characteristic dissipation function. A further application field would
be to consider uncertinity analysis by applying random distributions for the case of
homogenization with periodic microstructure.

The first findings from the presented inelastic materials characterized with pressure-
dependency can broaden the fields of investigation to cover different materials with
similar behavior like elastomer foams, or even design new solid materials (bio-
materials or others), which has parameter-dependency driving the inelastic behavior.





129

Bibliography

Aubry, S., M. Fago, and M. Ortiz (2003). A constrained sequential-lamination al-
gorithm for the simulation of sub-grid microstructure in martensitic materials.
Computer Methods in Applied Mechanics and Engineering 192(26-27), 2823–
2843.

Bakhvalov, N. S. and G. Panasenko (2012). Homogenisation: averaging processes in
periodic media: mathematical problems in the mechanics of composite materials,
Volume 36. Springer Science & Business Media.

Ball, J. M. and R. D. James (1987). Fine phase mixtures as minimizers of energy.
Archive for Rational Mechanics and Analysis 100, 13–52.

Ball, J. M. and R. D. James (1992). Proposed experimental tests of a theory of
fine microstructure and the two-well problem. Philosophical Transactions of the
Royal Society of London. Series A: Physical and Engineering Sciences 338(1650),
389–450.
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