NACH OBEN

Variational Calculus and Tensor Analysis

Dozent*in: Dr.-Ing. Ulrich Hoppe
Semesterwochenstunden: 2V + 1Ü
Leistungspunkte: 5
Studiengänge: MSc-CE, MSc-SE, BSc-MB, MSc-BI
Häufigkeit des Angebots: jedes Wintersemester
Prüfung: Schriftliche Prüfung 90 Minuten

Inhalt:

  1. Vectors and operation with vectors
    • Definition
    • Addition
    • Multiplication with scalar
    • Scalar product
    • Vector product
       
  2. Tensors and operations with tensors
    • Definition
    • Addition
    • Multiplication with scalar
    • Contraction
    • Product of tensors and vectors
    • Tensor product
    • Examples from continuum mechanics
       
  3. Vector and tensor fields
    • Definition
    • Nabla operator
    • Divergence of vector field
    • Gradient of vector field
    • Divergence of tensor field
    • Curl of vector field
    • Gradient of tensor field
    • Examples from continuum mechanics
       
  4. Integral theorems
    • Line integral
    • Gauss theorem
    • Stokes theorem
       
  5. Curvilinear coordinates
    • Cylindrical coordinates
    • Spherical coordinates
    • Examples from continuum mechanics
       
  6. One-dimensional variational problem
    • Functional
    • Variational problem
    • First variation
    • Necessary condition and Euler equation
    • Examples from mechanics
       
  7. Extended 1-D variational problems
    • Variable end-point
    • n unknown functions
    • Functional depending on higher order derivatives
    • Variational problems with constraints
    • Examples from continuum mechanics
       
  8. Sufficient conditions
    • Second variation
    • Necessary condition
    • Sufficient condition
       
  9. Multi-dimensional variational problems
    • 2-dimensional variational problems
    • 3-dimensional variational problems
    • 4-dimensional variational problems
    • Examples from continuum mechanics
       
  10. Direct methods in the calculus of variation
    • Rayleigh-Ritz method
    • Method of finite differences and finite elements
    • Dual variational principles
    • Variational-asymptotic method

Weitere Informationen finden Sie auf der E-Learning-Plattfrom Moodle.